Skip to main content

Genome Editing Using Cas9-gRNA Ribonucleoprotein in Human Pluripotent Stem Cells for Disease Modeling

  • Protocol
  • First Online:
Induced Pluripotent Stem Cells and Human Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2549))

  • 986 Accesses

Abstract

The discovery that the CRISPR/Cas9 system could be used for genome editing purposes represented a major breakthrough in the field. This advancement has notably facilitated the introduction or correction of disease-specific mutations in healthy or disease stem cell lines respectively; therefore, easing disease modeling studies in combination with differentiation protocols. For many years, variability in the genetic background of different stem cell lines has been a major burden to specifically identify phenotypes arising uniquely from the presence of the mutation and not from differences in other genomic regions.

Here, we provide a complete protocol to introduce random indels in human wild type pluripotent stem cells using CRISPR/Cas9 in order to generate clonal lines with potential pathogenic alterations in any gene of interest. In this protocol, we use transfection of a ribonucleoprotein complex to diminish the risk of off-target effects, and select clonal lines with promising indels to obtain disease induced pluripotent stem cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160

    Article  CAS  Google Scholar 

  2. Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:756–761

    Article  Google Scholar 

  3. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA—guided DNA endonuclease in adaptative bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  4. Mojica FJM, Juez G, Rodriguez-Valera F (1993) Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol 9:613–621

    Article  CAS  Google Scholar 

  5. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  6. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  Google Scholar 

  7. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782

    Article  CAS  Google Scholar 

  8. Zhang M, Wang F, Li S et al (2014) TALE: a tale of genome editing. Prog Biophys Mol 114:25–32

    Article  CAS  Google Scholar 

  9. Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  Google Scholar 

  10. Torres R, Martin MC, Garcia A et al (2014) Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat Commun 5:3964

    Article  CAS  Google Scholar 

  11. Xiao A, Wang Z, Hu Y et al (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res 41:e141

    Article  CAS  Google Scholar 

  12. DeWitt MA, Corn JE, Carroll D (2017) Genome editing via delivery of Cas9 ribonucleoprotein. Methods 121–122:9–15

    Article  Google Scholar 

  13. Wilbie D, Walther J, Mastrobattista E (2019) Delivery aspects of CRISPR/Cas for in vivo genome editing. Acc Chem Res 52:1555–1564

    Article  CAS  Google Scholar 

  14. Okamoto S, Amaishi Y, Maki I et al (2019) Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs. Sci Rep 9:4811

    Article  Google Scholar 

  15. Benetó N, Cozar M, Castilla-Vallmanya L et al (2020) Neuronal and astrocytic differentiation from Sanfilippo C syndrome iPSCs for disease modeling and drug development. J Clin Med 9:644

    Article  Google Scholar 

  16. Ben Jehuda R, Shemer Y, Binah O (2018) Genome editing in induced pluripotent stem cells using CRISPR/Cas9. Stem Cell Rev Rep 14:323–336

    Article  CAS  Google Scholar 

  17. Soldner F, Laganière J, Cheng AW et al (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset parkinson point mutations. Cell 146:318–331

    Article  CAS  Google Scholar 

  18. Benetó N, Cozar M, García-morant M et al (2019) Generation of two compound heterozygous HGSNAT-mutated lines from healthy induced pluripotent stem cells using CRISPR/Cas9 to model Sanfilippo C syndrome. Stem Cell Res 41:101616

    Article  Google Scholar 

  19. Benetó N, Cozar M, Gort L et al (2020) Generation of two NAGLU-mutated homozygous cell lines from healthy induced pluripotent stem cells using CRISPR/Cas9 to model Sanfilippo B syndrome. Stem Cell Res 42:101668

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Canals .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Benetó, N., Grinberg, D., Vilageliu, L., Canals, I. (2021). Genome Editing Using Cas9-gRNA Ribonucleoprotein in Human Pluripotent Stem Cells for Disease Modeling. In: Turksen, K. (eds) Induced Pluripotent Stem Cells and Human Disease. Methods in Molecular Biology, vol 2549. Humana, New York, NY. https://doi.org/10.1007/7651_2021_374

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_374

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2584-2

  • Online ISBN: 978-1-0716-2585-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics