Skip to main content

Development of a Manufacturing Process for the Formation of a Nucleoside Drug Candidate

  • Chapter
  • First Online:
Synthesis of Heterocycles in Contemporary Medicinal Chemistry

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 44))

  • 2352 Accesses

Abstract

The original synthesis of our oral prodrug of isatoribine, a nucleoside analogue potentially useful for the treatment of patients with chronic hepatitis C and other viral infections, suffered from various limitations. Herein we would like to report a practical and robust process identified for the synthesis of an isatoribine prodrug therefore in the course of our process R&D activities. Our efforts relied on the practical manufacture of the base in a straightforward sequence in a streamlined glycosylation process, followed by an effective and regioselective enzymatic hydrolysis, both with a much improved environmental impact. The catalytic activity of the immobilized lipase was demonstrated to be very robust as the enzyme displayed an excellent behavior as catalyst with high levels of activity, selectivity, and excellent operational stability. This process was further developed in a semicontinuous mode and demonstrated to proceed in an even more efficient manner from a throughput standpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-MeTHF:

2-Methyltetrahydrofuran

Ac:

Acetyl

API:

Active pharmaceutical ingredient

BSA:

Bis-silylacetamide

DMAP:

Dimethyl aminopyridine

DMF:

Dimethylformamide

GMP:

Good manufacturing practice

h:

Hour(s)

HMDS:

Hexamethyldisalazane

HSE:

Health safety, environment

kin:

Kinetic

Me:

Methyl

MTBE:

Methyl-tert-butyl ether

PAT:

Process analytical technology

rt:

Room temperature

SM:

Starting material

Tf:

Triflate

Therm:

Thermodynamic

THF:

Tetrahydrofuran

TMS:

Trimethylsilyl

References

  1. Xiang AX, Webber SE, Kerr BM, Rueden EJ, Lennox JR, Haley GJ, Wang T, Ng JS, Herbert MR, Clark DL, Banh VN, Li W, Fletcher SP, Steffy KR, Bartkowski DM, Kirkovsky LI, Bauman LA, Averett DR (2007) Discovery of ANA975: an oral prodrug of the TLR-7 agonist isatoribine. Nucleosides Nucleotides Nucleic Acids 26:635–640

    Article  CAS  Google Scholar 

  2. Gallou F, Seeger-Weibel M, Chassagne P (2013) Development of a robust and sustainable process for nucleoside formation. Org Process Res Dev 17:390–396

    Article  CAS  Google Scholar 

  3. Fletcher S, Steffy K, Averett D (2006) Masked oral prodrugs of toll-like receptor 7 agonists: a new approach for the treatment of infectious disease. Curr Opin Investig Drugs 7(8):702–708

    CAS  Google Scholar 

  4. Anderson NG (2012) Practical process research and development – a guide for organic chemists, 2nd edn. Academic, Amsterdam

    Google Scholar 

  5. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  6. Anastas PT, Zimmerman JB (2003) Through the 12 principles of green engineering. Environ Sci Technol 37(5):94A–101A

    Article  Google Scholar 

  7. Roschangar F, Sheldon RA, Senanayake CH (2015) Overcoming barriers to green chemistry in the pharmaceutical industry – the Green Aspiration Level™ concept. Green Chem 17:752–768

    Article  CAS  Google Scholar 

  8. Vorbrueggen H (1995) Adventures in silicon-organic chemistry. Acc Chem Res 28(12):509–520

    Article  CAS  Google Scholar 

  9. Jutz C (1976) Iminium salts in organic chemistry. Wiley, New York

    Google Scholar 

  10. Hanessian S, Banoub J (1977) Chemistry of the glycosidic linkage. Carbohydr Res 59:C13–C16

    Article  Google Scholar 

  11. English JP, Clark H, Clapp JW, Seeger D, Ebel RH (1946) J Am Chem Soc 68:453

    Article  CAS  Google Scholar 

  12. D’Amico JJ, Bollinger FG, Freeman JJ (1988) Synthesis of 2-oxo and 2-thioxo-3(2H)-benzothiazoleethanimic acid anhydride with acetic acid and related products. J Heterocycl Chem 25(5):1503–1509

    Article  Google Scholar 

  13. Li N-S, Piccirilli JA (2006) Efficient synthesis of 2′-C-β-methylguanosine. J Org Chem 71(10):4018–4020

    Article  CAS  Google Scholar 

  14. Jimenez-Gonzalez C, Ponder CS, Broxterman QB, Manley JB (2011) Using the right green yardstick: why process mass intensity is used in the pharmaceutical industry to drive more sustainable processes. Org Process Res Dev 15(4):912

    Article  CAS  Google Scholar 

  15. Palomo JM, Filice M, Fernandez-Lafuente R, Terreni M, Guisana JM (2007) Regioselective hydrolysis of different peracetylated β-monosaccharides by immobilized lipases from different sources. Key role of the immobilization. Adv Synth Catal 349(11):1969–1976

    Article  CAS  Google Scholar 

  16. Orrenius C, Norin T, Hult K, Carrea G (1995) The Candida antarctica lipase B catalysed kinetic resolution of seudenol in non-aqueous media of controlled water activity. Tetrahedron Asymmetry 6(12):3023–3030

    Article  CAS  Google Scholar 

  17. Dicosimo R, Payne MS, Croud VB, Gavagan JE, Wagner LW, Hann EC (2007) US 20070042924

    Google Scholar 

  18. Kinoshita M, Ohno A (1996) Factors influencing enantioselectivity of lipase-catalyzed hydrolysis. Tetrahedron 52(15):5397–5406

    Article  CAS  Google Scholar 

  19. Kitamoto Y, Kuruma Y, Suzuki K, Hattori T (2015) Effect of solvent polarity on enantioselectivity in Candida antarctica lipase B catalyzed kinetic resolution of primary and secondary alcohols. J Org Chem 80(1):521–527

    Article  CAS  Google Scholar 

  20. Burke PA, Griffin RG, Klibanov AM (1993) Solid-state nuclear magnetic resonance investigation of solvent dependence of tyrosyl ring motion in an enzyme. Biotechnol Bioeng 42(1):87–94

    Article  CAS  Google Scholar 

  21. Margolin AL, Tai DF, Klibanov AM (1987) Incorporation of D-amino acids into peptides via enzymic condensation in organic solvents. J Am Chem Soc 109(25):7885–7887

    Article  CAS  Google Scholar 

  22. Sakurai T, Margolin AL, Russell AJ, Klibanov AM (1988) Control of enzyme enantioselectivity by the reaction medium. J Am Chem Soc 110(21):7236–7237

    Article  CAS  Google Scholar 

  23. Dordick JS (1992) Designing enzymes for use in organic solvents. Biotechnol Prog 8(4):259–267

    Article  CAS  Google Scholar 

  24. Takahashi K, Tamaura Y, Kodera Y, Mihama T, Saito Y, Inada Y (1987) Magnetic lipase active in organic solvents. Biochem Biophys Res Commun 142(2):291–296

    Article  CAS  Google Scholar 

  25. Talukder MM, Rahman B, Ko LM, Song OP, Pu S, Wu J, Chuan W, Jae C, Chow Y (2008) Improved method for efficient production of biodiesel from palm oil. Energy Fuels 22(1):141–144

    Article  CAS  Google Scholar 

  26. Secundo F, Carrea G (2002) Lipase activity and conformation in neat organic solvents. J Mol Catal B: Enzym 19:93–102

    Article  Google Scholar 

  27. Gallou F, Beney P US 20110091943

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Gallou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gallou, F. (2015). Development of a Manufacturing Process for the Formation of a Nucleoside Drug Candidate. In: ÄŒasar, Z. (eds) Synthesis of Heterocycles in Contemporary Medicinal Chemistry. Topics in Heterocyclic Chemistry, vol 44. Springer, Cham. https://doi.org/10.1007/7081_2015_152

Download citation

Publish with us

Policies and ethics