Skip to main content

Bacterial Nanocellulose-Based Grafts for Cell Colonization Studies: An In Vitro Bioreactor Perfusion Model

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2436))

Abstract

With the aging population, the demand for artificial small diameter vascular grafts is constantly increasing, as the availability of autologous grafts is limited due to vascular diseases. A confluent lining with endothelial cells is considered to be a cornerstone for long-term patency of artificial small diameter grafts. We use bacterial nanocellulose off-the-shelf grafts and describe a detailed methodology to study the ability of these grafts to re-colonize with endothelial cells in an in vitro bioreactor model. The viability of the constructs generated in this process was investigated using established cell culture and tissue engineering methods, which includes WST-1 proliferation assay, AcLDL uptake assay, lactate balancing and histological characterization. The data generated this straight forward methodology allow an initial assessment of the principal prospects of success in forming a stable endothelium in artificial vascular prostheses.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wang X, Lin P, Yao Q, Chen C (2007) Development of small-diameter vascular grafts. World J Surg 31(4):682–689. https://doi.org/10.1007/s00268-006-0731-z

    Article  PubMed  Google Scholar 

  2. Harskamp RE, Lopes RD, Baisden CE, de Winter RJ, Alexander JH (2013) Saphenous vein graft failure after coronary artery bypass surgery: pathophysiology, management, and future directions. Ann Surg 257(5):824–833. https://doi.org/10.1097/SLA.0b013e318288c38d

    Article  PubMed  Google Scholar 

  3. Chlupac J, Filova E, Bacakova L (2009) Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res 58(Suppl 2):S119–S140. https://doi.org/10.33549/physiolres.931918

    Article  PubMed  Google Scholar 

  4. Antonyshyn JA, D'''''Costa KA, Santerre JP (2020) Advancing tissue-engineered vascular grafts via their endothelialization and mechanical conditioning. J Cardiovasc Surg (Torino) 61(5):555–576. https://doi.org/10.23736/S0021-9509.20.11582-9

    Article  Google Scholar 

  5. Gaudino M, Antoniades C, Benedetto U, Deb S, Di Franco A, Di Giammarco G, Fremes S, Glineur D, Grau J, He GW, Marinelli D, Ohmes LB, Patrono C, Puskas J, Tranbaugh R, Girardi LN, Taggart DP, Alliance A (2017) Mechanisms, consequences, and prevention of coronary graft failure. Circulation 136(18):1749–1764. https://doi.org/10.1161/CIRCULATIONAHA.117.027597

    Article  PubMed  Google Scholar 

  6. Obiweluozor FO, Emechebe GA, Kim DW, Cho HJ, Park CH, Kim CS, Jeong IS (2020) Considerations in the development of small-diameter vascular graft as an alternative for bypass and reconstructive surgeries: a review. Cardiovasc Eng Technol 11(5):495–521. https://doi.org/10.1007/s13239-020-00482-y

    Article  PubMed  Google Scholar 

  7. Byrom MJ, Bannon PG, White GH, Ng MK (2010) Animal models for the assessment of novel vascular conduits. J Vasc Surg 52(1):176–195. https://doi.org/10.1016/j.jvs.2009.10.080

    Article  PubMed  Google Scholar 

  8. Russel W, Burch R (1959) The principles of humane experimental technique. Methuen, London

    Google Scholar 

  9. Melchiorri AJ, Bracaglia LG, Kimerer LK, Hibino N, Fisher JP (2016) In vitro endothelialization of biodegradable vascular grafts via endothelial progenitor cell seeding and maturation in a tubular perfusion system bioreactor. Tissue Eng Part C Methods 22(7):663–670. https://doi.org/10.1089/ten.TEC.2015.0562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jafarihaghighi F, Ardjmand M, Mirzadeh A, Hassani MS, Parizi SS (2020) Current challenges and future trends in manufacturing small diameter artificial vascular grafts in bioreactors. Cell Tissue Bank 21(3):377–403. https://doi.org/10.1007/s10561-020-09837-0

    Article  PubMed  Google Scholar 

  11. Mertsching H, Hansmann J (2009) Bioreactor technology in cardiovascular tissue engineering. Adv Biochem Eng Biotechnol 112:29–37. https://doi.org/10.1007/978-3-540-69357-4_2

    Article  CAS  PubMed  Google Scholar 

  12. Maschhoff P, Heene S, Lavrentieva A, Hentrop T, Leibold C, Wahalla M-N, Stanislawski N, Blume H, Scheper T, Blume C (2017) An intelligent bioreactor system for the cultivation of a bioartificial vascular graft. Eng Life Sci 17(5):567–578. https://doi.org/10.1002/elsc.201600138

    Article  CAS  PubMed  Google Scholar 

  13. McFetridge PS, Bodamyali T, Horrocks M, Chaudhuri JB (2004) Endothelial and smooth muscle cell seeding onto processed ex vivo arterial scaffolds using 3D vascular bioreactors. ASAIO J 50(6):591–600. https://doi.org/10.1097/01.mat.0000144365.22025.9b

    Article  PubMed  Google Scholar 

  14. Schuerlein S, Schwarz T, Krziminski S, Gatzner S, Hoppensack A, Schwedhelm I, Schweinlin M, Walles H, Hansmann J (2017) A versatile modular bioreactor platform for Tissue Engineering. Biotechnol J 12(2). https://doi.org/10.1002/biot.201600326

  15. Freed LE, Vunjak-Novakovic G (2000) Chapter 13: Tissue engineering bioreactors. In: Lanza RP, Langer R, Vacanti J (eds) Principles of tissue engineering, 2nd edn. Academic Press, San Diego, pp 143–156. https://doi.org/10.1016/B978-012436630-5/50017-9

    Chapter  Google Scholar 

  16. De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong Brian W, Cantelmo Anna R, Quaegebeur A, Ghesquière B, Cauwenberghs S, Eelen G, Phng L-K, Betz I, Tembuyser B, Brepoels K, Welti J, Geudens I, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins Russel T, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven PP, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, DeBerardinis Ralph J, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M, Carmeliet P (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154(3):651–663. https://doi.org/10.1016/j.cell.2013.06.037

    Article  CAS  PubMed  Google Scholar 

  17. Hulsmann J, Aubin H, Wehrmann A, Jenke A, Lichtenberg A, Akhyari P (2016) Whole-heart construct cultivation under 3D mechanical stimulation of the left ventricle. Methods Mol Biol 1502:181–194. https://doi.org/10.1007/7651_2015_317

    Article  CAS  PubMed  Google Scholar 

  18. Hulsmann J, Aubin H, Kranz A, Godehardt E, Munakata H, Kamiya H, Barth M, Lichtenberg A, Akhyari P (2013) A novel customizable modular bioreactor system for whole-heart cultivation under controlled 3D biomechanical stimulation. J Artif Organs 16(3):294–304. https://doi.org/10.1007/s10047-013-0705-5

    Article  CAS  PubMed  Google Scholar 

  19. Hulsmann J, Aubin H, Wehrmann A, Lichtenberg A, Akhyari P (2017) The impact of left ventricular stretching in model cultivations with neonatal cardiomyocytes in a whole-heart bioreactor. Biotechnol Bioeng 114(5):1107–1117. https://doi.org/10.1002/bit.26241

    Article  CAS  PubMed  Google Scholar 

  20. Mohamed MA, Hogan MK, Patel NM, Tao ZW, Gutierrez L, Birla RK (2015) Establishing the framework for tissue engineered heart pumps. Cardiovasc Eng Technol 6(3):220–229. https://doi.org/10.1007/s13239-015-0211-4

    Article  PubMed  Google Scholar 

  21. Voyta JC, Via DP, Butterfield CE, Zetter BR (1984) Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol 99(6):2034–2040. https://doi.org/10.1083/jcb.99.6.2034

    Article  CAS  PubMed  Google Scholar 

  22. Avari H, Rogers KA, Savory E (2019) Quantification of morphological modulation, F-actin remodeling and PECAM-1 (CD-31) re-distribution in endothelial cells in response to fluid-induced shear stress under various flow conditions. J Biomech Eng. https://doi.org/10.1115/1.4042601

  23. Zhang K, Li JA, Deng K, Liu T, Chen JY, Huang N (2013) The endothelialization and hemocompatibility of the functional multilayer on titanium surface constructed with type IV collagen and heparin. Colloids Surf B Biointerfaces 108:295–304. https://doi.org/10.1016/j.colsurfb.2012.12.053

    Article  CAS  PubMed  Google Scholar 

  24. Privratsky JR, Newman PJ (2014) PECAM-1: regulator of endothelial junctional integrity. Cell Tissue Res 355(3):607–619. https://doi.org/10.1007/s00441-013-1779-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lertkiatmongkol P, Liao D, Mei H, Hu Y, Newman PJ (2016) Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr Opin Hematol 23(3):253–259. https://doi.org/10.1097/MOH.0000000000000239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was funded by the German Research Foundation (grant number WA 4489/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Wacker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wacker, M. et al. (2021). Bacterial Nanocellulose-Based Grafts for Cell Colonization Studies: An In Vitro Bioreactor Perfusion Model. In: Turksen, K. (eds) Bioreactors in Stem Cell Biology. Methods in Molecular Biology, vol 2436. Humana, New York, NY. https://doi.org/10.1007/7651_2021_417

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_417

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2017-5

  • Online ISBN: 978-1-0716-2018-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics