Skip to main content

Scalable Expansion of Human Pluripotent Stem Cell-Derived Neural Progenitors in Stirred Suspension Bioreactor Under Xeno-free Condition

  • Protocol
  • First Online:
Bioreactors in Stem Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1502))

Abstract

Recent advances in neural differentiation technology have paved the way to generate clinical grade neural progenitor populations from human pluripotent stem cells. These cells are an excellent source for the production of neural cell-based therapeutic products to treat incurable central nervous system disorders such as Parkinson’s disease and spinal cord injuries. This progress can be complemented by the development of robust bioprocessing technologies for large scale expansion of clinical grade neural progenitors under GMP conditions for promising clinical use and drug discovery applications. Here, we describe a protocol for a robust, scalable expansion of human neural progenitor cells from pluripotent stem cells as 3D aggregates in a stirred suspension bioreactor. The use of this platform has resulted in easily expansion of neural progenitor cells for several passages with a fold increase of up to 4.2 over a period of 5 days compared to a maximum 1.5–2-fold increase in the adherent static culture over a 1 week period. In the bioreactor culture, these cells maintained self-renewal, karyotype stability, and cloning efficiency capabilities. This approach can be also used for human neural progenitor cells derived from other sources such as the human fetal brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiu AY, Rao MS (2011) Cell-based therapy for neural disorders—anticipating challenges. Neurotherapeutics 8:744–752

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lunn JS, Sakowski SA, Hur J, Feldman EL (2011) Stem cell technology for neurodegenerative diseases. Ann Neurol 70:353–361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ng TK, Fortino VR, Pelaez D, Cheung HS (2014) Progress of mesenchymal stem cell therapy for neural and retinal diseases. World J Stem Cells 6:111–119

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yan Y, Sart S, Li Y (2013) Differentiation of neural progenitor cells from pluripotent stem cells in artificial niches. Int J Stem Cell Res Transplant 1:22–27

    Google Scholar 

  5. Serra M, Brito C, Costa EM, Sousa MF, Alves PM (2009) Integrating human stem cell expansion and neuronal differentiation in bioreactors. BMC Biotechnol 9:82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Tian C, Ambroz RJ, Sun L, Wang Y, Ma K et al (2012) Direct conversion of dermal fibroblasts into neural progenitor cells by a novel cocktail of defined factors. Curr Mol Med 12:126–137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Nemati S, Hatami M, Kiani S, Hemmesi K, Gourabi H et al (2011) Long-term self-renewable feeder-free human induced pluripotent stem cell-derived neural progenitors. Stem Cells Dev 20:503–514

    Article  PubMed  CAS  Google Scholar 

  9. Baghbaderani BA, Mukhida K, Hong M, Mendez I, Behie LA (2011) A review of bioreactor protocols for human neural precursor cell expansion in preparation for clinical trials. Curr Stem Cell Res Ther 6:229–254

    Article  PubMed  CAS  Google Scholar 

  10. Pournasr B, Khaloughi K, Salekdeh GH, Totonchi M, Shahbazi E et al (2011) Concise review: alchemy of biology: generating desired cell types from abundant and accessible cells. Stem Cells 29:1933–1941

    Article  PubMed  CAS  Google Scholar 

  11. Hook L, Vives J, Fulton N, Leveridge M, Lingard S et al (2011) Non-immortalized human neural stem (NS) cells as a scalable platform for cellular assays. Neurochem Int 59:432–444

    Article  PubMed  CAS  Google Scholar 

  12. Miranda CC, Fernandes TG, Pascoal JF, Haupt S, Brüstle O et al (2015) Spatial and temporal control of cell aggregation efficiently directs human pluripotent stem cells towards neural commitment. Biotechnol J 10(10):1612–1624

    Article  PubMed  CAS  Google Scholar 

  13. Baghbaderani BA, Behie LA, Sen A, Mukhida K, Hong M et al (2008) Expansion of human neural precursor cells in large-scale bioreactors for the treatment of neurodegenerative disorders. Biotechnol Prog 24:859–870

    PubMed  CAS  Google Scholar 

  14. Baghbaderani BA, Mukhida K, Sen A, Kallos MS, Hong M et al (2010) Bioreactor expansion of human neural precursor cells in serum‐free media retains neurogenic potential. Biotechnol Bioeng 105:823–833

    PubMed  CAS  Google Scholar 

  15. Bardy JA, Chen AK, Lim YM, Wu S, Wei S et al (2012) Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells. Tissue Eng Part C Methods 19:166–180

    Article  PubMed  CAS  Google Scholar 

  16. Azari H, Rahman M, Sharififar S, Reynolds BA (2010) Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. J Vis Exp. doi:10.3791/2393

    PubMed  PubMed Central  Google Scholar 

  17. Abbasalizadeh S, Larijani MR, Samadian A, Baharvand H (2012) Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Tissue Eng Part C Methods 18:831–851

    Article  PubMed  CAS  Google Scholar 

  18. Mollamohammadi S, Taei A, Pakzad M, Totonchi M, Seifinejad A et al (2009) A simple and efficient cryopreservation method for feeder-free dissociated human induced pluripotent stem cells and human embryonic stem cells. Hum Reprod 24:2468–2476

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by grants provided from Royan Institute, the Iranian Council of Stem Cell Research and Technology, the Iran National Science Foundation (INSF), and Iran Science Elites Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Baharvand Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nemati, S., Abbasalizadeh, S., Baharvand, H. (2015). Scalable Expansion of Human Pluripotent Stem Cell-Derived Neural Progenitors in Stirred Suspension Bioreactor Under Xeno-free Condition. In: Turksen, K. (eds) Bioreactors in Stem Cell Biology. Methods in Molecular Biology, vol 1502. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_318

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_318

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6476-5

  • Online ISBN: 978-1-4939-6478-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics