Skip to main content

Agriculture Land Degradation in Chile

  • Chapter
  • First Online:
Impact of Agriculture on Soil Degradation I

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 120))

Abstract

Soil is one of the most important and non-renewable elements of the environment. In order to improve income and increase productivity from the soil, various techniques (e.g. tillage) and substances (e.g. pesticides, fertilisers) have been employed. The use of these techniques and substances increased soil degradation. This is coupled with other socioeconomic processes that occurred in recent years, such as the land-use change from forest areas to agricultural lands. For this reason, in recent decades, awareness has been raised about these issues, and various regulations have been dictated on the need to protect the environment and the soil in agricultural areas, identify sustainable practices to implement in agricultural areas, control the number of fertilisers and pesticides used, and protect the mosaic of territories to avoid further degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu TLD (2005) The origin and dispersal of agriculture and human diaspora in East Asia. In: Lu TLD (ed) The peopling of East Asia. Routledge, London, pp 75–86

    Google Scholar 

  2. Wallace M, Jones G, Charles M, Forster E, Stillman E, Bonhomme V, Livarda A, Osborne CP, Rees M, Frenck G, Preece C (2019) Re-analysis of archaeobotanical remains from pre-and early agricultural sites provides no evidence for a narrowing of the wild plant food spectrum during the origins of agriculture in southwest Asia. Veg Hist Archaeobotany 28(4):449–463

    Google Scholar 

  3. Iriarte J, Elliott S, Maezumi SY, Alves D, Gonda R, Robinson M, de Souza JG, Watling J, Handley J (2020) The origins of Amazonian landscapes: plant cultivation, domestication and the spread of food production in tropical South America. Quaternary Sci Rev 248:106582

    Google Scholar 

  4. Snir A, Nadel D, Groman-Yaroslavski I, Melamed Y, Sternberg M, Bar-Yosef O, Weiss E (2015) The origin of cultivation and proto-weeds, long before Neolithic farming. PLoS One 10(7):e0131422

    Google Scholar 

  5. Jones G, Kluyver T, Preece C, Swarbrick J, Forster E, Wallace M, Charles M, Rees M, Osborne CP (2020) The origins of agriculture: intentions and consequences. J Archaeol Sci 125:105290

    Google Scholar 

  6. Flannery KV (1973) The origin of agriculture. Ann Rev Anthropol 2:271–310

    Google Scholar 

  7. Harlan JR (1992) Crops and man. American Society of Agronomy, Madison

    Google Scholar 

  8. Cokkizgin A, Shtaya MJ (2013) Lentil: origin, cultivation techniques, utilisation and advances in transformation. Agr Sci 1(1):55–62

    Google Scholar 

  9. Conedera M, Krebs P, Tinner W, Pradella M, Torriani D (2004) The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale. Veget Hist Archaeobot 13:161–179

    Google Scholar 

  10. Lu TLD (1999) The transition from foraging to farming and the origin of agriculture in China. British Archaeological Reports Limited

    Google Scholar 

  11. Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34

    CAS  Google Scholar 

  12. Reed CA (2011) Origins of agriculture. Walter de Gruyter, Berlin

    Google Scholar 

  13. Chang KC (1970) The beginnings of agriculture in the Far East. Antiquity 44:75–85

    Google Scholar 

  14. Flannery KV (1968) Archeological systems theory and early Mesoamerica. In: Meggers B (ed) Anthropological archeology in the Americas. Anthropological Society, Washington, pp 67–87

    Google Scholar 

  15. Santana-Sagredo F, Uribe M, Herrera MJ, Retamal R, Flores S (2015) Dietary practices in ancient populations from northern Chile during the transition to agriculture (Tarapacá region, 1000 BC–AD 900). Am J Phys Anthropol 158(4):751–758

    Google Scholar 

  16. Atencio LN (1982) Temprana emergencia de sedentarismo en el desierto chileno: proyecto Caserones. Chungara:80–122

    Google Scholar 

  17. Muñoz I (2004) El periodo Formativo en los valles del norte de Chile y sur de Perú: Nuevas evidencias y comentarios. Chungará 36:213–225

    Google Scholar 

  18. Watson JT, Arriaza B, Standen V, Muñoz Ovalle I (2013) Tooth wear related to marine foraging, agro-pastoralism and the formative transition on the northern Chilean coast. Int J Osteoarchaeol 23(3):287–302

    Google Scholar 

  19. Knudson KJ, Torres-Rouff C (2009) Investigating cultural heterogeneity in San Pedro de Atacama, northern Chile, through biogeochemistry and bioarchaeology. Am J Phys Anthropol 138(4):473–485

    Google Scholar 

  20. Köppen W (1900) Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geogr Zeitschrift 6(593–611):657–679

    Google Scholar 

  21. Wright ACS (1963) The soil process and the evolution of agriculture in northern Chile. Pac Viewp 4(1):65–74

    Google Scholar 

  22. Sandor JA, Huckleberry G, Hayashida FM, Parcero-Oubiña C, Salazar D, Troncoso A, Ferro-Vázquez C (2021) Soils in ancient irrigated agricultural terraces in the Atacama Desert, Chile. Geoarcheology:1–24. https://doi.org/10.1002/gea.21834

  23. Stevenson CM, Jackson TL, Mieth A, Bork HR, Ladefoged TN (2006) Prehistoric and early historic agriculture at Maunga Orito, Easter Island (Rapa Nui), Chile. Antiquity 80(310):919

    Google Scholar 

  24. Hellin J, Lundy M, Meijer M (2009) Farmer organisation, collective action and market access in Meso-America. Food Policy 34(1):16–22

    Google Scholar 

  25. Robles C (2020) The agrarian historiography of Chile: Foundational interpretations, conventional reiterations, and critical revisionism. Hist Agrar 8:93–122

    Google Scholar 

  26. Monzón VH, Avendaño-Soto P, Araujo RO, Garrido R, Mesquita-Neto JN (2020) Avocado crops as a floral resource for native bees of Chile. Rev Chil Hist Nat 93:1–7

    Google Scholar 

  27. Oficina de Estudios y Políticas Agrarias (ODEPA) (2017) Panorama de la agricultura chilena. Ministerio de Agricultura, Santiago. https://www.odepa.gob.cl/wp-content/uploads/2017/12/panoramaFinal20102017Web.pdf

  28. Muñoz-Schick C, Mattar Bader C, Neira Roa R, Mora González M, Espinoza J, Seguel Seguel O, Salazar Guerrero O, Fuster Gómez R, Lizana A, Cofré C, Pinheiro A, Rodríguez L (2017) Sustainable agriculture and healthy food in Chile. In: Asenjo J, McNeil J (eds) Challenges and opportunities for food and nutrition security in the Americas, the view of academies of science. Federal Ministry of Education and Research, The Inter-American Network of Academies of Sciences, Leopoldina National Akademie der Wissenschaften and The InterAcademy Partnership. http://repositorio.uchile.cl/handle/2250/147838, pp 190–211

    Google Scholar 

  29. Curkovic T, Araya J, Canales C, Medina A (2005) Evaluation of two agriculture detergents as control alternatives for green peach aphid and twospotted spidermite, two pests affecting peach orchards in Chile. In: VI international peach symposium, vol 713, pp 405–408

    Google Scholar 

  30. Rodríguez-San Pedro A, Allendes JL, Beltrán CA, Chaperon PN, Saldarriaga-Córdoba MM, Silva AX, Grez AA (2020) Quantifying ecological and economic value of pest control services provided by bats in a vineyard landscape of central Chile. Agric Ecosyst Environ 302:107063

    Google Scholar 

  31. Cruz GE, Rodriguez FA, Tapia PA, Bown HE (2018) Respuestas en crecimiento después de un raleo con árboles futuro y un raleo por lo bajo en un bosque secundario de Nothofagus pumilio, en Tierra del Fuego, Chile. Cienc Investig Agrar 45(3):263–276

    Google Scholar 

  32. Von Bennewitz E, Sanhueza S, Elorriaga A (2010) Effect of different crop load management strategies on fruit production and quality of sweet cherries (Prunus avium L.) ‘Lapins’ in Central Chile. J Fruit Ornam Plant Res 18(1):51–57

    Google Scholar 

  33. Martínez I, Ovalle C, Del Pozo A, Uribe H, Valderrama N, Prat C, Sandoval M, Fernández F, Zagal E (2011) Influence of conservation tillage and soil water content on crop yield in dryland compacted Alfisol of Central Chile. Chil J Agr Res 71(4):615–622

    Google Scholar 

  34. Tang FH, Lenzen M, McBratney A, Maggi F (2021) Risk of pesticide pollution at the global scale. Nat Geosci 14:206–210

    CAS  Google Scholar 

  35. Aroca GE, Ramírez ME, Robotham H, Avila M (2020) Morphological and reproductive studies on the green filamentous pest Rhizoclonium-like affecting Agarophyton chilensis commercial farms in southern Chile. Aquat Bot 167:103291

    Google Scholar 

  36. Figueroa CC, Simon JC, Le Gallic JF, Prunier-Leterme N, Briones LM, Dedryver CA, Niemeyer HM (2005) Genetic structure and clonal diversity of an introduced pest in Chile, the cereal aphid Sitobion avenae. Heredity 95(1):24–33

    CAS  Google Scholar 

  37. Larraín S (2002) Incidencia de insectos y ácaros plagas en pepino dulce (Solanum muricatum Ait.) cultivado en la IV región, Chile. Agr Téc 62(1):15–26

    Google Scholar 

  38. Ellena M, Sandoval P, Gonzalez A, Montenegro A, Jequier J, Contreras M, Azocar G (2012) Preliminary observations on the effects of soil management techniques on hazelnut growing in the Gorbea area, in the South of Chile. In: VIII international congress on hazelnut, vol 1052, pp 225–230

    Google Scholar 

  39. Ortega-Blu R, Molina-Roco M (2016) Evaluation of vegetation indices and apparent soil electrical conductivity for site-specific vineyard management in Chile. Precis Agric 17(4):434–450

    Google Scholar 

  40. Ordóñez I, López IF, Kemp PD, Descalzi CA, Horn R, Zúñiga F, Dörner J (2018) Effect of pasture improvement managements on physical properties and water content dynamics of a volcanic ash soil in southern Chile. Soil Tillage Res 178:55–64

    Google Scholar 

  41. Letelier L, Gaete-Eastman C, Peñailillo P, Moya-León MA, Herrera R (2020) Southern species from the biodiversity hotspot of central Chile: a source of color, aroma, and metabolites for global agriculture and food industry in a scenario of climate change. Front Plant Sci 11:1002

    Google Scholar 

  42. Fernández FJ, Blanco M, Ponce RD, Vásquez-Lavín F, Roco L (2019) Implications of climate change for semi-arid dualistic agriculture: a case study in Central Chile. Reg Environ Chang 19(1):89–100

    Google Scholar 

  43. Fuentealba A, Duran L, Morales NS (2021) The impact of forest science in Chile: history, contribution, and challenges. Can J For Res 51(6):753–765

    Google Scholar 

  44. Vicuña S, McPhee J, Garreaud RD (2012) Agriculture vulnerability to climate change in a snowmelt-driven basin in semiarid Chile. J Water Res Plan Manag 138(5):431–441

    Google Scholar 

  45. Meza FJ, Wilks DS, Gurovich L, Bambach N (2012) Impacts of climate change on irrigated agriculture in the Maipo Basin, Chile: reliability of water rights and changes in the demand for irrigation. J Water Res Plan Manag 138(5):421–430

    Google Scholar 

  46. Calderón R, Palma P, Arancibia-Miranda N, Kim UJ, Silva-Moreno E, Kannan K (2020) Occurrence, distribution and dynamics of perchlorate in soil, water, fertilisers, vegetables and fruits and associated human exposure in Chile. Environ Geochem Health:1–9

    Google Scholar 

  47. Bonilla CA, Reyes JL, Magri A (2010) Water erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, central Chile. Chile J Agr Res 70(1):159–169

    Google Scholar 

  48. Casanova M, Salazar O, Seguel O, Nájera F, Villarroel R, Leiva C (2012) Long-term monitoring of soil fertility for agroforestry combined with water harvesting in Central Chile. Arch Agron Soil Sci 58(sup1):S165–S169

    Google Scholar 

  49. Salazar O, Casanova M, Kätterer T (2011) The impact of agroforestry combined with water harvesting on soil carbon and nitrogen stocks in central Chile evaluated using the ICBM/N model. Agric Ecosyst Environ 140(1–2):123–136

    CAS  Google Scholar 

  50. Poblete D, Vicuña S, Meza F, Bustos E (2012) Water resources modelling under climate change scenarios of Maule River Basin (Chile) with two main water intensive and competing sectors: agriculture and hydropower generation. In: IWA world congress on water, climate and energy

    Google Scholar 

  51. Salgado MMDPM (2012) Influence of compost and humic substances on soil and fruit quality in table grape under intensive management in Chile. Doctoral Thesis Dissertation. University of Bonn, Bonn, 138 p

    Google Scholar 

  52. Jara-Rojas R, Bravo-Ureta BE, Engler A, Díaz J (2013) An analysis of the joint adoption of water conservation and soil conservation in Central Chile. Land Use Policy 32:292–301

    Google Scholar 

  53. Dörner J, Huertas J, Cuevas JG, Leiva C, Paulino L, Arumí JL (2015) Water content dynamics in a volcanic ash soil slope in southern Chile. J Plant Nutr Soil Sci 178(4):693–702

    Google Scholar 

  54. Bown HE, Fuentes JP, Martínez AM (2018) Assessing water use and soil water balance of planted native tree species under strong water limitations in Northern Chile. New For 49(6):871–892

    Google Scholar 

  55. Gutiérrez-Gamboa G, Carrasco-Quiroz M, Verdugo-Vásquez N, Díaz-Gálvez I, Garde-Cerdán T, Moreno-Simunovic Y (2018) Characterization of grape phenolic compounds of ‘Carignan’ grapevines grafted onto ‘País’ rootstock from Maule Valley (Chile): implications of climate and soil conditions. Chil J Agri R 78(2):310–315

    Google Scholar 

  56. Lehnert LW, Thies B, Trachte K, Achilles S, Osses P, Baumann K, Schmidt J, Salomov E, Jung P, Leinweber P, Karsten U, Büdel B, Bendix J (2018) A case study on fog/low stratus occurrence at Las Lomitas, Atacama Desert (Chile) as a water source for biological soil crusts. Aerosol Air Qual Res 18:254–269

    Google Scholar 

  57. Meza FJ, Montes C, Bravo-Martínez F, Serrano-Ortiz P, Kowalski AS (2018) Soil water content effects on net ecosystem CO2 exchange and actual evapotranspiration in a Mediterranean semiarid savanna of Central Chile. Sci Rep 8(1):1–11

    CAS  Google Scholar 

  58. Panez-Pinto A, Mansilla-Quiñones P, Moreira-Muñoz A (2018) Water, soil and sociometabolic fracture of agribusiness. Fruit activity in Petorca, Chile. Bitác Urb Territ 28(3):153–160

    Google Scholar 

  59. Reyes Rojas LA, Adhikari K, Ventura SJ (2018) Projecting soil organic carbon distribution in central Chile under future climate scenarios. J Environ Qual 47(4):735–745

    Google Scholar 

  60. Brucker E, Spohn M (2019) Formation of soil phosphorus fractions along a climate and vegetation gradient in the Coastal Cordillera of Chile. Catena 180:203–211

    CAS  Google Scholar 

  61. Francke S, Carrasco L, Carnieletto C, Gándara E, Troncoso J (2019) Soil and water conservation technics as a mechanism to adapt to the impacts of climate change in the Maule River Basin Chile. In: Global symposium on soil erosion, Roma, 310 p

    Google Scholar 

  62. Castillo P, Serra I, Townley B, Aburto F, López S, Tapia J, Contreras M (2021) Biogeochemistry of plant essential mineral nutrients across rock, soil, water and fruits in vineyards of Central Chile. Catena 196:104905

    CAS  Google Scholar 

  63. Fuentes I, Seguel O, Casanova M (2013) Elasto-plastic behaviour of soil aggregates and the soil matrix as a function of physical properties in three soils of central Chile. Soil degradation. Adv Geoecol 42:72–88

    Google Scholar 

  64. Seguel CG, Muñoz H, Segovia J, Ávalos B, Martín JR (2019) Assessment of soil contamination in caleta vitor and surrounding areas, northern Chile, due to heavy metal enrichment caused by an abandoned copper mine. Interciencia 44(4):241–246

    Google Scholar 

  65. Hernández Á, Arellano EC, Morales-Moraga D, Miranda MD (2016) Understanding the effect of three decades of land use change on soil quality and biomass productivity in a Mediterranean landscape in Chile. Catena 140:195–204

    Google Scholar 

  66. Schuller P, Castillo A, Walling DE, Iroume A (2011) Use of fallout Caesium-137 and Beryllium-7 to assess the effectiveness of changes in tillage systems in promoting soil conservation and environmental protection on agricultural land in Chile. In: International Atomic Energy Agency (ed) Impact of soil conservation measures on erosion control and soil quality, pp 241–257

    Google Scholar 

  67. Fajardo A, Gundale MJ (2015) Combined effects of anthropogenic fires and land-use change on soil properties and processes in Patagonia, Chile. Forest Ecol Manag 357:60–67

    Google Scholar 

  68. Fleige H, Beck-Broichsitter S, Dörner J, Goebel MO, Bachmann J, Horn R (2016) Land use and soil development in southern Chile: effects on physical properties. J Soil Sci Plant Nutr 16(3):818–831

    CAS  Google Scholar 

  69. Henriquez-Dole LE, Vicuna S, Gironas JA, Meza FJ (2016) Adaptation measures evaluation on agriculture under future climate and land use scenarios in central Chile. In AGU Fall Meeting Abstracts H51A, p 1408

    Google Scholar 

  70. Dörner J, Horn R, Dec D, Wendroth O, Fleige H, Zúñiga F (2017) Land-use-dependent change in the soil mechanical strength and resilience of a shallow volcanic ash soil in southern Chile. Soil Sci Soc Am J 81(5):1064–1073

    Google Scholar 

  71. Soto L, Galleguillos M, Seguel O, Sotomayor B, Lara A (2019) Assessment of soil physical properties’ statuses under different land covers within a landscape dominated by exotic industrial tree plantations in south-central Chile. J Soil Water Conserv 74(1):12–23

    Google Scholar 

  72. Martínez IG, Prat C, Ovalle C, del Pozo A, Stolpe N, Zagal E (2012) Subsoiling improves conservation tillage in cereal production of severely degraded Alfisols under Mediterranean climate. Geoderma 189:10–17

    Google Scholar 

  73. Brunel-Saldias N, Seguel O, Ovalle C, Acevedo E, Martínez I (2018) Tillage effects on the soil water balance and the use of water by oats and wheat in a Mediterranean climate. Soil Tillage Res 184:68–77

    Google Scholar 

  74. Climent MJ, Herrero-Hernández E, Sánchez-Martín MJ, Rodríguez-Cruz MS, Pedreros P, Urrutia R (2019) Residues of pesticides and some metabolites in dissolved and particulate phase in surface stream water of Cachapoal River basin, central Chile. Environ Pollut 251:90–101

    CAS  Google Scholar 

  75. Sheng P, Shang X, Sun Z, Yang L, Guo X, Jones MK (2018) North-south patterning of millet agriculture on the Loess Plateau: late neolithic adaptations to water stress, NW China. Holocene 28(10):1554–1563

    Google Scholar 

  76. Vila-Traver J, Aguilera E, Infante-Amate J, de Molina MG (2021) Climate change and industrialisation as the main drivers of Spanish agriculture water stress. Sci Total Environ 760:143399

    CAS  Google Scholar 

  77. Sabbaghi MA, Nazari M, Araghinejad S, Soufizadeh S (2020) Economic impacts of climate change on water resources and agriculture in Zayandehroud river basin in Iran. Agr Water Manage 241:106323

    Google Scholar 

  78. Hendricks NP (2018) Potential benefits from innovations to reduce heat and water stress in agriculture. J Assoc Environ Resour Econ 5(3):545–576

    Google Scholar 

  79. El-Areed SR (2019) Improvement of yellow corn productivity under water deficit stress using conservation agriculture system. Egypt J Plant Breed 23(1):1–22

    Google Scholar 

  80. Adams RM, Rosenzweig C, Peart RM, Ritchie JT, McCarl BA, Glyer JD, Curry RB, Jones JW, Boote KJ, Allen LH (1990) Global climate change and US agriculture. Nature 345(6272):219–224

    Google Scholar 

  81. Agovino M, Casaccia M, Ciommi M, Ferrara M, Marchesano K (2019) Agriculture, climate change and sustainability: the case of EU-28. Ecol Indic 105:525–543

    Google Scholar 

  82. Wegren SK (2021) Vulnerabilities in Russian agriculture to climate change. Sustain Dev Res 3(1):1–p1

    Google Scholar 

  83. Lehtonen HS, Aakkula J, Fronzek S, Helin J, Hildén M, Huttunen S, Kaljonen M, Niemi J, Palosuo T, Pirttioja N, Rokkonen P, Varho V, Carter TR (2021) Shared socioeconomic pathways for climate change research in Finland: co-developing extended SSP narratives for agriculture. Reg Environ Chang 21(1):1–16

    Google Scholar 

  84. Cui X (2020) Climate change and adaptation in agriculture: evidence from US cropping patterns. J Environ Econ Manag 101:102306

    Google Scholar 

  85. Chen S, Gong B (2021) Response and adaptation of agriculture to climate change: evidence from China. J Dev Econ 148:102557

    Google Scholar 

  86. Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43–51

    CAS  Google Scholar 

  87. Meza FJ, Vicuña S, Jelinek M, Bustos E, Bonelli S (2014) Assessing water demands and coverage sensitivity to climate change in the urban and rural sectors in central Chile. J Water Clim Change 5(2):192–203

    Google Scholar 

  88. Melo O, Foster W (2021) Agricultural and forestry land and labor use under long-term climate change in Chile. Atmos 12(3):305

    Google Scholar 

  89. Guibal R, Lissalde S, Leblanc J, Cleries K, Charriau A, Poulier G, Mazzella N, Rebillard JP, Brizard Y, Guibaud G (2018) Two sampling strategies for an overview of pesticide contamination in an agriculture-extensive headwater stream. Environ Sci Pollut R 25(15):14280–14293

    CAS  Google Scholar 

  90. Xiang T, Malik TH, Nielsen K (2020) The impact of population pressure on global fertiliser use intensity, 1970–2011: an analysis of policy-induced mediation. Technol Forecast Soc 152:119895

    Google Scholar 

  91. Hedlund J, Longo SB, York R (2020) Agriculture, pesticide use, and economic development: a global examination (1990–2014). Rural Sociol 85(2):519–544

    Google Scholar 

  92. Zhou XY, Wang X (2019) Cd contamination status and cost-benefits analysis in agriculture soils of Yangtze River basin. Environ Pollut 254:112962

    CAS  Google Scholar 

  93. Mahmood-ul-Hassan M, Yousra M, Ahmad R, Sarwar S (2019) Arsenic contamination in rice grown under anaerobic condition in arid agriculture: assessment and remediation. Bull Environ Contam Toxicol 103(6):865–870

    CAS  Google Scholar 

  94. Hussain Z, Alam M, Khan MA, Asif M, Shah MA, Khan S, Khan S, Nawab J (2020) Bioaccumulation of potentially toxic elements in spinach grown on contaminated soils amended with organic fertilisers and their subsequent human health risk. Arab J Geosci 13(18):1–9

    Google Scholar 

  95. Ning CHEN, Shuai W, Xinmei HAO, Zhang H, Dongmei ZHOU, Juan GAO (2017) Contamination of phthalate esters in vegetable agriculture and human cumulative risk assessment. Pedosphere 27(3):439–451

    Google Scholar 

  96. Niedobova J, Skalský M, Fric ZF, Hula V, Brtnický M (2019) Effects of so-called “environmentally friendly” agrochemicals on the harlequin ladybird Harmonia axyridis (Coleoptera: Coccinelidae). Eur J Entomol 116:173–177

    Google Scholar 

  97. Sharma K, Cheng Z, Grewal PS (2015) Relationship between soil heavy metal contamination and soil food web health in vacant lots slated for urban agriculture in two post-industrial cities. Urban Ecosyst 18(3):835–855

    Google Scholar 

  98. Alekseev I, Abakumov E (2020) 13C-NMR spectroscopy of humic substances isolated from the agricultural soils of Puchuncavi (El Melón and Puchuncavi areas), central Chile. Soil Water Res 15(3):191–198

    CAS  Google Scholar 

  99. Vega M, Nerenberg R, Vargas IT (2018) Perchlorate contamination in Chile: legacy, challenges, and potential solutions. Environ Res 164:316–326

    CAS  Google Scholar 

  100. Calderón R, Rajendiran K, Kim UJ, Palma P, Arancibia-Miranda N, Silva-Moreno E, Corradini F (2020) Sources and fates of perchlorate in soils in Chile: a case study of perchlorate dynamics in soil-crop systems using lettuce (Lactuca sativa) fields. Environ Pollut 264:114682

    Google Scholar 

  101. Reyes A, Thiombane M, Panico A, Daniele L, Lima A, Di Bonito M, De Vivo B (2020) Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile). Environ Geochem Health 42(8):2573–2594

    CAS  Google Scholar 

  102. Reyes A, Cuevas J, Fuentes B, Fernández E, Arce W, Guerrero M, Letelier MV (2021) Distribution of potentially toxic elements in soils surrounding abandoned mining waste located in Taltal, Northern Chile. J Geochem Explor 220:106653

    CAS  Google Scholar 

  103. Verdejo J, Ginocchio R, Sauvé S, Salgado E, Neaman A (2015) Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile. Ecotox Environ Safe 122:171–177

    CAS  Google Scholar 

  104. Moya H, Verdejo J, Yáñez C, Álvaro JE, Sauvé S, Neaman A (2017) Nitrification and nitrogen mineralization in agricultural soils contaminated by copper mining activities in Central Chile. J Soil Sci Plant Nutr 17(1):205–213

    CAS  Google Scholar 

  105. Stowhas T, Verdejo J, Yáñez C, Celis-Diez JL, Martínez CE, Neaman A (2018) Zinc alleviates copper toxicity to symbiotic nitrogen fixation in agricultural soil affected by copper mining in central Chile. Chemosphere 209:960–963

    CAS  Google Scholar 

  106. Pancetti F, Ramírez M, Castillo C (2011) Epidemiological studies of anticholinestarase pesticides poisoning in Chile. In: Satoh T, Gupta RC (eds) Anticholinesterase pesticides: metabolism, neurotoxicity, and epidemiology. Wiley, Hoboken, pp 357–364

    Google Scholar 

  107. Ramírez-Santana M, Zúñiga-Venegas L, Corral S, Roeleveld N, Groenewoud H, Van der Velden K, Scheepers PTJ, Pancetti F (2020) Association between cholinesterase’s inhibition and cognitive impairment: a basis for prevention policies of environmental pollution by organophosphate and carbamate pesticides in Chile. Environ Res 186:109539

    Google Scholar 

  108. Pancetti F, Olmos C, Dagnino-Subiabre A, Rozas C, Morales B (2007) Noncholinesterase effects induced by organophosphate pesticides and their relationship to cognitive processes: implication for the action of acylpeptide hydrolase. J Toxicol Environ Health B Crit Rev 10(8):623–630

    CAS  Google Scholar 

  109. Dike S, Apte S (2020) A bibliometric analysis of soil pollution due to microplastics. Libr Phil Pract:1–24

    Google Scholar 

  110. da Costa JP, Paço A, Santos PS, Duarte AC, Rocha-Santos T (2019) Microplastics in soils: assessment, analytics and risks. Environ Chem 16(1):18–30

    Google Scholar 

  111. Zhou B, Wang J, Zhang H, Shi H, Fei Y, Huang S, Tong Y, Wen D, Luo Y, Barceló D (2020) Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: multiple sources other than plastic mulching film. J Hazard Mater 388:121814

    CAS  Google Scholar 

  112. Zhang S, Wang J, Yan P, Hao X, Xu B, Wang W, Aurangzeib M (2020) Non-biodegradable microplastics in soils: a brief review and challenge. J Hazard Mater 409:124525

    Google Scholar 

  113. Corradini F, Meza P, Eguiluz R, Casado F, Huerta-Lwanga E, Geissen V (2019) Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci Total Environ 671:411–420

    CAS  Google Scholar 

  114. Allen S, Allen D, Phoenix VR, Le Roux G, Jiménez PD, Simonneau A, Binet S, Galop D (2019) Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci 12(5):339–344

    CAS  Google Scholar 

  115. Zhu F, Zhu C, Wang C, Gu C (2019) Occurrence and ecological impacts of microplastics in soil systems: a review. Bull Environ Contam Toxicol 102(6):741–749

    CAS  Google Scholar 

  116. Klingelhöfer D, Braun M, Quarcoo D, Brüggmann D, Groneberg DA (2020) Research landscape of a global environmental challenge: microplastics. Water Res 170:115358

    Google Scholar 

  117. Pazienza P, De Lucia C (2020) For a new plastics economy in agriculture: policy reflections on the EU strategy from a local perspective. J Clean Prod 253:119844

    Google Scholar 

  118. Li J, Guo K, Cao Y, Wang S, Song Y, Zhang H (2021) Enhance in mobility of oxytetracycline in a sandy loamy soil caused by the presence of microplastics. Environ Pollut 269:116151

    CAS  Google Scholar 

  119. Zhang S, Wang J, Liu X, Qu F, Wang X, Wang X, Li Y, Sun Y (2019) Microplastics in the environment: a review of analytical methods, distribution, and biological effects. Trends Anal Chem 111:62–72

    CAS  Google Scholar 

  120. Ng EL, Lwanga EH, Eldridge SM, Johnston P, Hu HW, Geissen V, Chen D (2018) An overview of microplastic and nanoplastic pollution in agroecosystems. Sci Total Environ 627:1377–1388

    CAS  Google Scholar 

  121. Ariza-Tarazona MC, Villarreal-Chiu JF, Hernández-López JM, De la Rosa JR, Barbieri V, Siligardi C, Cedillo-González EI (2020) Microplastic pollution reduction by a carbon and nitrogen-doped TiO2: effect of pH and temperature in the photocatalytic degradation process. J Hazard Mater 395:122632

    CAS  Google Scholar 

  122. Napper IE, Thompson RC (2019) Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period. Environ Sci Technol 53(9):4775–4783

    CAS  Google Scholar 

  123. Okpoho NA (2018) Smallholder agriculture land use impact on soil organic carbon stock in federal capital territory of Nigeria. J Agric Environ Inte Develop 112(1):109–119

    Google Scholar 

  124. Devátý J, Dostál T, Hösl R, Krása J, Strauss P (2019) Effects of historical land use and land pattern changes on soil erosion – case studies from Lower Austria and Central Bohemia. Land Use Policy 82:674–685

    Google Scholar 

  125. Ferreira V, Panagopoulos T, Cakula A, Andrade R, Arvela A (2015) Predicting soil erosion after land use changes for irrigating agriculture in a large reservoir of southern Portugal. Agric Agric Sci Proc 4:40–49

    Google Scholar 

  126. León-Muñoz J, Echeverría C, Marcé R, Riss W, Sherman B, Iriarte JL (2013) The combined impact of land use change and aquaculture on sediment and water quality in oligotrophic Lake Rupanco (North Patagonia, Chile, 40.8 S). J Environ Manage 128:283–291

    Google Scholar 

  127. Rosero DC (2015) Análisis de la dinámica del cambio de uso del suelo en la Provincia de Osorno, Región de los Lagos, Chile, periodo 1998-2013. Tesis de Magister, Universidad Austral de Chile, Valdivia, 46 p

    Google Scholar 

  128. Montoya-Tangarife C, De La Barrera F, Salazar A, Inostroza L (2017) Monitoring the effects of land cover change on the supply of ecosystem services in an urban region: a study of Santiago-Valparaíso, Chile. PLoS One 12(11):e0188117

    Google Scholar 

  129. Nahuelhual L, Carmona A, Lara A, Echeverría C, González ME (2012) Land-cover change to forest plantations: proximate causes and implications for the landscape in south-central Chile. Landscape Urban Plan 107(1):12–20

    Google Scholar 

  130. Rodríguez-Echeverry J, Echeverría C, Oyarzún C, Morales L (2018) Impact of land-use change on biodiversity and ecosystem services in the Chilean temperate forests. Landsc Ecol 33(3):439–453

    Google Scholar 

  131. Braun AC, Banfield CC, Vogt J, Barra R, Schuller P, Koch B (2014) Assessing erosion risks induced by land-use change in favor of commercial forestry in Chile. EARSeL eProceedings, special issue: 34th EARSeL symposium, Warsaw, pp 1–9

    Google Scholar 

  132. Díaz GI, Nahuelhual L, Echeverría C, Marín S (2011) Drivers of land abandonment in Southern Chile and implications for landscape planning. Landscape Urban Plan 99(3–4):207–217

    Google Scholar 

  133. Carevic FS, Barrientos E, Anderson M (2017) Bodefales en el norte de Chile: una visión general desde la perspectiva de los rasgos hidráulicos de la vegetación a la conservación biológica. Idesia (Arica) 35(3):109–114

    Google Scholar 

  134. Sharma H, Shukla MK, Bosland PW, Steiner R (2017) Soil moisture sensor calibration, actual evapotranspiration, and crop coefficients for drip irrigated greenhouse Chile peppers. Agr Water Manage 179:81–91

    Google Scholar 

  135. Alcívar M, Zurita-Silva A, Sandoval M, Muñoz C, Schoebitz M (2018) Reclamation of saline-sodic soils with combined amendments: impact on quinoa performance and biological soil quality. Sustainability 10(9):3083

    Google Scholar 

  136. Parraguez-Vergara E, Contreras B, Clavijo N, Villegas V, Paucar N, Ther F (2018) Does indigenous and campesino traditional agriculture have anything to contribute to food sovereignty in Latin America? Evidence from Chile, Peru, Ecuador, Colombia, Guatemala and Mexico. Int J Agr Systain 16(4–5):326–341

    Google Scholar 

  137. Fierro P, Valdovinos C, Lara C, Saldías GS (2021) Influence of intensive agriculture on benthic macroinvertebrate assemblages and water quality in the Aconcagua River Basin (Central Chile). Water 13(4):492

    CAS  Google Scholar 

Download references

Acknowledgements

The author also wishes to thank Cambridge Proofreading & Editing LLC for the English revision of this chapter and to Oscar Corvacho-Ganahín for his help with the cartographic design.

Conflicts of interest

The author declares no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Francos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Francos, M. (2022). Agriculture Land Degradation in Chile. In: Pereira, P., Muñoz-Rojas, M., Bogunovic, I., Zhao, W. (eds) Impact of Agriculture on Soil Degradation I. The Handbook of Environmental Chemistry, vol 120. Springer, Cham. https://doi.org/10.1007/698_2022_921

Download citation

Publish with us

Policies and ethics