Skip to main content

Heterocycles from Cycloaddition Reactions

  • Chapter
  • First Online:
Heterocycles from Carbenes and Nitrenes

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 59))

  • 359 Accesses

Abstract

The synthesis of heterocyclic compounds via catalytic cycloaddition reactions of metallocarbenes is robust, atom-economic, and often allows access to chiral heterocycles with high levels of stereocontrol. This methodology has demonstrated advantages over other metal- and organo-catalytic approaches towards heterocycles (e.g., lower catalyst loading, use of inexpensive metal catalysts, mild reaction conditions, excellent stereoselectivities, etc.). This chapter is comprehensive, and covers all available literature reports on cycloaddition using metallocarbenes to produce different ring size heterocycles: from small strained tri-membered to medium-size eight-membered rings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carruthers W (1990) Cycloaddition reactions in organic synthesis. Pergamon Press, Oxford

    Google Scholar 

  2. Kobayashi S, Jorgensen K (2003) Cycloaddition reactions in organic synthesis. Wiley VCH, Weinheim

    Google Scholar 

  3. IUPAC Gold Book. http://goldbook.iupac.org

  4. Katritzky AR (2004) Introduction: heterocycles. Chem Rev 104:2125–2126

    CAS  Google Scholar 

  5. Kabir E, Uzzaman M (2022) A review on biological and medicinal impact of heterocyclic compounds. Res Chem 4:100606

    CAS  Google Scholar 

  6. Moss RA, Doyle MP (eds) (2014) Contemporary carbene chemistry. Wiley, New York

    Google Scholar 

  7. Xu X, Doyle MP (2014) The [3 + 3]-cycloaddition alternative for heterocycle syntheses: catalytically generated metalloenolcarbenes as dipolar adducts. Acc Chem Res 47:1396–1405

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Deng Y, Cheng Q-Q, Doyle MP (2017) Asymmetric [3+3] cycloaddition for heterocycle synthesis. Synlett 28:1695–1706

    CAS  Google Scholar 

  9. Marichev KO, Doyle MP (2019) Catalytic asymmetric cycloaddition reactions of enoldiazo compounds. Org Biomol Chem 17:4183–4195

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Müller P, Pautex N, Doyle MP, Bagheri V (1990) Rh(II) catalyzed isomerizations of cyclopropenes. Evidence for Rh(II)-complexed vinylcarbene intermediates. Helv Chim Acta 73:1233–1241

    Google Scholar 

  11. Dong K, Marichev KO, Doyle MP (2019) The role of donor–acceptor cyclopropenes in metal carbene reactions. Conversion of E-substituted enoldiazoacetates to Z-substituted metallo-enolcarbenes. Organometallics 38:4043–4050

    CAS  Google Scholar 

  12. Prileschajew N (1909) Oxydation ungesättigter Verbindungen mittels organischer superoxyde [oxidation of unsaturated compounds by means of organic peroxides]. Ber Dtsch Chem Ges (in German) 42:4811–4815

    CAS  Google Scholar 

  13. Rossiter B, Katsuki T, Sharpless KB (1981) Asymmetric epoxidation provides shortest routes to four chiral epoxy alcohols which are key intermediates in syntheses of methymycin, erythromycin, leukotriene C-1, and disparlure. J Am Chem Soc 103:464–465

    CAS  Google Scholar 

  14. Martin V, Woodard S, Katsuki T, Yamada Y, Ikeda M, Sharpless KB (1981) Kinetic resolution of racemic allylic alcohols by enantioselective epoxidation. A route to substances of absolute enantiomeric purity? J Am Chem Soc 103:6237–6240

    CAS  Google Scholar 

  15. Finn MG, Sharpless KB (1991) Mechanism of asymmetric epoxidation. 2. Catalyst structure. J Am Chem Soc 113:113–126

    CAS  Google Scholar 

  16. Corey EJ, Shibata S, Bakshi RK (1988) An efficient and catalytically enantioselective route to (S)-(−)-phenyloxirane. J Org Chem 53:2861–2863

    CAS  Google Scholar 

  17. Zhang W, Loebach JL, Wilson SR, Jacobsen EN (1990) Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes. J Am Chem Soc 112:2801–2803

    CAS  Google Scholar 

  18. Jacobsen EN, Zhang W, Muci AR, Ecker JR, Deng L (1991) Highly enantioselective epoxidation catalysts derived from 1,2-diaminocyclohexane. J Am Chem Soc 113:7063–7064

    CAS  Google Scholar 

  19. Corey EJ, Chaykovsky M (1965) Dimethyloxosulfonium methylide ((CH3)2SOCH2) and dimethylsulfonium methylide ((CH3)2SCH2). Formation and application to organic synthesis. J Am Chem Soc 87:1353–1364

    CAS  Google Scholar 

  20. Furukawa N, Sugihara Y, Fujihara H (1989) Camphoryl sulfide as a chiral auxiliary and a mediator for one-step synthesis of optically active 1,2-diaryloxiranes. J Org Chem 54:4222–4224

    CAS  Google Scholar 

  21. Li A-H, Dai L-X, Aggarwal VK (1997) Asymmetric ylide reactions: epoxidation, cyclopropanation, aziridination, olefination, and rearrangement. Chem Rev 97:2341–2372

    CAS  PubMed  Google Scholar 

  22. Aggarwal VK, Richardson J (2003) The complexity of catalysis: origins of enantio- and diastereocontrol in sulfur ylide mediated epoxidation reactions. Chem Commun:2644–2651

    Google Scholar 

  23. Aggarwal VK, Winn CL (2004) Catalytic, asymmetric sulfur ylide-mediated epoxidation of carbonyl compounds: scope, selectivity, and applications in synthesis. Acc Chem Res 37:611–620

    CAS  PubMed  Google Scholar 

  24. Julienne K, Metzner P, Henyron V (1999) Asymmetric synthesis of epoxides from aldehydes mediated by (+)-(2R,5R)-2,5-dimethylthiolane. J Chem Soc Perkin Trans 1:731–735

    Google Scholar 

  25. Zanardi J, Leriverend C, Aubert D, Julienne K, Metzner P (2001) Catalytic cycle for the asymmetric synthesis of epoxides using sulfur ylides. J Org Chem 66:5620–5623

    CAS  PubMed  Google Scholar 

  26. Winn CL, Bellanie B, Goodman JM (2002) A highly enantioselective one-pot sulfur ylide epoxidation reaction. Tetrahedron Lett 43:5427–5430

    CAS  Google Scholar 

  27. Solladie-Cavallo A, Diep-Vohuule A, Sunjic V, Vinkovic V (1996) A two-step asymmetric synthesis of pure trans-(R,R)-diaryl-epoxides. Tetrahedron Asymmetry 7:1783–1788

    CAS  Google Scholar 

  28. Solladie-Cavallo A, Roje M, Isarno T, Sunjic V, Vinkovic V (2000) Pyridyl and furyl epoxides of more than 99% enantiomeric purities: the use of a phosphazene base. Eur J Org Chem:1077–1080

    Google Scholar 

  29. Breau L, Ogilvie WW, Durst T (1990) Preparation of optically active stilbene oxides via sulfonium salts derived from C2 symmetric thiolanes. Tetrahedron Lett 31:35–38

    CAS  Google Scholar 

  30. Aggarwal VK, Ford JG, Fonquerna S, Adams H, Jones RVH, Fieldhouse R (1998) Catalytic asymmetric epoxidation of aldehydes. Optimization, mechanism and discovery of stereoelectronic control involving a combination of anomeric and Cieplak effects in sulfur ylide epoxidations with chiral 1,3-oxathianes. J Am Chem Soc 120:8328–8339

    CAS  Google Scholar 

  31. Aggarwal VK (1998) Catalytic asymmetric epoxidation and aziridination mediated by sulfur ylides. Evolution of a project. Synlett 4:329–336

    Google Scholar 

  32. Aggarwal VK, Alonso E, Hynd G, Lydon KM, Palmer MJ, Porcelloni M, Studley JR (2001) Catalytic asymmetric synthesis of epoxides from aldehydes using sulfur ylides with in situ generation of diazocompounds. Angew Chem Int Ed 40:1430–1433

    CAS  Google Scholar 

  33. Evans DA, Faul MM, Bilodeau MT (1991) Copper-catalyzed aziridination of olefins by (N-(p-toluenesulfonyl)imino)phenyliodinane. J Org Chem 56:6744–6746

    CAS  Google Scholar 

  34. Catino AJ, Nichols JM, Forslund RE, Doyle MP (2005) Efficient aziridination of olefins catalyzed by mixed-valent dirhodium(II,III) caprolactamate. Org Lett 7:2787–2790

    CAS  PubMed  Google Scholar 

  35. Chang JWW, Ton TMU, Chan PWH (2011) Transition-metal-catalyzed aminations and aziridinations of C–H and C–C bonds with iminoiodinanes. Chem Rec 11:331–357

    CAS  PubMed  Google Scholar 

  36. Driver TG (2010) Recent advances in transition metal-catalyzed N-atom transfer reactions of azides. Org Biomol Chem 8:3831–3846

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cramer SA, Jenkins DM (2011) Synthesis of aziridines from alkenes and aryl azides with a reusable macrocyclic tetracarbene iron catalyst. J Am Chem Soc 133:19342–19345

    CAS  PubMed  Google Scholar 

  38. Sabir S, Pandey CB, Yadav AK, Tiwari B, Jat JL (2018) Direct N-H/N-Me aziridination of unactivated olefins using O-(sulfonyl)hydroxylamines as aminating agents. J Org Chem 83:12255–12260

    CAS  PubMed  Google Scholar 

  39. Shimbayashi T, Sasakura K, Eguchi A, Okamoto K, Ohe K (2019) Recent progress on cyclic nitrenoid precursors in transition-metal-catalyzed nitrene-transfer reactions. Chem A Eur J 25:3156–3180

    CAS  Google Scholar 

  40. Deng T, Mazumdar W, Yoshinaga Y, Patel PB, Malo D, Malo T, Wink DJ, Driver TG (2021) Rh2(II)-catalyzed intermolecular N-aryl aziridination of olefins using nonactivated N atom precursors. J Am Chem Soc 143:19149–19159

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tan H, Samanta S, Maity A, Roychowdhury P, Powers DC (2022) N-Aminopyridinium reagents as traceless activating groups in the synthesis of N-aryl aziridines. Nat Commun 13:3341

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Concellón JM, Rodríguez-Solla H, Simal C (2008) Addition reactions of iodomethyllithium to imines. A direct and efficient synthesis of aziridines and enantiopure amino aziridines. Org Lett 10:4457–4460

    PubMed  Google Scholar 

  43. Yadav LDS, Kapoor R, Garima (2009) Organocatalytic stereoselective aziridination of imines via ammonium ylides. Synlett 19:3123–3126

    Google Scholar 

  44. Aggarwal VK, Ferrara M (2000) Highly selective aziridination of imines using trimethylsilyldiazomethane and applications of C-silylaziridines in synthesis. Org Lett 2:4107–4110

    CAS  PubMed  Google Scholar 

  45. Yadav JS, Reddy BVS, Reddy PN, Shesha Rao M (2003) Bi(OTf)3-[Bmim]PF6: a novel and reusable catalytic system for the synthesis of cis-aziridine carboxylates. Synthesis 9:1387–1390

    Google Scholar 

  46. Borkin D, Carlson A, Török B (2010) K-10-catalyzed highly diastereoselective synthesis of aziridines. Synlett 5:745–748

    Google Scholar 

  47. Williams AL, Johnston JN (2004) The Brønsted acid-catalyzed direct Aza-Darzens synthesis of N-alkyl cis-aziridines. J Am Chem Soc 126:1612–1613

    CAS  PubMed  Google Scholar 

  48. Zeng X, Zeng X, Xu Z, Lu M, Zhong G (2009) Highly efficient asymmetric trans-selective aziridination of diazoacetamides and N-Boc-imines catalyzed by chiral Brønsted acids. Org Lett 11:3036–3039

    CAS  PubMed  Google Scholar 

  49. Aggarwal VK, Vasse J-L (2003) Asymmetric sulfur ylide mediated aziridination: application in the synthesis of the side chain of Taxol. Org Lett 5:3987–3990

    CAS  PubMed  Google Scholar 

  50. Cheng X, Cai B-G, Mao H, Lu J, Li L, Wang K, Xuan J (2021) Divergent synthesis of aziridine and imidazolidine frameworks under blue LED irradiation. Org Lett 23:4109–4114

    CAS  PubMed  Google Scholar 

  51. Yoda H, Takahashi M, Sengoku T (2011) Majumdar KC, Chattopadhyay SK (eds) Heterocycles in natural product synthesis1st edn. Wiley-VCH, Weinheim, pp 41–62

    Google Scholar 

  52. Brandi A, Cicchi S, Cordero FM (2008) Novel syntheses of azetidines and azetidinones. Chem Rev 108:3988–4035

    CAS  PubMed  Google Scholar 

  53. Antermite D, Degennaro L, Luisi R (2017) Recent advances in the chemistry of metallated azetidines. Org Biomol Chem 15:34–50

    CAS  Google Scholar 

  54. West FG, Bott TM (2012) Preparation and synthetic applications of azetidines. Heterocycles 84:223–264

    Google Scholar 

  55. Ju Y, Varma RS (2006) Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives. J Org Chem 71:135–141

    CAS  PubMed  Google Scholar 

  56. Hillier MC, Chen C-Y (2006) A one-pot preparation of 1,3-disubstituted azetidines. J Org Chem 71:7885–7887

    CAS  PubMed  Google Scholar 

  57. Xu P, Zhang M, Ingoglia B, Allais C, Dechert-Schmitt A-MR, Singer RA, Morken JP (2021) Construction of azacycles by intramolecular amination of organoboronates and organobis(boronates). Org Lett 23:3379–3383

    CAS  PubMed  Google Scholar 

  58. Malik S, Nadir UK (2008) A facile synthesis of 1-arenesulfonylazetidines through reaction of 1-arenesulfonylaziridines with dimethylsulfoxonium methylide generated under microwave irradiation. Synlett 1:108–110

    Google Scholar 

  59. Han J-Q, Zhang H-H, Xu P-F, Luo Y-C (2016) Lewis acid and (hypo)iodite relay catalysis allows a strategy for the synthesis of polysubstituted azetidines and tetrahydroquinolines. Org Lett 18:5212–5215

    CAS  PubMed  Google Scholar 

  60. Fawcett A, Murtaza A, Gregson CHU, Aggarwal VK (2019) Strain-release-driven homologation of boronic esters: application to the modular synthesis of azetidines. J Am Chem Soc 141:4573–4578

    CAS  PubMed  Google Scholar 

  61. Becker MR, Wearing ER, Schindler CS (2020) Synthesis of azetidines via visible-light-mediated intermolecular [2+2] photocycloadditions. Nat Chem 12:898–905

    CAS  PubMed  Google Scholar 

  62. Hodgson DM, Pearson CI, Kazmi M (2014) Generation and electrophile trapping of N-Boc-2-lithio-2-azetine: synthesis of 2-substituted 2-azetines. Org Lett 16:856–859

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Baumann AN, Eisold M, Music A, Haas G, Kiw YM, Didier D (2017) Methods for the synthesis of substituted azetines. Org Lett 19:5681–5684

    CAS  PubMed  Google Scholar 

  64. Pang S, Yang X, Cao Z-H, Zhang Y-L, Zhao Y, Huang Y-Y (2018) Intermolecular [2 + 2] cycloaddition/isomerization of allenyl imides and unactivated imines for the synthesis of 1-azadienes catalyzed by a Ni(ClO4)2·6H2O Lewis acid. ACS Catal 8:5193–5199

    CAS  Google Scholar 

  65. Li C, Jiang K, Ouyang Q, Liu T-Y, Chen Y-C (2016) [3+1]- and [3+2]-cycloadditions of azaoxyallyl cations and sulfur ylides. Org Lett 18:2738–2741

    CAS  PubMed  Google Scholar 

  66. Barluenga J, Riesgo L, Lonzi G, Tomás M, López LA (2012) Copper(I)-catalyzed [3+1] cycloaddition of alkenyldiazoacetates and iminoiodinanes: easy access to substituted 2-azetines. Chem A Eur J 18:9221–9224

    CAS  Google Scholar 

  67. Deng Y, Massey LA, Zavalij PY, Doyle MP (2017) Catalytic asymmetric [3+1]-cycloaddition reaction of ylides with electrophilic metallo-enolcarbene intermediates. Angew Chem Int Ed 56:7479–7483

    CAS  Google Scholar 

  68. Marichev KO, Wang K, Dong K, Greco N, Massey LA, Deng Y, Arman H, Doyle MP (2019) Synthesis of chiral tetrasubstituted azetidines from donor–acceptor azetines via asymmetric copper(I)-catalyzed imido-ylide [3+1]-cycloaddition with metallo-enolcarbenes. Angew Chem Int Ed 58:16188–16192

    CAS  Google Scholar 

  69. Marichev KO, Dong K, Massey LA, Deng Y, De Angelis L, Wang K, Arman H, Doyle MP (2019) Chiral donor−acceptor azetines as powerful reactants for synthesis of amino acid derivatives. Nat Commun 10:5328

    PubMed  PubMed Central  Google Scholar 

  70. Gothelf KV, Jørgensen KA (1998) Asymmetric 1,3-dipolar cycloaddition reactions. Chem Rev 98:863–910

    CAS  PubMed  Google Scholar 

  71. Breugst M, Reissig HU (2020) The Huisgen reaction: milestones of the 1,3-dipolar cycloaddition. Angew Chem Int Ed 59:12293–12307

    CAS  Google Scholar 

  72. Huisgen R (1961) Centenary lecture – 1,3-dipolar cycloadditions. Proc Chem Soc:357–396

    Google Scholar 

  73. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021

    CAS  Google Scholar 

  74. Kolb HC, Sharpless BK (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8:1128–1137

    CAS  PubMed  Google Scholar 

  75. Jiang X, Hao X, Jing L, Wu G, Kang D, Liu X, Zhan P (2019) Recent applications of click chemistry in drug discovery. Expert Opin Drug Discovery 14:779–789

    CAS  Google Scholar 

  76. Tron GC, Rirali T, Billington RA, Canonico PL, Sorba G, Genazzani AA (2008) Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med Res Rev 28:278–308

    CAS  PubMed  Google Scholar 

  77. Doyle MP, Yan M, Hu W, Gronenberg LS (2003) Highly selective catalyst-directed pathways to dihydropyrroles from vinyldiazoacetates and imines. J Am Chem Soc 125:4692–4693

    CAS  PubMed  Google Scholar 

  78. Xu X, Zavalij PY, Hu W, Doyle MP (2012) Efficient synthesis of oxazoles by dirhodium(II)-catalyzed reactions of styryl diazoacetate with oximes. Chem Commun 48:11522–11524

    CAS  Google Scholar 

  79. Qin C, Davies HML (2013) Rh2(R-TPCP)4-catalyzed enantioselective [3+2]-cycloaddition between nitrones and vinyldiazoacetates. J Am Chem Soc 135:14516–14519

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang XC, Abrahams QM, Zavalij PY, Doyle MP (2012) Highly regio- and stereoselective dirhodium vinylcarbene induced nitrone cycloaddition with subsequent cascade carbenoid aromatic cycloaddition/N-O cleavage and rearrangement. Angew Chem Int Ed 51:5907–5910

    CAS  Google Scholar 

  81. Yang X, Xu P, Xue Y (2014) Mechanism and regioselectivity of the cycloaddition between nitrone and dirhodium vinylcarbene catalyzed by Rh2(O2CH)4: a computational study. Theor Chem Accounts 133:1549

    Google Scholar 

  82. Cheng Q-Q, Lankelma M, Wherritt D, Arman H, Doyle MP (2017) Divergent rhodium-catalyzed cyclization reactions of enoldiazoacetamides with nitrosoarenes. J Am Chem Soc 139:9839–9842

    CAS  PubMed  Google Scholar 

  83. Xu X, Zavalij PY, Hu W, Doyle MP (2013) Vinylogous reactivity of enol diazoacetates with donor–acceptor substituted hydrazones. Synthesis of substituted pyrazole derivatives. J Org Chem 78:1583–1588

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Xu G, Zhu C, Gu W, Li J, Sun J (2015) Gold(I)-catalyzed diazo cross-coupling: a selective and ligand controlled denitrogenation/cyclization cascade. Angew Chem Int Ed 54:883–887

    CAS  Google Scholar 

  85. Dong K, Humeidi A, Griffith W, Arman H, Xu X, Doyle MP (2021) AgI-catalyzed reaction of enol diazoacetates and imino ethers: synthesis of highly functionalized pyrroles. Angew Chem Int Ed 60:13394–13400

    CAS  Google Scholar 

  86. Dong K, Zheng H, Su Y, Humeidi A, Arman H, Xu X, Doyle MP (2021) Catalyst-directed divergent catalytic approaches to expand structural and functional scaffold diversity via metallo-enolcarbene intermediates. ACS Catal 11:4712–4721

    CAS  Google Scholar 

  87. Yi R, Qian L, Wan B (2019) Synthesis of spiropyrrolidine oxindoles through Rh(II)-catalyzed olefination/cyclization of diazooxindoles and vinyl azides. Chinese J Catal 40:177–183

    CAS  Google Scholar 

  88. Subba Reddy BV, Pravardhan Reddy E, Sridharc B, Jayaprakash Rao Y (2016) Rhodium-catalyzed cycloaddition of carbonyl ylides for the synthesis of spiro[furo[2,3-a] xanthene-2,3′-indolin]-2′-one scaffolds. RSC Adv 6:50497–50499

    Google Scholar 

  89. Muthusamy S, Prabu A, Suresh E (2019) Copper-catalyzed synthesis of spiroindolofurobenzopyrans: tandem reactions of diazoamides and O-propargyl salicylaldehydes. Org Biomol Chem 17:8088–8093

    CAS  PubMed  Google Scholar 

  90. Sheng G, Ma S, Bai S, Mao J, Lu P, Wang Y (2018) A copper-catalyzed reaction of 3-diazoindolin-2-imines with 2-(phenylamino)ethanols: convenient access to spiro[indoline-3,2′-oxazolidin]-2-imines. Chem Commun 54:1529–1532

    CAS  Google Scholar 

  91. Reddy ACS, Reddy PM, Anbarasan P (2020) Diastereoselective palladium catalyzed carbenylative amination of ortho-vinylanilines with 3-diazoindolin-2-ones. Adv Synth Catal 362:801–806

    CAS  Google Scholar 

  92. Zhu C, Xu G, Sun J (2016) Gold-catalyzed formal [4+1]/[4+3] cycloadditions of diazo esters with triazines. Angew Chem Int Ed 55:11867–11871

    CAS  Google Scholar 

  93. Hyster TK, Ruhl KE, Rovis T (2013) A coupling of benzamides and donor/acceptor diazo compounds to form γ-lactams via Rh(III)-catalyzed C−H activation. J Am Chem Soc 135:5364–5367

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lam H-W, Man K-Y, Chan WW, Zhou Z, Yu W-Y (2014) Rhodium(III)-catalyzed formal oxidative [4 + 1] cycloaddition of benzohydroxamic acids and α-diazoesters. A facile synthesis of functionalized benzolactams. Org Biomol Chem 12:4112–4116

    CAS  PubMed  Google Scholar 

  95. Ma B, Wu P, Wang X, Wang Z, Lin HX, Dai HX (2019) Efficient synthesis of spirooxindole pyrrolones by a rhodium(III)-catalyzed C–H activation/carbene insertion/Lossen rearrangement sequence. Angew Chem Int Ed 58:13335–13339

    CAS  Google Scholar 

  96. Anderson LL (2016) Diverse applications of nitrones for the synthesis of heterocyclic compounds. Asian J Org Chem 5:9–30

    CAS  Google Scholar 

  97. Wang X, Xu X, Zavalij PY, Doyle MP (2011) Asymmeric formal [3+3]-cycloaddition reactions of nitrones with electrophilic vinylcarbene intermediates. J Am Chem Soc 133:16402–16405

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Shved AS, Tabolin AA, Novikov RA, Nelyubina YV, Timofeev VP, Ioffe SL (2061) Six-membered cyclic nitroso acetals: synthesis and studies of the nitrogen inversion process of N-silyloxy-3,6-dihydro-2H-1,2-oxazines. Eur J Org Chem:5569–5578

    Google Scholar 

  99. Cheng Q-Q, Yedoyan J, Arman H, Doyle MP (2016) Copper-catalyzed divergent addition reactions of enoldiazoacetamides with nitrones. J Am Chem Soc 138:44–47

    CAS  PubMed  Google Scholar 

  100. Marichev KO, Adly FG, Carranco AM, Garcia EC, Arman H, Doyle MP (2018) Catalyst choice for highly enantioselective [3+3]-cycloaddition of enoldiazocarbonyl compounds. ACS Catal 8:10392–10400

    CAS  Google Scholar 

  101. Marichev KO, Wang Y, Carranco AM, Garcia EC, Yu ZX, Doyle MP (2018) Rhodium(II)-catalysed generation of cycloprop-1-en-1-yl ketones and their rearrangement to 5-aryl-2-siloxyfurans. Chem Commun 54:9513–9516

    CAS  Google Scholar 

  102. Adly FG, Marichev KO, Jensen JA, Arman H, Doyle MP (2019) Enoldiazosulfones for highly enantioselective [3 + 3]-cycloaddition with nitrones catalyzed by copper(i) with chiral BOX ligands. Org Lett 21:40–44

    CAS  PubMed  Google Scholar 

  103. Xu X, Zavalij PJ, Doyle MP (2013) A donor-acceptor cyclopropene as a dipole source for a silver(I) catalyzed asymmetric catalytic [3+3]-cycloaddition with nitrones. Chem Commun 49:10287–10289

    CAS  Google Scholar 

  104. Qian Y, Xu X, Wang X, Zavalij PJ, Hu W, Doyle MP (2012) Rhodium(II)- and copper(II)-catalyzed reactions of enol diazoacetates with nitrones: metal carbene versus Lewis acid directed pathways. Angew Chem Int Ed 51:5900–5903

    CAS  Google Scholar 

  105. Dong K, Xu X, Doyle MP (2020) Copper(I)-catalyzed highly enantioselective [3+3]-cycloaddition of γ-alkyl enoldiazoacetates with nitrones. Org Chem Front 7:1653–1657

    CAS  Google Scholar 

  106. Zheng H, Faghihi I, Doyle MP (2021) Copper(I)-catalyzed highly enantioselective [3+3]-cycloaddition of β-aryl/alkyl vinyl diazoacetates with nitrones. Helv Chim Acta 104:e2100081

    CAS  Google Scholar 

  107. Chrzanowska M, Rozwadowska MD (2004) Asymmetric synthesis of isoquinoline alkaloids. Chem Rev 104:3341–3370

    CAS  PubMed  Google Scholar 

  108. Guo C, Fleige M, Janssen-Müller D, Daniliuc CG, Glorius F (2015) Switchable selectivity in an NHC-catalysed dearomatizing annulation reaction. Nat Chem 7:842–847

    CAS  PubMed  Google Scholar 

  109. Xu X, Zavalij PY, Doyle MP (2013) Highly enantioselective dearomatizing formal [3+3]-cycloaddition reactions of N-acyliminopyridinium ylides with electrophilic enolcarbene intermediates. Angew Chem Int Ed 52:12664–12668

    CAS  Google Scholar 

  110. Xu X, Zavalij PY, Doyle MP (2013) Catalytic asymmetric syntheses of quinolizidines by dirhodium-catalyzed dearomatization of isoquinolinium/pyridinium methylides – the role of catalyst and carbene source. J Am Chem Soc 135:12439–12447

    CAS  PubMed  Google Scholar 

  111. Li S-J, Fang D-C (2018) DFT studies on the dirhodium-catalyzed [3 + 2] and [3 + 3] cycloaddition reactions of enol diazoacetates with isoquinolinium methylide: mechanism, selectivity, and ligand effect. Organometallics 37:1373–1380

    CAS  Google Scholar 

  112. Požgan F, Mamari HA, Grošelj U, Svete J, Štefane B (2018) Synthesis of non-racemic pyrazolines and pyrazolidines by [3+2] cycloadditions of azomethine imines. Molecules 23:3

    Google Scholar 

  113. Shintani R, Hayashi T (2006) Palladium-catalyzed [3+3] cycloaddition of trimethylenemethane with azomethine imines. J Am Chem Soc 128:6330–6331

    CAS  PubMed  Google Scholar 

  114. Shapiro ND, Shi Y, Toste FD (2009) Gold-catalyzed [3+3]-annulation of azomethine imines with propargyl esters. J Am Chem Soc 131:11654–11655

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Qian Y, Zavalij PJ, Hu W, Doyle MP (2013) Bicyclic pyrazolidinone derivatives from diastereoselective catalytic [3+3]-cycloaddition reactions of enoldiazoacetates with azomethine imines. Org Lett 15:1564–1567

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang Y, Yang Y, Zhao J, Xue Y (2018) Mechanism and diastereoselectivity of [3+3] cycloaddition between enol diazoacetate and azomethine imine catalyzed by dirhodium tetracarboxylate: a theoretical study. Eur J Org Chem:3086–3094

    Google Scholar 

  117. Deng Y, Massey LA, Rodriguez Núñez YA, Arman H, Doyle MP (2017) Catalytic divergent [3+3]- and [3+2]-cycloaddition by discrimination between diazo compounds. Angew Chem Int Ed 56:12292–12296

    CAS  Google Scholar 

  118. Xu X, Zavalij PY, Doyle MP (2012) Synthesis of tetrahydropyridazines by a metal-carbene directed highly enantioselective vinylogous N-H insertion/Lewis acid catalyzed diastereoselective Mannich addition. Angew Chem Int Ed 51:9829–9833

    CAS  Google Scholar 

  119. Zheng H, Doyle MP (2019) Catalytic desymmetric cycloaddition of diaziridines with metalloenolcarbenes. The role of donor-acceptor cyclopropenes. Angew Chem Int Ed 58:12502–12506

    CAS  Google Scholar 

  120. Cheng Q-Q, Qian Y, Zavalij PY, Doyle MP (2015) Lewis acid/rhodium-catalyzed formal [3+3]-cycloaddition of enoldiazoacetates with donor–acceptor cyclopropanes. Org Lett 17:3568–3571

    CAS  PubMed  Google Scholar 

  121. Eschenbrenner-Lux V, Kumar K, Waldmann H (2014) The asymmetric hetero-Diels–Alder reaction in the syntheses of biologically relevant compounds. Angew Chem Int Ed 53:11146–11157

    CAS  Google Scholar 

  122. Heravi MM, Ahmadi T, Ghavidel M, Heidari B, Hamidi H (2015) Recent applications of the hetero Diels–Alder reaction in the total synthesis of natural products. RSC Adv 5:101999–102075

    CAS  Google Scholar 

  123. Cheng Q-Q, Massey LA, Willett BS, Deng Y, Arman H, Doyle MP (2018) Copper-catalyzed formal [4+2] cycloaddition of enoldiazoimides with sulfur ylides. Angew Chem Int Ed 57:10343–10346

    CAS  Google Scholar 

  124. Jia S, Lei Y, Song L, Reddy AGK, Xing D, Hu W (2017) Diastereoselective intramolecular aldol-type trapping of zwitterionic intermediates by ketones for the synthesis of spiro[chroman-4,3′-oxindole] derivatives. Adv Synth Catal 359:58–63

    CAS  Google Scholar 

  125. Han C, Wu W, Chen Z, Pu S (2019) Rhodium-catalyzed [5+1]-cycloaddition reactions to spiro-benzo[e][1,3]oxazineindoline imines. Asian J Org Chem 8:1385–1389

    CAS  Google Scholar 

  126. Yin Z, He Y, Chiu P (2018) Application of (4+3) cycloaddition strategies in the synthesis of natural products. Chem Soc Rev 47:8881–8924

    CAS  PubMed  Google Scholar 

  127. Fodor G, Dharanipragada R (1986) Tropane alkaloids. Nat Prod Rep 3:181–184

    CAS  PubMed  Google Scholar 

  128. Kende AS, Smalley Jr TL, Huang H (1999) Total synthesis of (±)-isostemofoline. J Am Chem Soc 121:7431–7432

    CAS  Google Scholar 

  129. Parr BT, Economou C, Herzon SB (2015) A concise synthesis of (+)-batzelladine B from simple pyrrole-based starting materials. Nature 525:507–510

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Economou C, Romaire JP, Scott TZ, Parr BT, Herzon SB (2018) A convergent approach to batzelladine alkaloids. Total syntheses of (+)-batzelladine E, (−)-dehydrobatzelladine C, and (+)-batzelladine K. Tetrahedron 74:3188–3197

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Xu X, Hu W-H, Zavalij PY, Doyle MP (2011) Divergent outcomes of carbene transfer reactions from dirhodium and copper-based catalysts separately or in combination. Angew Chem Int Ed 50:11152–11155

    CAS  Google Scholar 

  132. Yuan C, Wu Y, Wang D, Zhang Z, Wang C, Zhou L, Zhang C, Song B, Guo H (2018) Formal [5+3] cycloaddition of zwitterionic allylpalladium intermediates with azomethine imines for construction of N,O-containing eight-membered heterocycles. Adv Synth Catal 360:652–658

    CAS  Google Scholar 

  133. Niu B, Wu X-Y, Wei Y, Shi M (2019) Palladium-catalyzed diastereoselective formal [5 + 3] cycloaddition for the construction of spirooxindoles fused with an eight-membered ring. Org Lett 21:4859–4863

    CAS  PubMed  Google Scholar 

  134. Lee DJ, Ko D, Yoo EJ (2015) Rhodium(II)-catalyzed cycloaddition reactions of non-classical 1,5-dipoles for the formation of eight-membered heterocycles. Angew Chem Int Ed 54:13715–13718

    CAS  Google Scholar 

  135. Lee JY, Kumar Varshnaya R, Yoo EJ (2022) Synthesis of chiral diazocine derivatives via a copper-catalyzed dearomative [5+3] cycloaddition. Org Lett 24:3731–3735

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostiantyn O. Marichev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marichev, K.O. (2023). Heterocycles from Cycloaddition Reactions. In: Doyle, M.P., Xu, X. (eds) Heterocycles from Carbenes and Nitrenes . Topics in Heterocyclic Chemistry, vol 59. Springer, Cham. https://doi.org/10.1007/7081_2023_63

Download citation

Publish with us

Policies and ethics