Skip to main content

Rat-Induced Pluripotent Stem Cells-Derived Cardiac Myocytes in a Cell Culture Dish

  • Protocol
  • First Online:
Embryonic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2520))

  • 1379 Accesses

Abstract

Induced pluripotent stem (iPS) cells are genetically reprogrammed somatic cells that exhibit embryonic stem cell-like characteristics such as self-renewal and pluripotency. These cells have broad differentiation capability to convert into diverse cell types that make up the primary germ layers during embryonic development. iPS cells can spontaneously differentiate and form cell aggregates termed embryoid bodies (EBs) in the absence of differentiation inhibitory factors. Unlike other methods used to generate EBs, “the hanging drop” method offers reproducibility and homogeneity from a set number of iPS cells. As such, we describe the differentiation of rat-induced pluripotent stem cells into cardiac myocytes in vitro using the hanging drop method. Both the confirmation and identification of the cardiac myocytes are done using immunocytochemistry, RT-PCR, Western Blot, and Flow Cytometry. Briefly, a specific number of iPS cells are placed in droplets on the lid of culture dishes and incubated for 2 days, yielding embryoid bodies, which are suspended and plated. Spontaneous beating of cardiomyocytes can be seen 7–14 days after the plating of EBs and specific cardiac markers can be observed through identification assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Kooy D, Weiss S (2000) Why stem cells? Science 287(5457):1439–1441. https://doi.org/10.1126/science.287.5457.1439

    Article  PubMed  Google Scholar 

  2. Brignier AC, Gewirtz AM (2010) Embryonic and adult stem cell therapy. J Allergy Clin Immunol 125(2 Suppl 2):S336–S344. https://doi.org/10.1016/j.jaci.2009.09.032

    Article  PubMed  Google Scholar 

  3. Narsinh KH, Plews J, Wu JC (2011) Comparison of human induced pluripotent and embryonic stem cells: fraternal or identical twins? Mol Ther 19(4):635–638. https://doi.org/10.1038/mt.2011.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nelson TJ, Martinez-Fernandez A, Yamada S, Mael AA, Terzic A, Ikeda Y (2009) Induced pluripotent reprogramming from promiscuous human stemness related factors. Clin Transl Sci 2(2):118–126. https://doi.org/10.1111/j.1752-8062.2009.00091.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hackett CH, Fortier LA (2011) Embryonic stem cells and iPS cells: sources and characteristics. Vet Clin North Am Equine Pract 27(2):233–242. https://doi.org/10.1016/j.cveq.2011.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ye L, Ni X, Zhao ZA, Lei W, Hu S (2018) The application of induced pluripotent stem cells in cardiac disease modeling and drug testing. J Cardiovasc Transl Res 11(5):366–374. https://doi.org/10.1007/s12265-018-9811-3

    Article  PubMed  Google Scholar 

  7. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321(5889):699–702. https://doi.org/10.1126/science.1154884

    Article  CAS  PubMed  Google Scholar 

  8. Fan C, Zhang E, Joshi J, Yang J, Zhang J, Zhu W (2020) Utilization of human induced pluripotent stem cells for cardiac repair. Front Cell Dev Biol 8:36. https://doi.org/10.3389/fcell.2020.00036

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gao B, Matsuura K, Shimizu T (2019) Recent progress in induced pluripotent stem cell-derived cardiac cell sheets for tissue engineering. Biosci Trends 13(4):292–298. https://doi.org/10.5582/bst.2019.01227

    Article  CAS  PubMed  Google Scholar 

  10. Merino H, Singla DK (2014) Notch-1 mediated cardiac protection following embryonic and induced pluripotent stem cell transplantation in doxorubicin-induced heart failure. PLoS One 9(7):e101024. https://doi.org/10.1371/journal.pone.0101024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sasaki D, Matsuura K, Seta H, Haraguchi Y, Okano T, Shimizu T (2018) Contractile force measurement of human induced pluripotent stem cell-derived cardiac cell sheet-tissue. PLoS One 13(5):e0198026. https://doi.org/10.1371/journal.pone.0198026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yan B, Singla DK (2013) Transplanted induced pluripotent stem cells mitigate oxidative stress and improve cardiac function through the Akt cell survival pathway in diabetic cardiomyopathy. Mol Pharm 10(9):3425–3432. https://doi.org/10.1021/mp400258d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulos M, Gepstein L (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471(7337):225–229. https://doi.org/10.1038/nature09747

    Article  CAS  PubMed  Google Scholar 

  14. Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flugel L, Dorn T, Goedel A, Hohnke C, Hofmann F, Seyfarth M, Sinnecker D, Schomig A, Laugwitz KL (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363(15):1397–1409. https://doi.org/10.1056/NEJMoa0908679

    Article  CAS  PubMed  Google Scholar 

  15. Sala L, Gnecchi M, Schwartz PJ (2019) Long QT syndrome modelling with cardiomyocytes derived from human-induced pluripotent stem cells. Arrhythm Electrophysiol Rev 8(2):105–110. https://doi.org/10.15420/aer.2019.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M, Scholer HR (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454(7204):646–650. https://doi.org/10.1038/nature07061

    Article  CAS  PubMed  Google Scholar 

  17. Lee MR, Prasain N, Chae HD, Kim YJ, Mantel C, Yoder MC, Broxmeyer HE (2013) Epigenetic regulation of NANOG by miR-302 cluster-MBD2 completes induced pluripotent stem cell reprogramming. Stem Cells 31(4):666–681. https://doi.org/10.1002/stem.1302

    Article  CAS  PubMed  Google Scholar 

  18. Moon JH, Yun W, Kim J, Hyeon S, Kang PJ, Park G, Kim A, Oh S, Whang KY, Kim DW, Yoon BS, You S (2013) Reprogramming of mouse fibroblasts into induced pluripotent stem cells with Nanog. Biochem Biophys Res Commun 431(3):444–449. https://doi.org/10.1016/j.bbrc.2012.12.149

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt R, Plath K (2012) The roles of the reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic cell epigenome during induced pluripotent stem cell generation. Genome Biol 13(10):251. https://doi.org/10.1186/gb-2012-13-10-251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xia X, Chu J, Chen X (2008) Induced pluripotent stem cells generated from reprogramming differentiated cells by defined factors. Sheng Wu Gong Cheng Xue Bao 24(7):1121–1127

    Article  CAS  PubMed  Google Scholar 

  21. Singla DK, Long X, Glass C, Singla RD, Yan B (2011) Induced pluripotent stem (iPS) cells repair and regenerate infarcted myocardium. Mol Pharm 8(5):1573–1581. https://doi.org/10.1021/mp2001704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Behringer R, Gertsenstein M, Nagy KV, Nagy A (2016) Differentiating mouse embryonic stem cells into embryoid bodies by hanging-drop cultures. Cold Spring Harb Protoc 2016(12). https://doi.org/10.1101/pdb.prot092429

  23. Lin Y, Chen G (2008) Embryoid body formation from human pluripotent stem cells in chemically defined E8 media. StemBook, Cambridge, MA. https://doi.org/10.3824/stembook.1.98.1

    Book  Google Scholar 

  24. Wang X, Yang P (2008) In vitro differentiation of mouse embryonic stem (mES) cells using the hanging drop method. J Vis Exp (17). https://doi.org/10.3791/825

  25. Di Pasquale E, Song B, Condorelli G (2013) Generation of human cardiomyocytes: a differentiation protocol from feeder-free human induced pluripotent stem cells. J Vis Exp (76). https://doi.org/10.3791/50429

  26. Nir SG, David R, Zaruba M, Franz WM, Itskovitz-Eldor J (2003) Human embryonic stem cells for cardiovascular repair. Cardiovasc Res 58(2):313–323. https://doi.org/10.1016/s0008-6363(03)00264-5

    Article  CAS  PubMed  Google Scholar 

  27. Amirpour N, Razavi S, Esfandiari E, Hashemibeni B, Kazemi M, Salehi H (2017) Hanging drop culture enhances differentiation of human adipose-derived stem cells into anterior neuroectodermal cells using small molecules. Int J Dev Neurosci 59:21–30. https://doi.org/10.1016/j.ijdevneu.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  28. Fuegemann CJ, Samraj AK, Walsh S, Fleischmann BK, Jovinge S, Breitbach M (2010) Differentiation of mouse embryonic stem cells into cardiomyocytes via the hanging-drop and mass culture methods. Curr Protoc Stem Cell Biol Chapter 1:Unit 1F 11. https://doi.org/10.1002/9780470151808.sc01f11s15

  29. Salehi H, Razavi S, Esfandiari E, Kazemi M, Amini S, Amirpour N (2019) Application of hanging drop culture for retinal precursor-like cells differentiation of human adipose-derived stem cells using small molecules. J Mol Neurosci 69(4):597–607. https://doi.org/10.1007/s12031-019-01388-8

    Article  CAS  PubMed  Google Scholar 

  30. Samuelson LC, Metzger JM (2006) Differentiation of embryonic stem (ES) cells using the hanging drop method. CSH Protoc 2006(2). https://doi.org/10.1101/pdb.prot4485

Download references

Acknowledgments

This study was supported in part by National Institutes of Health grant 1R01DK120866-01 and 5R01CA221813-04 to D.K. Singla. Dr. Singla is also the holder of the Advent Health Endowed Chair in Cardiovascular Sciences and research is in part supported by this award. Dr. P.K. Singal is the holder of the Dr. Naranjan S. Dhalla Chair in Cardiovascular Research supported by the St. Boniface Hospital Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinender K. Singla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dessouki, F.B.A., Singal, P.K., Singla, D.K. (2021). Rat-Induced Pluripotent Stem Cells-Derived Cardiac Myocytes in a Cell Culture Dish. In: Turksen, K. (eds) Embryonic Stem Cell Protocols . Methods in Molecular Biology, vol 2520. Humana, New York, NY. https://doi.org/10.1007/7651_2021_406

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_406

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2436-4

  • Online ISBN: 978-1-0716-2437-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics