Skip to main content

Generation of Knockout Human Primary Keratinocytes by CRISPR/Cas9

  • Protocol
  • First Online:
Epidermal Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2109))

Abstract

The culture of epidermal human primary keratinocytes (HPKs) represents a well-established model in biological and dermatological research. In addition, HPKs are used in three-dimensional organotypic cultures (OTCs), and gene therapeutic approaches have been reported for the treatment of patients suffering from epidermolysis bullosa, a severe blistering disease that can result in postnatal lethality. Therefore, there is a strong need for the development of techniques for the stable and specific genetic manipulation of HPKs, for example, by genome editing via the CRISPR/Cas9 approach. However, the main disadvantage of working with HPKs is the fact that these cells are prone to terminal differentiation and proliferate only for few passages in monoculture. As it is well known that the co-culture of HPKs with fibroblasts strongly increases the lifetime of the epidermal cells, we developed a protocol for the stable modification of HPKs by CRISPR/Cas9 via lentiviral transduction in the presence of 3T3-J2 fibroblasts as feeder cells. Selection of transduced HPKs is achieved with antibiotics in co-culture with antibiotic-resistant feeder cells. Modified HPKs generated by our protocol have the potential to generate epidermis-like structures in OTCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuchs E, Raghavan S (2002) Getting under the skin of epidermal morphogenesis. Nat Rev Genet 3(3):199–209. https://doi.org/10.1038/nrg758

    Article  CAS  PubMed  Google Scholar 

  2. Feldmeyer L, Werner S, French LE, Beer HD (2010) Interleukin-1, inflammasomes and the skin. Eur J Cell Biol 89(9):638–644. https://doi.org/10.1016/j.ejcb.2010.04.008

    Article  CAS  PubMed  Google Scholar 

  3. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953. https://doi.org/10.1126/science.1164270

    Article  CAS  PubMed  Google Scholar 

  4. Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, Goshima N, Yamanaka S (2013) An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31(3):458–466. https://doi.org/10.1002/stem.1293

    Article  CAS  PubMed  Google Scholar 

  5. Shinkuma S, Guo Z, Christiano AM (2016) Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa. Proc Natl Acad Sci U S A 113(20):5676–5681. https://doi.org/10.1073/pnas.1512028113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aasen T, Izpisua Belmonte JC (2010) Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat Protoc 5(2):371–382. https://doi.org/10.1038/nprot.2009.241

    Article  CAS  PubMed  Google Scholar 

  7. Hirsch T, Rothoeft T, Teig N, Bauer JW, Pellegrini G, De Rosa L, Scaglione D, Reichelt J, Klausegger A, Kneisz D, Romano O, Secone Seconetti A, Contin R, Enzo E, Jurman I, Carulli S, Jacobsen F, Luecke T, Lehnhardt M, Fischer M, Kueckelhaus M, Quaglino D, Morgante M, Bicciato S, Bondanza S, De Luca M (2017) Regeneration of the entire human epidermis using transgenic stem cells. Nature 551(7680):327–332. https://doi.org/10.1038/nature24487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berning M, Pratzel-Wunder S, Bickenbach JR, Boukamp P (2015) Three-dimensional in vitro skin and skin cancer models based on human fibroblast-derived matrix. Tissue Eng Part C Methods 21(9):958–970. https://doi.org/10.1089/ten.TEC.2014.0698

    Article  CAS  PubMed  Google Scholar 

  9. Biedermann T, Bottcher-Haberzeth S, Klar AS, Widmer DS, Pontiggia L, Weber AD, Weber DM, Schiestl C, Meuli M, Reichmann E (2015) The influence of stromal cells on the pigmentation of tissue-engineered dermo-epidermal skin grafts. Tissue Eng Part A 21(5–6):960–969. https://doi.org/10.1089/ten.TEA.2014.0327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6(3):331–343

    Article  CAS  PubMed  Google Scholar 

  11. Rasmussen C, Thomas-Virnig C, Allen-Hoffmann BL (2013) Classical human epidermal keratinocyte cell culture. Methods Mol Biol 945:161–175. https://doi.org/10.1007/978-1-62703-125-7_11

    Article  CAS  PubMed  Google Scholar 

  12. Nanba D, Matsushita N, Toki F, Higashiyama S (2013) Efficient expansion of human keratinocyte stem/progenitor cells carrying a transgene with lentiviral vector. Stem Cell Res Ther 4(5):127. https://doi.org/10.1186/scrt338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bauer JW, Koller J, Murauer EM, De Rosa L, Enzo E, Carulli S, Bondanza S, Recchia A, Muss W, Diem A, Mayr E, Schlager P, Gratz IK, Pellegrini G, De Luca M (2017) Closure of a large chronic wound through transplantation of gene-corrected epidermal stem cells. J Invest Dermatol 137(3):778–781. https://doi.org/10.1016/j.jid.2016.10.038

    Article  CAS  PubMed  Google Scholar 

  14. Webber BR, Osborn MJ, McElroy AN, Twaroski K, Lonetree CL, DeFeo AP, Xia L, Eide C, Lees CJ, McElmurry RT, Riddle MJ, Kim CJ, Patel DD, Blazar BR, Tolar J (2016) CRISPR/Cas9-based genetic correction for recessive dystrophic epidermolysis bullosa. NPJ Regen Med 1. https://doi.org/10.1038/npjregenmed.2016.14

  15. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096

    Article  CAS  PubMed  Google Scholar 

  16. Fenini G, Grossi S, Contassot E, Biedermann T, Reichmann E, French LE, Beer HD (2018) Genome editing of human primary keratinocytes by CRISPR/Cas9 reveals an essential role of the NLRP1 inflammasome in UVB sensing. J Invest Dermatol 138(12):2644–2652. https://doi.org/10.1016/j.jid.2018.07.016

    Article  CAS  PubMed  Google Scholar 

  17. Todaro GJ, Green H (1963) Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol 17:299–313. https://doi.org/10.1083/jcb.17.2.299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hynds RE, Bonfanti P, Janes SM (2018) Regenerating human epithelia with cultured stem cells: feeder cells, organoids and beyond. EMBO Mol Med 10(2):139–150. https://doi.org/10.15252/emmm.201708213

    Article  CAS  PubMed  Google Scholar 

  19. Barrandon Y, Green H (1987) Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci U S A 84(8):2302–2306. https://doi.org/10.1073/pnas.84.8.2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Palechor-Ceron N, Suprynowicz FA, Upadhyay G, Dakic A, Minas T, Simic V, Johnson M, Albanese C, Schlegel R, Liu X (2013) Radiation induces diffusible feeder cell factor(s) that cooperate with ROCK inhibitor to conditionally reprogram and immortalize epithelial cells. Am J Pathol 183(6):1862–1870. https://doi.org/10.1016/j.ajpath.2013.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Merten OW, Hebben M, Bovolenta C (2016) Production of lentiviral vectors. Mol Ther Methods Clin Dev 3:16017. https://doi.org/10.1038/mtm.2016.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roy A, Krzykwa E, Lemieux R, Neron S (2001) Increased efficiency of gamma-irradiated versus mitomycin C-treated feeder cells for the expansion of normal human cells in long-term cultures. J Hematother Stem Cell Res 10(6):873–880. https://doi.org/10.1089/152581601317210962

    Article  CAS  PubMed  Google Scholar 

  23. Llames S, Garcia-Perez E, Meana A, Larcher F, del Rio M (2015) Feeder layer cell actions and applications. Tissue Eng Part B Rev 21(4):345–353. https://doi.org/10.1089/ten.TEB.2014.0547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Malinowski K, Pullis C, Raisbeck AP, Rapaport FT (1992) Modulation of human lymphocyte marker expression by gamma irradiation and mitomycin C. Cell Immunol 143(2):368–377

    Article  CAS  PubMed  Google Scholar 

  25. Chugh RM, Chaturvedi M, Yerneni LK (2015) An evaluation of the choice of feeder cell growth arrest for the production of cultured epidermis. Burns 41(8):1788–1795. https://doi.org/10.1016/j.burns.2015.08.011

    Article  PubMed  Google Scholar 

  26. Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11(8):783–784. https://doi.org/10.1038/nmeth.3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87. https://doi.org/10.1126/science.1247005

    Article  CAS  PubMed  Google Scholar 

  28. Strudwick XL, Lang DL, Smith LE, Cowin AJ (2015) Combination of low calcium with Y-27632 rock inhibitor increases the proliferative capacity, expansion potential and lifespan of primary human keratinocytes while retaining their capacity to differentiate into stratified epidermis in a 3D skin model. PLoS One 10(4):e0123651. https://doi.org/10.1371/journal.pone.0123651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Tagesklinik für Kinderchirurgie (Fällanden, Switzerland) for providing skin biopsies. Our work is supported by grants from the Wilhelm Sander-Stiftung, Georg und Bertha Schwyzer-Winiker Stiftung, OPO-Stiftung, Novartis Stiftung für Medizinisch-Biologische Forschung, Theodor und Ida Herzog-Egli-Stiftung, Krebsforschung Schweiz (KFS-3940-08-2016), Vontobel-Stiftung, Bruno Bloch-Stiftung, and the Julius Müller Stiftung für Krebsforschung. P.H. and M.D.F. are members of the Zurich Graduate program in Molecular Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Dietmar Beer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Grossi, S., Fenini, G., Hennig, P., Di Filippo, M., Beer, HD. (2019). Generation of Knockout Human Primary Keratinocytes by CRISPR/Cas9. In: Turksen, K. (eds) Epidermal Cells. Methods in Molecular Biology, vol 2109. Humana, New York, NY. https://doi.org/10.1007/7651_2019_262

Download citation

  • DOI: https://doi.org/10.1007/7651_2019_262

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0250-8

  • Online ISBN: 978-1-0716-0251-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics