Skip to main content

Dissecting Molecular Phenotypes Through FACS-Based Pooled CRISPR Screens

  • Protocol
  • First Online:
Embryonic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2520))

Abstract

Pooled CRISPR screens are emerging as a powerful tool to dissect regulatory networks, by assessing how a protein responds to genetic perturbations in a highly multiplexed manner. A large number of genes are perturbed in a cell population through genomic integration of one single-guide RNA (sgRNA) per cell. A subset of cells with the phenotype of interest can then be enriched through fluorescence-activated cell sorting (FACS). SgRNAs with altered abundance after phenotypic enrichment allow identification of genes that either promote or attenuate the investigated phenotype. Here we provide detailed guidelines on how to design and execute a pooled CRISPR screen to investigate molecular phenotypes. We describe how to generate a custom sgRNA library and how to perform a FACS-based screen using readouts such as intracellular antibody staining or Flow-FISH to assess phosphorylation levels or RNA abundance. Through the variety of available perturbation systems and readout options many different molecular and cellular phenotypes can now be tackled with pooled CRISPR screens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jackson AL, Bartz SR, Schelter J et al (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    Article  CAS  PubMed  Google Scholar 

  2. Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9:57–67

    Article  CAS  PubMed  Google Scholar 

  3. Shalem O, Sanjana NE, Hartenian E et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87

    Article  CAS  PubMed  Google Scholar 

  4. Wang T, Wei JJ, Sabatini DM et al (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84

    Article  CAS  PubMed  Google Scholar 

  5. Gilbert LA, Horlbeck MA, Adamson B et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Konermann S, Brigham MD, Trevino AE et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–588

    Article  CAS  PubMed  Google Scholar 

  7. Klann TS, Black JB, Chellappan M et al (2017) CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat Biotechnol 35:561–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu SJ, Horlbeck MA, Cho SW et al (2017) CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355:aah7111

    Article  PubMed  Google Scholar 

  9. Diao Y, Fang R, Li B et al (2017) A tiling-deletion-based genetic screen for cis-regulatory element identification in mammalian cells. Nat Methods 14:629–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu S, Li W, Liu J et al (2016) Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat Biotechnol 34:1279–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Korkmaz G, Lopes R, Ugalde AP et al (2016) Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat Biotechnol 34:192–198

    Article  CAS  PubMed  Google Scholar 

  12. Datlinger P, Rendeiro AF, Schmidl C et al (2017) Pooled CRISPR screening with single-cell transcriptome readout. Nat Methods 14:297–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jaitin DA, Weiner A, Yofe I et al (2016) Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell 167:1883–1896.e15

    Article  CAS  PubMed  Google Scholar 

  14. Dixit A, Parnas O, Li B et al (2016) Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167:1853–1866.e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yeo NC, Chavez A, Lance-Byrne A et al (2018) An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat Methods 15:611–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wessels H-H, Méndez-Mancilla A, Guo X et al (2020) Massively parallel Cas13 screens reveal principles for guide RNA design. Nat Biotechnol 38:722–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei J, Lotfy P, Faizi K, et al (2021) Deep learning of Cas13 guide activity from high-throughput gene essentiality screening. BioRxiv

    Google Scholar 

  18. Chavez A, Scheiman J, Vora S et al (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12:326–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miles LA, Garippa RJ, Poirier JT (2016) Design, execution, and analysis of pooled in vitro CRISPR/Cas9 screens. FEBS J 283:3170–3180

    Article  CAS  PubMed  Google Scholar 

  20. Gerhards NM, Rottenberg S (2018) New tools for old drugs: functional genetic screens to optimize current chemotherapy. Drug Resist Updat 36:30–46

    Article  PubMed  PubMed Central  Google Scholar 

  21. Behan FM, Iorio F, Picco G et al (2019) Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 568:511–516

    Article  CAS  PubMed  Google Scholar 

  22. Parnas O, Jovanovic M, Eisenhaure TM et al (2015) A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162:675–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Genolet O, Monaco AA, Dunkel I et al (2021) Identification of X-chromosomal genes that drive sex differences in embryonic stem cells through a hierarchical CRISPR screening approach. Genome Biol 22:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fulco CP, Nasser J, Jones TR et al (2019) Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat Genet 51:1664–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gjaltema RA, Schwammle T, Kautz P et al (2022) Distal and proximal cis-regulatory elements sense X-chromosomal dosage and developmental state at the Xist locus. Mol Cell 82: 190–208

    Google Scholar 

  26. Reilly SK, Gosai SJ, Gutierrez A et al (2021) Direct characterization of cis-regulatory elements and functional dissection of complex genetic associations using HCR-FlowFISH. Nat Genet 53:1166–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nagy T, Kampmann M (2017) CRISPulator: a discrete simulation tool for pooled genetic screens. BMC Bioinformatics 18:347

    Article  PubMed  PubMed Central  Google Scholar 

  28. Imkeller K, Ambrosi G, Boutros M et al (2020) gscreend: modelling asymmetric count ratios in CRISPR screens to decrease experiment size and improve phenotype detection. Genome Biol 21:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Doench JG, Fusi N, Sullender M et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morgens DW, Wainberg M, Boyle EA et al (2017) Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens. Nat Commun 8:15178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Horlbeck MA, Gilbert LA, Villalta JE et al (2016) Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. eLife 5:e19760

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sanson KR, Hanna RE, Hegde M et al (2018) Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat Commun 9:5416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11:783–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen B, Gilbert LA, Cimini BA et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Henkel L, Rauscher B, Schmitt B et al (2020) Pooled CRISPR screening at high sensitivity with an empirically designed sgRNA library. BMC Biol 18:174

    Google Scholar 

  36. Zhang J, Chen L, Zhang J et al (2019) Drug inducible crispr/cas systems. Comput Struct Biotechnol J 17:1171–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edda G. Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Genolet, O., Ravid Lustig, L., Schulz, E.G. (2022). Dissecting Molecular Phenotypes Through FACS-Based Pooled CRISPR Screens. In: Turksen, K. (eds) Embryonic Stem Cell Protocols . Methods in Molecular Biology, vol 2520. Humana, New York, NY. https://doi.org/10.1007/7651_2021_457

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_457

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2436-4

  • Online ISBN: 978-1-0716-2437-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics