Skip to main content

Addressing Manufacturing Challenges for Commercialization of iPSC-Based Therapies

  • Protocol
  • First Online:
Stem Cells and Good Manufacturing Practices

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2286))

Abstract

The development of reprogramming technology to generate human induced pluripotent stem cells (iPSCs) has tremendously influenced the field of regenerative medicine and clinical therapeutics where curative cell replacement therapies can be used in the treatment of devastating diseases such as Parkinson’s disease (PD) and diabetes. In order to commercialize these therapies to treat a large number of individuals, it is important to demonstrate the safety and efficacy of these therapies and ensure that the manufacturing process for iPSC-derived functional cells can be industrialized at an affordable cost. However, there are a number of manufacturing obstacles that need to be addressed in order to meet this vision. It is important to note that the manufacturing process for generation of iPSC-derived specialized cells is relatively long and fairly complex and requires differentiation of high-quality iPSCs into specialized cells in a controlled manner. In this chapter, we have summarized our efforts to address the main challenges present in the industrialization of iPSC-derived cell therapy products with focus on the development of a current Good Manufacturing Practice (cGMP)-compliant iPSC manufacturing process, a comprehensive iPSC characterization platform, long-term stability of cGMP compliant iPSCs, and innovative technologies to address some of the scale-up challenges in establishment of iPSC processing in 3D computer-controlled bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rao M (2008) Scalable human ES culture for therapeutic use: propagation, differentiation, genetic modification and regulatory issues. Gene Ther 15(2):82–88. https://doi.org/10.1038/sj.gt.3303061

    Article  CAS  PubMed  Google Scholar 

  2. Rao M, Condic ML (2008) Alternative sources of pluripotent stem cells: scientific solutions to an ethical dilemma. Stem Cells Dev 17(1):1–10. https://doi.org/10.1089/scd.2008.0013

    Article  PubMed  Google Scholar 

  3. Chen VC, Couture SM, Ye J, Lin Z, Hua G, Huang HI, Wu J, Hsu D, Carpenter MK, Couture LA (2012) Scalable GMP compliant suspension culture system for human ES cells. Stem Cell Res 8(3):388–402. https://doi.org/10.1016/j.scr.2012.02.001

    Article  CAS  PubMed  Google Scholar 

  4. Ellerstrom C, Strehl R, Moya K, Andersson K, Bergh C, Lundin K, Hyllner J, Semb H (2006) Derivation of a xeno-free human embryonic stem cell line. Stem Cells 24(10):2170–2176. https://doi.org/10.1634/stemcells.2006-0130

    Article  PubMed  Google Scholar 

  5. Shinde V, Sureshkumar P, Sotiriadou I, Hescheler J, Sachinidis A (2016) Human embryonic and induced pluripotent stem cell based toxicity testing models: future applications in new drug discovery. Curr Med Chem 23(30):3495–3509

    Article  CAS  PubMed  Google Scholar 

  6. Shi Y, Inoue H, Wu JC, Yamanaka S (2017) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16(2):115–130. https://doi.org/10.1038/nrd.2016.245

    Article  CAS  PubMed  Google Scholar 

  7. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134(5):877–886. https://doi.org/10.1016/j.cell.2008.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280. https://doi.org/10.1038/nature07677

    Article  CAS  PubMed  Google Scholar 

  9. Lee DF, Su J, Kim HS, Chang B, Papatsenko D, Zhao R, Yuan Y, Gingold J, Xia W, Darr H, Mirzayans R, Hung MC, Schaniel C, Lemischka IR (2015) Modeling familial cancer with induced pluripotent stem cells. Cell 161(2):240–254. https://doi.org/10.1016/j.cell.2015.02.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sances S, Bruijn LI, Chandran S, Eggan K, Ho R, Klim JR, Livesey MR, Lowry E, Macklis JD, Rushton D, Sadegh C, Sareen D, Wichterle H, Zhang SC, Svendsen CN (2016) Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat Neurosci 19(4):542–553. https://doi.org/10.1038/nn.4273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ilic D, Devito L, Miere C, Codognotto S (2015) Human embryonic and induced pluripotent stem cells in clinical trials. Br Med Bull 116:19–27. https://doi.org/10.1093/bmb/ldv045

    Article  PubMed  Google Scholar 

  12. Guhr A, Kobold S, Seltmann S, Seiler Wulczyn AEM, Kurtz A, Loser P (2018) Recent trends in research with human pluripotent stem cells: impact of research and use of cell lines in experimental research and clinical trials. Stem Cell Reports 11(2):485–496. https://doi.org/10.1016/j.stemcr.2018.06.012

    Article  PubMed  PubMed Central  Google Scholar 

  13. Takahashi J (2017) Strategies for bringing stem cell-derived dopamine neurons to the clinic: the Kyoto trial. Prog Brain Res 230:213–226. https://doi.org/10.1016/bs.pbr.2016.11.004

    Article  PubMed  Google Scholar 

  14. Hu S, Yang J, Shangguan J, Eresen A, Li Y, Ma Q, Yaghmai V, Velichko Y, Hu C, Zhang Z (2019) Natural killer cell-based adoptive transfer immunotherapy for pancreatic ductal adenocarcinoma in a Kras(LSL-G12D) p53(LSL-R172H) Pdx1-Cre mouse model. Am J Cancer Res 9(8):1757–1765

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shafa M, Yang F, Fellner T, Rao MS, Baghbaderani BA (2018) Human-induced pluripotent stem cells manufactured using a current good manufacturing practice-compliant process differentiate into clinically relevant cells from three germ layers. Front Med (Lausanne) 5:69. https://doi.org/10.3389/fmed.2018.00069

    Article  Google Scholar 

  16. Baghbaderani BA, Tian X, Neo BH, Burkall A, Dimezzo T, Sierra G, Zeng X, Warren K, Kovarcik DP, Fellner T, Rao MS (2015) cGMP-manufactured human induced pluripotent stem cells are available for pre-clinical and clinical applications. Stem Cell Reports 5(4):647–659. https://doi.org/10.1016/j.stemcr.2015.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LM, Zou C, Zhang YA, Tong J, Cheng L (2011) Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 21(3):518–529. https://doi.org/10.1038/cr.2011.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shafa M, Panchalingam KM, Walsh T, Richardson T, Baghbaderani BA (2019) Computational fluid dynamics modeling, a novel, and effective approach for developing scalable cell therapy manufacturing processes. Biotechnol Bioeng 116(12):3228–3241. https://doi.org/10.1002/bit.27159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baghbaderani BA, Syama A, Sivapatham R, Pei Y, Mukherjee O, Fellner T, Zeng X, Rao MS (2016) Detailed characterization of human induced pluripotent stem cells manufactured for therapeutic applications. Stem Cell Rev Rep 12(4):394–420. https://doi.org/10.1007/s12015-016-9662-8

    Article  CAS  PubMed  Google Scholar 

  20. Shafa M, Walsh T, Panchalingam KM, Richardson T, Menendez L, Tian X, Suresh Babu S, Dadgar S, Beller J, Yang F, Baghbaderani BA (2019) Long-term stability and differentiation potential of cryopreserved cGMP-compliant human induced pluripotent stem cells. Int J Mol Sci 21(1). https://doi.org/10.3390/ijms21010108

  21. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290. https://doi.org/10.1038/nature09342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rao M, Ahrlund-Richter L, Kaufman DS (2012) Concise review: cord blood banking, transplantation and induced pluripotent stem cell: success and opportunities. Stem Cells 30(1):55–60. https://doi.org/10.1002/stem.770

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez M, Martin-Ruiz I, Jimenez S, Pirone L, Barrio R, Sutherland JD (2011) Generation of stable Drosophila cell lines using multicistronic vectors. Sci Rep 1:75. https://doi.org/10.1038/srep00075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, Loh KM, Carter AC, Di Giorgio FP, Koszka K, Huangfu D, Akutsu H, Liu DR, Rubin LL, Eggan K (2009) A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5(5):491–503. https://doi.org/10.1016/j.stem.2009.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lyssiotis CA, Foreman RK, Staerk J, Garcia M, Mathur D, Markoulaki S, Hanna J, Lairson LL, Charette BD, Bouchez LC, Bollong M, Kunick C, Brinker A, Cho CY, Schultz PG, Jaenisch R (2009) Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc Natl Acad Sci U S A 106(22):8912–8917. https://doi.org/10.1073/pnas.0903860106

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li W, Wei W, Zhu S, Zhu J, Shi Y, Lin T, Hao E, Hayek A, Deng H, Ding S (2009) Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4(1):16–19. https://doi.org/10.1016/j.stem.2008.11.014

    Article  CAS  PubMed  Google Scholar 

  27. Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26(7):795–797. https://doi.org/10.1038/nbt1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341(6146):651–654. https://doi.org/10.1126/science.1239278

    Article  CAS  PubMed  Google Scholar 

  29. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K, Shibata T, Kunisada T, Takahashi M, Takahashi J, Saji H, Yamanaka S (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8(5):409–412. https://doi.org/10.1038/nmeth.1591

    Article  CAS  PubMed  Google Scholar 

  30. Goh PA, Caxaria S, Casper C, Rosales C, Warner TT, Coffey PJ, Nathwani AC (2013) A systematic evaluation of integration free reprogramming methods for deriving clinically relevant patient specific induced pluripotent stem (iPS) cells. PLoS One 8(11):e81622. https://doi.org/10.1371/journal.pone.0081622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahmadian Baghbaderani B, Tian X, Scotty Cadet J, Shah K, Walde A, Tran H, Kovarcik DP, Clarke D, Fellner T (2016) A newly defined and Xeno-free culture medium supports every-other-day medium replacement in the generation and long-term cultivation of human pluripotent stem cells. PLoS One 11(9):e0161229. https://doi.org/10.1371/journal.pone.0161229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nie Y, Walsh P, Clarke DL, Rowley JA, Fellner T (2014) Scalable passaging of adherent human pluripotent stem cells. PLoS One 9(1):e88012. https://doi.org/10.1371/journal.pone.0088012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686. https://doi.org/10.1038/nbt1310

    Article  CAS  PubMed  Google Scholar 

  34. Stacey GN, Crook JM, Hei D, Ludwig T (2013) Banking human induced pluripotent stem cells: lessons learned from embryonic stem cells? Cell Stem Cell 13(4):385–388. https://doi.org/10.1016/j.stem.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  35. FDA (2015) FDA guidance for industry: analytical procedures and methods validation for drugs and biologics. Pharmaceutical Quality/CMC U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER) and Center for Biologics Evaluation and Research (CBER)

    Google Scholar 

  36. ICH (2005) Q2 (R1), Validation of analytical procedures: text and methodology, ICH harmonised tripartite guideline. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use, Chicago, USA

    Google Scholar 

  37. Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ (2012) Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res 111(3):344–358. https://doi.org/10.1161/CIRCRESAHA.110.227512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krawetz R, Taiani JT, Liu S, Meng G, Li X, Kallos MS, Rancourt DE (2010) Large-scale expansion of pluripotent human embryonic stem cells in stirred-suspension bioreactors. Tissue Eng Part C Methods 16(4):573–582. https://doi.org/10.1089/ten.TEC.2009.0228

    Article  CAS  PubMed  Google Scholar 

  39. Zweigerdt R, Olmer R, Singh H, Haverich A, Martin U (2011) Scalable expansion of human pluripotent stem cells in suspension culture. Nat Protoc 6(5):689–700. https://doi.org/10.1038/nprot.2011.318

    Article  CAS  PubMed  Google Scholar 

  40. Pandey PR, Tomney A, Woon MT, Uth N, Shafighi F, Ngabo I, Vallabhaneni H, Levinson Y, Abraham E, Friedrich Ben-Nun I (2019) End-to-end platform for human pluripotent stem cell manufacturing. Int J Mol Sci 21(1). https://doi.org/10.3390/ijms21010089

  41. Butler M (2003) Animal cell culture and technology. Taylor & Francis, London. https://doi.org/10.4324/9780203427835

    Book  Google Scholar 

  42. Aunins JG, Woodson BA Jr, Hale TK, Wang DI (1989) Effects of paddle impeller geometry on power input and mass transfer in small-scale animal cell culture vessels. Biotechnol Bioeng 34(9):1127–1132. https://doi.org/10.1002/bit.260340902

    Article  CAS  PubMed  Google Scholar 

  43. Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts, 2nd edn. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  44. Borys BS, Le A, Roberts EL, Dang T, Rohani L, Hsu CY, Wyma AA, Rancourt DE, Gates ID, Kallos MS (2019) Using computational fluid dynamics (CFD) modeling to understand murine embryonic stem cell aggregate size and pluripotency distributions in stirred suspension bioreactors. J Biotechnol 304:16–27. https://doi.org/10.1016/j.jbiotec.2019.08.002

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behnam Ahmadian Baghbaderani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dashtban, M., Panchalingam, K.M., Shafa, M., Ahmadian Baghbaderani, B. (2020). Addressing Manufacturing Challenges for Commercialization of iPSC-Based Therapies. In: Turksen, K. (eds) Stem Cells and Good Manufacturing Practices. Methods in Molecular Biology, vol 2286. Humana, New York, NY. https://doi.org/10.1007/7651_2020_288

Download citation

  • DOI: https://doi.org/10.1007/7651_2020_288

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1326-9

  • Online ISBN: 978-1-0716-1327-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics