Skip to main content

Scalable Generation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2454))

Abstract

Human induced pluripotent stem cells (hiPSCs) can be expanded at limitless scale in vitro and give rise to various organotypic cells, cardiomyocytes (CMs) among them. Advanced protocols shape the differentiation process of pluripotent stem cells by controlled growth factor application. Modulating the Wnt signaling pathway is effective to direct hiPSCs to CMs (hiPSC-CMs) and native growth factors were replaced by small chemical compounds. Here, we describe a refined protocol for scalable generation of hiPSC-CMs that manipulates porcupine and tankyrase sub-pathways of Wnt signaling for tight inhibition of non-canonical Wnt signaling. The approach results in a differentiation efficiency toward hiPSC-CMs of 87 ± 0.9% in stirred bioreactor cultures and yields about 70 million hiPSC-CMs per 100 mL serum free cardiac differentiation medium. The differentiation protocol is easily adapted from 3D to 2D culture and vice versa and has been demonstrated to work with different hiPSC lines.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hashmi S, Ahmad HR (2019) Molecular switch model for cardiomyocyte proliferation. Cell Regen 8:12–20. https://doi.org/10.1016/j.cr.2018.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  2. Richardson WJ, Clarke SA, Quinn TA, Holmes JW (2015) Physiological implications of myocardial scar structure. Compr Physiol 5:1877–1909. https://doi.org/10.1002/cphy.c140067

    Article  PubMed  PubMed Central  Google Scholar 

  3. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  4. Brade T, Pane LS, Moretti A, Chien KR, Laugwitz K-L (2013) Embryonic heart progenitors and cardiogenesis. Cold Spring Harb Perspect Med 3:a013847–a013847. https://doi.org/10.1101/cshperspect.a013847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sa S, McCloskey K, Activin A (2012) BMP4 signaling for efficient cardiac differentiation of H7 and H9 human embryonic stem cells. J Stem Cells Regen Med 8:198–202

    Article  CAS  Google Scholar 

  6. Kattman SJ et al (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8:228–240. https://doi.org/10.1016/j.stem.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  7. Lian X et al (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109:E1848–E1857. https://doi.org/10.1073/pnas.1200250109

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lian X et al (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc 8:162–175. https://doi.org/10.1038/nprot.2012.150

    Article  CAS  PubMed  Google Scholar 

  9. Burridge PW et al (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11:855–860. https://doi.org/10.1038/nmeth.2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burridge PW, Holmstrom A, Wu JC (2015) Chemically defined culture and cardiomyocyte differentiation of human pluripotent stem cells. Curr Protoc Hum Genet 87:21.3.1–21.3.15. https://doi.org/10.1002/0471142905.hg2103s87

    Article  Google Scholar 

  11. Chen VC et al (2015) Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res 15:365–375. https://doi.org/10.1016/j.scr.2015.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kempf H, Kropp C, Olmer R, Martin U, Zweigerdt R (2015) Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nat Protoc 10:1345–1361. https://doi.org/10.1038/nprot.2015.089

    Article  CAS  PubMed  Google Scholar 

  13. Hamad S et al (2019) Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations. Theranostics 9:7222–7238. https://doi.org/10.7150/thno.32058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ovchinnikov DA et al (2015) Isolation of contractile cardiomyocytes from human pluripotent stem-cell-derived cardiomyogenic cultures using a human NCX1-EGFP reporter. Stem Cells Dev 24:11–20. https://doi.org/10.1089/scd.2014.0195

    Article  CAS  PubMed  Google Scholar 

  15. Takagi H et al (2012) Nucleosome exclusion from the interspecies-conserved central AT-rich region of the Ars insulator. J Biochem 151:75–87. https://doi.org/10.1093/jb/mvr118

    Article  CAS  PubMed  Google Scholar 

  16. Tajima S et al (2006) Ars insulator identified in sea urchin possesses an activity to ensure the transgene expression in mouse cells. J Biochem 139:705–714. https://doi.org/10.1093/jb/mvj075

    Article  CAS  PubMed  Google Scholar 

  17. Li X et al (2005) piggyBac internal sequences are necessary for efficient transformation of target genomes. Insect Mol Biol 14:17–30. https://doi.org/10.1111/j.1365-2583.2004.00525.x

    Article  CAS  PubMed  Google Scholar 

  18. Yusa K, Zhou L, Li MA, Bradley A, Craig NL (2011) A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci U S A 108:1531–1536. https://doi.org/10.1073/pnas.1008322108

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by “Marga und Walter Boll Stiftung” (Kerpen, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Pfannkuche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hamad, S., Derichsweiler, D., Hescheler, J., Pfannkuche, K. (2021). Scalable Generation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. In: Nagy, A., Turksen, K. (eds) Induced Pluripotent Stem (iPS) Cells. Methods in Molecular Biology, vol 2454. Humana, New York, NY. https://doi.org/10.1007/7651_2021_395

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_395

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2118-9

  • Online ISBN: 978-1-0716-2119-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics