Skip to main content

Effects of Heat Shock Protein 70 kDa in Allergic Airway Inflammation

  • Chapter
  • First Online:
Book cover Heat Shock Proteins in Inflammatory Diseases

Part of the book series: Heat Shock Proteins ((HESP,volume 22))

  • 529 Accesses

Abstract

Introduction Local elevation of extracellular heat shock protein 70 kDa (HSP70) concentration is an attribute of the acute phase of inflammation of different origins, particularly, allergic airway inflammation. The effects and the mechanisms of HSP70-mediated effects in allergic airway inflammation are still not completely understood. In this book chapter, we summarize the data regarding the effects of HSP70 on immune cells in the course of allergic airway inflammation. We discuss the role of ATPase and chaperone activity in the regulation of immune responses that cause inflammation resolution.

Methods Our rationale is based on in vivo studies to assess Hsp70 effects in the allergic airway inflammation mouse models and in vitro experiments tested direct Hsp70 impact on activated neutrophils yielded from the bone marrow of intact mice.

Results Here we provide the data regarding the implication of HSP70 in the allergic airway inflammation. In addition to the role of endogenous HSP70 in this immune process, we discuss some effects of allergens belonging to the HSP70 family that can induce a cross-reactive humoral response to self HSP70. Chaperone properties of the proteins support the hypothesis of the anti-inflammatory activities of HSP70. Indeed, the suppressive activity of HSP70 was reported for inflammatory processes in the respiratory tract. We provide the data indicating possible and established mechanisms of HSP70 effects on immune cells in the course of allergic airway inflammation.

Conclusions In this book chapter, we demonstrated the implication of HSP70 in the allergic airway inflammation. We also discussed the role of ATPase and chaperone activity of HSP70 in the regulation of immune responses that cause inflammation resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BSA:

bovine serum albumin

fMLP:

N-formylmethionine-leucyl-phenylalanine

HBSS:

Hank’s balanced salt solution

NETs:

neutrophil extracellular traps

OVA:

ovalbumin

PMA:

phorbol 12-myristate 13-acetate

ROS:

reactive oxygen species

References

  1. Aki T, Fujikawa A, Wada T, Jyo T, Shigeta S, Murooka Y, Oka S, Ono K (1994) Cloning and expression of cDNA coding for a new allergen from the house dust mite, Dermatophagoides farinae: homology with human heat shock cognate proteins in the heat shock protein 70 family. J Biochem 115:435–440

    Article  CAS  Google Scholar 

  2. An S, Chen LL, Long CB, Liu XY, Xu XM, Lu XR, Rong MQ, Liu ZG, Lai R (2013) Dermatophagoides farinae allergens diversity identification by proteomics. Mol Cell Proteomics 12:1818–1828

    Article  CAS  Google Scholar 

  3. Andersson A, Rasool O, Schmidt M, Kodzius R, Fluckiger S, Zargari A, Crameri R, Scheynius A (2004) Cloning, expression and characterization of two new IgE-binding proteins from the yeast Malassezia sympodialis with sequence similarities to heat shock proteins and manganese superoxide dismutase. Eur J Biochem 271:1885–1894

    Article  CAS  Google Scholar 

  4. Assimon VA, Gillies AT, Rauch JN, Gestwicki JE (2013) Hsp70 protein complexes as drug targets. Curr Pharm Des 19:404–417

    Article  CAS  Google Scholar 

  5. Bafadhel M, McCormick M, Saha S, McKenna S, Shelley M, Hargadon B, Mistry V, Reid C, Parker D, Dodson P, Jenkins M, Lloyd A, Rugman P, Newbold P, Brightling CE (2012) Profiling of sputum inflammatory mediators in asthma and chronic obstructive pulmonary disease. Respiration 83:36–44

    Article  CAS  Google Scholar 

  6. Bolkhovitina EL, Sapozhnikov AM, shevchenko MA (2013) Effect of heat shock protein 70 on ATP-induced dendritic cell chemotaxis. Russ J Immunol 7(16):342–343

    Google Scholar 

  7. Borges TJ, Wieten L, van Herwijnen MJ, Broere F, van der Zee R, Bonorino C, van Eden W (2012) The anti-inflammatory mechanisms of Hsp70. Front Immunol 3:95

    Article  Google Scholar 

  8. Breitenbach M, Simon-Nobbe B (2002) The allergens of Cladosporium herbarum and Alternaria alternata. Chem Immunol 81:48–72

    Article  CAS  Google Scholar 

  9. Ciepiela O, Ostafin M, Demkow U (2015) Neutrophils in asthma--a review. Respir Physiol Neurobiol 209:13–16

    Article  CAS  Google Scholar 

  10. De Maio A (2014) Extracellular Hsp70: export and function. Curr Protein Pept Sci 15:225–231

    Article  Google Scholar 

  11. de Oliveira AA, Faustino J, de Lima ME, Menezes R, Nunes KP (2019) Unveiling the interplay between the TLR4/MD2 complex and HSP70 in the human cardiovascular system: A computational approach. Int J Mol Sci 20

    Google Scholar 

  12. Dworski R, Simon HU, Hoskins A, Yousefi S (2011) Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J Allergy Clin Immunol 127:1260–1266

    Article  CAS  Google Scholar 

  13. Fan GH, Yang W, Sai J, Richmond A (2002) Hsc/Hsp70 interacting protein (hip) associates with CXCR2 and regulates the receptor signaling and trafficking. J Biol Chem 277:6590–6597

    Article  CAS  Google Scholar 

  14. Fox S, Leitch AE, Duffin R, Haslett C, Rossi AG (2010) Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun 2:216–227

    Article  CAS  Google Scholar 

  15. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176:231–241

    Article  CAS  Google Scholar 

  16. Fujibayashi T, Hashimoto N, Jijiwa M, Hasegawa Y, Kojima T, Ishiguro N (2009) Protective effect of geranylgeranylacetone, an inducer of heat shock protein 70, against drug-induced lung injury/fibrosis in an animal model. BMC Pulm Med 9:45

    Article  Google Scholar 

  17. Gao B, Tsan MF (2003) Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J Biol Chem 278:174–179

    Article  CAS  Google Scholar 

  18. Holtzman MJ (2012) Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens. J Clin Invest 122:2741–2748

    Article  CAS  Google Scholar 

  19. Hou C, Zhao H, Li W, Liang Z, Zhang D, Liu L, Tong W, Cai SX, Zou F (2011) Increased heat shock protein 70 levels in induced sputum and plasma correlate with severity of asthma patients. Cell Stress Chaperones 16:663–671

    Article  CAS  Google Scholar 

  20. Idzko M, Hammad H, van Nimwegen M, Kool M, Willart MA, Muskens F, Hoogsteden HC, Luttmann W, Ferrari D, Di Virgilio F, Virchow JC Jr, Lambrecht BN (2007) Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat Med 13:913–919

    Article  CAS  Google Scholar 

  21. Kobayashi T, Soma T, Noguchi T, Nakagome K, Nakamoto H, Kita H, Nagata M (2015) ATP drives eosinophil effector responses through P2 purinergic receptors. Allergol Int 64:S30–S36

    Article  Google Scholar 

  22. Lambrecht BN, Hammad H (2015) The immunology of asthma. Nat Immunol 16:45–56

    Article  CAS  Google Scholar 

  23. Lommatzsch M, Julius P, Kuepper M, Garn H, Bratke K, Irmscher S, Luttmann W, Renz H, Braun A, Virchow JC (2006) The course of allergen-induced leukocyte infiltration in human and experimental asthma. J Allergy Clin Immunol 118:91–97

    Article  CAS  Google Scholar 

  24. Lutfi R, Lewkowich IP, Zhou P, Ledford JR, Page K (2012) The role of protease-activated receptor-2 on pulmonary neutrophils in the innate immune response to cockroach allergen. J Inflamm (Lond) 9:32

    Article  CAS  Google Scholar 

  25. Marincek BC, Kuhnle MC, Srokowski C, Schild H, Hammerling G, Momburg F (2008) Heat shock protein-antigen fusions lose their enhanced immunostimulatory capacity after endotoxin depletion. Mol Immunol 46:181–191

    Article  CAS  Google Scholar 

  26. Nakagome K, Nagata M (2011) Pathogenesis of airway inflammation in bronchial asthma. Auris Nasus Larynx 38:555–563

    Article  Google Scholar 

  27. Ortega E, Hinchado MD, Martin-Cordero L, Asea A (2009) The effect of stress-inducible extracellular Hsp72 on human neutrophil chemotaxis: a role during acute intense exercise. Stress 12:240–249

    Article  CAS  Google Scholar 

  28. Prado N, Marazuela EG, Segura E, Fernandez-Garcia H, Villalba M, Thery C, Rodriguez R, Batanero E (2008) Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. J Immunol 181:1519–1525

    Article  CAS  Google Scholar 

  29. Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H (2008) Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol 121(847–52):e7

    Google Scholar 

  30. Satoh M, Shimoda Y, Akatsu T, Ishikawa Y, Minami Y, Nakamura M (2006) Elevated circulating levels of heat shock protein 70 are related to systemic inflammatory reaction through monocyte toll signal in patients with heart failure after acute myocardial infarction. Eur J Heart Fail 8:810–815

    Article  CAS  Google Scholar 

  31. Shevchenko MA, Troyanova NI, Servuli EA, Bolkhovitina EL, Fedorina AS, Sapozhnikov AM (2016) Study of immunomodulatory effects of extracellular HSP70 in a mouse model of allergic airway inflammation. Biochemistry (Mosc) 81:1384–1395

    Article  CAS  Google Scholar 

  32. Stocki P, Dickinson AM (2012) The immunosuppressive activity of heat shock protein 70. Autoimmune Dis 2012:617213

    PubMed  PubMed Central  Google Scholar 

  33. Tanaka K, Tanaka Y, Namba T, Azuma A, Mizushima T (2010) Heat shock protein 70 protects against bleomycin-induced pulmonary fibrosis in mice. Biochem Pharmacol 80:920–931

    Article  CAS  Google Scholar 

  34. Troyanova NI, Shevchenko MA, Boyko AA, Mirzoyev RR, Pertseva MA, Kovalenko EI, Sapozhnikov AM (2015) Modulating effect of extracellular HSP70 on generation of reactive oxigen species in populations of phagocytes. Bioorg Khim 41:305–315

    CAS  PubMed  Google Scholar 

  35. Vitiello L, Gorini S, Rosano G, la Sala A (2012) Immunoregulation through extracellular nucleotides. Blood 120:511–518

    Article  CAS  Google Scholar 

  36. Wallin RP, Lundqvist A, More SH, von Bonin A, Kiessling R, Ljunggren HG (2002) Heat-shock proteins as activators of the innate immune system. Trends Immunol 23:130–135

    Article  CAS  Google Scholar 

  37. Woytschak J, Keller N, Krieg C, Impellizzieri D, Thompson RW, Wynn TA, Zinkernagel AS, Boyman O (2016) Type 2 interleukin-4 receptor signaling in neutrophils antagonizes their expansion and migration during infection and inflammation. Immunity 45:172–184

    Article  CAS  Google Scholar 

  38. Yang M, Wu T, Cheng L, Wang F, Wei Q, Tanguay RM (2005) Plasma antibodies against heat shock protein 70 correlate with the incidence and severity of asthma in a Chinese population. Respir Res 6:18

    Article  Google Scholar 

  39. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694

    Article  CAS  Google Scholar 

  40. Yurinskaya MM, Evgen’ev MB, Antonova OY, Vinokurov MG (2010) Exogenous heat shock protein HSP70 suppresses bacterial pathogen-induced activation of human neutrophils. Dokl Biochem Biophys 435:316–319

    Article  CAS  Google Scholar 

  41. Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Russian Science Foundation (grant no. 19-75-00082).

Disclosure of Interests

All authors declare they have no conflict of interest.

Ethical Approval for Studies Involving Humans

This article does not contain any studies with human participants performed by any of the authors.

Ethical Approval for Studies Involving Animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Approval was granted by the Institutional Animal Care and Use Committee of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, protocol № 179/2015 from 21.07.2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Sapozhnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shevchenko, M.A., Troyanova, N.I., Sapozhnikov, A.M. (2020). Effects of Heat Shock Protein 70 kDa in Allergic Airway Inflammation. In: Asea, A.A.A., Kaur, P. (eds) Heat Shock Proteins in Inflammatory Diseases. Heat Shock Proteins, vol 22. Springer, Cham. https://doi.org/10.1007/7515_2020_8

Download citation

Publish with us

Policies and ethics