Skip to main content

Secretome Analysis of Human Nasal Fibroblast Identifies Proteins That Promote Wound Healing

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 21

Abstract

Conditioned medium from cultured fibroblast cells is recognized to promote wound healing and growth through the secretion of enzymes, extracellular matrix proteins, and various growth factors and cytokines. The objective of this study was to profile the secreted proteins present in nasal fibroblast conditioned medium (NFCM). Nasal fibroblasts isolated from human nasal turbinates were cultured for 72 h in Defined Keratinocytes Serum Free Medium (DKSFM) or serum-free F12: Dulbecco’s Modified Eagle’s Medium (DMEM) to collect conditioned medium, denoted as NFCM_DKSFM and NFCM_FD, respectively. SDS-PAGE was performed to detect the presence of protein bands, followed by MALDI-TOF and mass spectrometry analysis. SignalP, SecretomeP, and TMHMM were used to identify the secreted proteins in conditioned media. PANTHER Classification System was performed to categorize the protein according to protein class, whereas STRING 10 was carried out to evaluate the predicted proteins interactions. SDS-PAGE results showed the presence of various protein with molecular weight ranging from ~10 kDa to ~260 kDa. Four protein bands were identified using MALDI-TOF. The analyses identified 104, 83, and 7 secreted proteins in NFCM_FD, NFCM_DKSFM, and DKSFM, respectively. Four protein classes involved in wound healing were identified, namely calcium-binding proteins, cell adhesion molecules, extracellular matrix proteins, and signaling molecules. STRING10 protein prediction successfully identified various pathways regulated by secretory proteins in NFCM. In conclusion, this study successfully profiled the secreted proteins of nasal fibroblasts and these proteins are predicted to play important roles in RECs wound healing through various pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adair JE, Stober V, Sobhany M, Zhuo L, Roberts JD, Negishi M, Kimata K, Garantziotis S (2009) Inter-α-trypsin inhibitor promotes bronchial epithelial repair after injury through vitronectin binding. J Biol Chem 284:16922–16930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akram KM, Samad S, Spiteri MA, Forsyth NR (2013) Mesenchymal stem cells promote alveolar epithelial cell wound repair in vitro through distinct migratory and paracrine mechanisms. Respir Res 14:9

    PubMed  PubMed Central  Google Scholar 

  • Akram KM, Spiteri MA, Forsyth NR (2014) Activin-directed differentiation of human embryonic stem cells differentially modulates alveolar epithelial wound repair via paracrine mechanism. Stem Cell Discov 04:67–82

    Google Scholar 

  • Albelda SM, Buck CA (1990) Integrins and other cell adhesion molecules. FASEB J 4:2868–2880

    CAS  PubMed  Google Scholar 

  • Alfaro MP, Deskins DL, Wallus M, DasGupta J, Davidson JM, Nanney LB, Guney A, Gannon M, Young PP (2013) A physiological role for connective tissue growth factor in early wound healing. Lab Investig 93:81–95

    CAS  PubMed  Google Scholar 

  • Behm B, Babilas P, Landthaler M, Schreml S (2012) Cytokines, chemokines and growth factors in wound healing. J Eur Acad Dermatology Venereol 26:812–820

    CAS  Google Scholar 

  • Berger EA, McClellan SA, Barrett RP, Hazlett LD (2011) Testican-1 promotes resistance against Pseudomonas aeruginosa-induced keratitis through regulation of MMP-2 expression and activation. Investig Ophthalmol Vis Sci 52:5339–5346

    CAS  Google Scholar 

  • Bordet F, Allaouchiche B, Lansiaux S, Combet S, Pouyau A, Taylor P, Bonnard C, Chassard D (2002) Risk factors for airway complications during general anaesthesia in paediatric patients. Paediatr Anaesth 12:762–769

    PubMed  Google Scholar 

  • Bove PF, Wesley UV, Greul AK, Hristova M, Dostmann WR, Van Der Vliet A (2007) Nitric oxide promotes airway epithelial wound repair through enhanced activation of MMP-9. Am J Respir Cell Mol Biol 36:138–146

    CAS  PubMed  Google Scholar 

  • Bringans S, Soren E, Kendrick T, Gopalakrishnakone P, Livk A, Robert L, Richard L (2008) Proteomic analysis of the venom of Heterometrus longimanus (Asian black scorpion). Proteomics 8:1081–1096

    CAS  PubMed  Google Scholar 

  • Brownlee C (2002) Role of the extracellular matrix in cell-cell signalling: paracrine paradigms. Curr Opin Plant Biol 5:396–401

    CAS  PubMed  Google Scholar 

  • Caldwell RL, Opalenik SR, Davidson JM, Caprioli RM, Nanney LB (2008) Tissue profiling MALDI mass spectrometry reveals prominent calcium-binding proteins in the proteome of regenerative MRL mouse wounds. Wound Repair Regen 16:442–449

    PubMed  PubMed Central  Google Scholar 

  • Cario E, Goebell H, Dignass AU (1999) Factor XIII modulates intestinal epithelial wound healing in vitro. Scand J Gastroenterol 34:485–490

    CAS  PubMed  Google Scholar 

  • Chen CC, Mo FE, Lau LF (2001) The angiogenic factor Cyr61 activates a genetic program for wound healing in human skin fibroblasts. J Biol Chem 276:47329–47337

    CAS  PubMed  Google Scholar 

  • Chowdhury SR, Aminuddin BS, Ruszymah BHI (2012) Effect of supplementation of dermal fibroblasts conditioned medium on expansion of keratinocytes through enhancing attachment. Indian J Exp Biol 50:332–339

    CAS  PubMed  Google Scholar 

  • Creaney J, Dick IM, Leon JS, Robinson BWS (2017) A proteomic analysis of the malignant mesothelioma secretome using iTRAQ. Cancer Genom Proteom 14:103–117

    CAS  Google Scholar 

  • Donato R (1999) Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta 1450:191–231

    CAS  PubMed  Google Scholar 

  • Eryani A, Sukmawati D, Damayanti L, Angmalisang EC, Pawitan JA (2018) The healing effect of adipose-derived stem cell conditioned medium on burn wound model. Trends Biomater Artif Organs 32:18–25

    Google Scholar 

  • Fang F, Huang RL, Zheng Y, Liu M, Huo R (2016) Bone marrow derived mesenchymal stem cells inhibit the proliferative and profibrotic phenotype of hypertrophic scar fibroblasts and keloid fibroblasts through paracrine signaling. J Dermatol Sci 83:95–105

    CAS  PubMed  Google Scholar 

  • Gloerich M, Bianchini JM, Siemers KA, Cohen DJ, Nelson WJ (2017) Cell division orientation is coupled to cell-cell adhesion by the E-cadherin/LGN complex. Nat Commun 8:13996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gloghini A, Volpi CC, Caccia D, Gualeni AV, Cilia AM, Carbone A, Bongarzone I (2014) Primary effusion lymphoma: Secretome analysis reveals novel candidate biomarkers with potential pathogenetic significance. Am J Pathol 184:618–630

    PubMed  Google Scholar 

  • Golizeh M, Lee K, Ilchenko S, Ösme A, Bena J, Sadygov RG, Kashyap S, Kasumov T (2017) Increased serotransferrin and ceruloplasmin turnover in diet-controlled patients with type 2 diabetes. Free Radic Biol Med 113:461–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gronthos S, Simmons PJ, Graves SE, G. Robey P. (2001) Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone 28:174–181

    CAS  PubMed  Google Scholar 

  • Gumbiner B, Stevenson B, Grimaldi A (1988) The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J Cell Biol 107:1575–1587

    CAS  PubMed  Google Scholar 

  • Heijink IH, Brandenburg SM, Postma DS, Van Oosterhout AJM (2012) Cigarette smoke impairs airway epithelial barrier function and cell-cell contact recovery. Eur Respir J 39:419–428

    CAS  PubMed  Google Scholar 

  • Hsieh YT (2019) Trivalent chromium restore dexamethasone-induced attenuation effect of insulin-like growth factor-1 and promote skin wound healing in mice. Pak Vet J 39:199–204

    CAS  Google Scholar 

  • Hua M, Brady J, Li G (2012) The epidemiology of upper airway injury in patients undergoing major surgical procedures. Anesth Analg 114:148–151

    PubMed  Google Scholar 

  • Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iba K, Hatakeyama N, Kojima T, Murata M, Matsumura T, Wewer UM, Wada T, Sawada N, Yamashita T (2009) Impaired cutaneous wound healing in mice lacking tetranectin. Wound Repair Regen 17:108–112

    PubMed  Google Scholar 

  • Itoh T, Hayashi Y, Kanamaru T, Morita Y, Suzuki S, Wang W, Zhou L, Rui JA, Yamamoto M, Kuroda Y, Itoh H (2000) Clinical significance of urokinase-type plasminogen activator activity in hepatocellular carcinoma. J Gastroenterol Hepatol 15:422–430

    CAS  PubMed  Google Scholar 

  • Järveläinen H, Puolakkainen P, Pakkanen S, Brown EL, Höök M, Iozzo RV, Sage EH, Wight TN (2006) A role for decorin in cutaneous wound healing and angiogenesis. Wound Repair Regen 14:443–452

    PubMed  Google Scholar 

  • Jelonek K, Widlak P, Pietrowska M (2016) The influence of ionizing radiation on exosome composition, secretion and intercellular communication. Protein Pept Lett 23:656–663

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson ZI, Mahoney C, Heo J, Frankel E, Julian DR, Yates CC (2019) The role of chemokines in fibrotic dermal remodeling and wound healing. Fibros Dis 8:3–24

    Google Scholar 

  • Karmy-Jones R, Wood DE (2007) Traumatic injury to the trachea and bronchus. Thorac Surg Clin 17:35–46

    PubMed  Google Scholar 

  • Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AM, Sheppard D, Chapman HA (2006) Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A 103:13180–13185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knight DA, Holgate ST (2003) The airway epithelium: structural and functional properties in health and disease. Respirology 8:432–446

    PubMed  Google Scholar 

  • Koivisto L, Heino J, Häkkinen L, Larjava H (2014) Integrins in wound healing. Adv Wound Care 3:762–783

    Google Scholar 

  • Koshkareva Y, Gaughan JP, Soliman AMS (2007) Risk factors for adult laryngotracheal stenosis: a review of 74 cases. Ann Otol Rhinol Laryngol 116:206–210

    Google Scholar 

  • Kusindarta DL, Wihadmadyatami H, Fibrianto YH, Sri Nugroho W, Susetya H, Musana DK, Wijayanto H, Prihatna SA, Wahyuni AETH (2016) Human umbilical mesenchymal stem cells conditioned medium promote primary wound healing regeneration. Vet World 9:605–610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lansdown ABG (2002) Calcium: a potential central regulator in wound healing in the skin. Wound Repair Regen 10:271–285

    PubMed  Google Scholar 

  • Lee AWM, Oates PS, Trinder D (2003) Effects of cell proliferation on the uptake of transferrin-bound iron by human hepatoma cells. Hepatology 38:967–977

    CAS  PubMed  Google Scholar 

  • Lenselink EA (2015) Role of fibronectin in normal wound healing. Int Wound J 12:313–316

    PubMed  Google Scholar 

  • Lien SM, Ko LY, Huang TJ (2009) Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater 5:670–679

    CAS  PubMed  Google Scholar 

  • Maarof M, Lokanathan Y, Ruszymah HI, Saim A, Chowdhury SR (2018) Proteomic analysis of human dermal fibroblast conditioned medium (DFCM). Protein J 37:589–607

    CAS  PubMed  Google Scholar 

  • Maia L, de Moraes CN, Dias MC, Martinez JB, Caballol AO, Testoni G, de Queiroz CM, Peña RD, Landim-Alvarenga FC, de Oliveira E (2017) A proteomic study of mesenchymal stem cells from equine umbilical cord. Theriogenology 100:8–15

    CAS  PubMed  Google Scholar 

  • Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36:1031–1037

    CAS  PubMed  Google Scholar 

  • Ong HT, Dilley RJ (2018) Novel non-angiogenic role for mesenchymal stem cell-derived vascular endothelial growth factor on keratinocytes during wound healing. Cytokine Growth F R 44:69–79

    CAS  Google Scholar 

  • Ponka P (1999) Cellular iron metabolism. Kidney Int Suppl 55:2–11

    Google Scholar 

  • Puchelle E, Zahm JM, Tournier JM, Coraux C (2006) Airway epithelial repair, regeneration, and remodeling after injury in chronic obstructive pulmonary disease. Proc Am Thorac Soc 3:726–733

    CAS  PubMed  Google Scholar 

  • Purvis JE, Lahav G (2013) Encoding and decoding cellular information through signaling dynamics. Cell 152:945–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raghow R (1994) The role of extracellular matrix in postinflammatory wound healing and fibrosis. FASEB J 8:823–831

    CAS  PubMed  Google Scholar 

  • Rangaraj A, Harding K, Leaper D (2011) Role of collagen in wound management. Wounds UK 7:54–63

    Google Scholar 

  • Rohaina CM, Yogeswaran L, Rabiatul Adawiyah R, Chowdury SR, Aminuddin BS, Ruszymah BHI (2020) Nasal fibroblast conditioned medium promotes cell attachment and migration of human respiratory epithelium. Sains Malays 49:429–437

    Google Scholar 

  • Rousselle P, Montmasson M, Garnier C (2019) Extracellular matrix contribution to skin wound re-epithelialization. Matrix Biol 75–76:12–26

    PubMed  Google Scholar 

  • Schultz GS, Wysocki A (2009) Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 17:153–162

    PubMed  Google Scholar 

  • Schwartz DA, Landas SK, Lassise DL, Burmeister LF, Hunninghake GW, Merchant JA (1992) Airway injury in swine confinement workers. Ann Intern Med 116:630–635

    CAS  PubMed  Google Scholar 

  • Simmons PJ, Masinovsky B, Longenecker BM, Berenson R, Torok-Storb B, Gallatin WM (1992) Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells. Blood 80:388–395

    CAS  PubMed  Google Scholar 

  • Singh D, Long G, Cançado JED, Higham A (2020) Small airway disease in chronic obstructive pulmonary disease: insights and implications for the clinician. Curr Opin Pulm Med 26:162–168

    PubMed  Google Scholar 

  • Szczepankiewicz A, Lackie PM, Holloway JW (2013) Altered microRNA expression profile during epithelial wound repair in bronchial epithelial cells. BMC Pulm Med 13:63

    PubMed  PubMed Central  Google Scholar 

  • Teixeira FG, Carvalho MM, Panchalingam KM, Rodrigues AJ, Mendes-Pinheiro B, Anjo S, Manadas B, Behie LA, Sousa N, Salgado AJ (2017) Impact of the secretome of human mesenchymal stem cells on brain structure and animal behavior in a rat model of Parkinson’s disease. Stem Cell Transl Med 6:634–646

    CAS  Google Scholar 

  • Thio CLP, Yusof R, Ashrafzadeh A, Bahari S, Abdul-Rahman PS, Karsani SA (2015) Differential analysis of the secretome of WRL68 cells infected with the chikungunya virus. PLoS One 10:e0129033

    PubMed  PubMed Central  Google Scholar 

  • Uno K, Hayashi H, Kuroki M, Uchida H, Yamauchi Y, Kuroki M, Oshima K (2004) Thrombospondin-1 accelerates wound healing of corneal epithelia. Biochem Biophys Res Commun 315:928–934

    CAS  PubMed  Google Scholar 

  • Watanabe M, Kondo S, Mizuno K, Yano W, Nakao H, Hattori Y, Kimura K, Nishida T (2006) Promotion of corneal epithelial wound healing in vitro and in vivo by annexin A5. Investig Ophthalmol Vis Sci 47:1862–1868

    Google Scholar 

  • Wright JA, Richards T, Srai SKS (2014) The role of iron in the skin and cutaneous wound healing. Front Pharmacol 5:156

    PubMed  PubMed Central  Google Scholar 

  • Xue M, Jackson CJ (2015) Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv Wound Care 4:119–136

    Google Scholar 

  • Yoshiba N, Yoshiba K, Ohkura N, Hosoya A, Shigetani Y, Yamanaka Y, Izumi N, Nakamura H, Okiji T (2012) Expressional alterations of fibrillin-1 during wound healing of human dental pulp. J Endod 38:177–184

    PubMed  Google Scholar 

  • Yu HM, Zhu BJ, Sun Y, Wei GQ, Wang L, Qian C, Nadeem Abbas M, Liu CL (2017) Characterization and functional analysis of serpin-1 like gene from oak silkworm Antheraea pernyi. Bull Entomol Res 107:1–7

    Google Scholar 

  • Zahm JM, Chevillard M, Puchelle E (1991) Wound repair of human surface respiratory epithelium. Am J Respir Cell Mol Biol 5:242–248

    CAS  PubMed  Google Scholar 

  • Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, Shi H, Wu L, Zhu W, Qian H, Xu W (2015) HucMSc-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells 33:2158–2168

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Nur Atiqah Haizum Abdullah from the Centre for Tissue Engineering and Regenerative Medicine, UKM, for providing guidance on bioinformatics analysis. Protein identification by MALDI-TOF was carried out at Proteomics International Pty Ltd., Perth, Australia. Triple TOF LC-MS analysis was performed at the Australian Proteome Analysis Facility, Sydney, Australia, a NCRIS (National Collaborative Research Infrastructure Strategy)-enabled Bioplatforms Australia infrastructure.

Authors Contribution

All authors participation are as follows: conceptualization: RCM, RBHI, and YL; methodology: RCM and YL; software: WIWI and YL; validation: RCM, WIWI, YL; formal analysis: RCM, WIWI, YL; investigation: RCM, WIWI, YL; resources: RBHI, ABS, YL; data curation: RCM, WIWI, YL; writing – original draft preparation: RCM, WIWI, YL; writing – review and editing: RCM, RBHI, ABS, WIWI, YL; visualization: RCM and YL; supervision: RBHI, ABS, and YL; project administration: RCM, RBHI, YL; funding acquisition: RBHI, ABS, YL.

Declaration of Conflicting Interests

The author(s) declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical Approval

This study has been approved by the Universiti Kebangsaan Malaysia Research and Ethics Committee (approval code: FRGS/1/2016/SKK08/UKM/03/1).

Funding

This study was supported by the University Kebangsaan Malaysia research grant from the Ministry of Higher Education Malaysia [grant number: DPP-2014-121, AP-2013-015].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogeswaran Lokanathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Man, R.C., Idrus, R.B.H., Ibrahim, W.I.W., Saim, A.B., Lokanathan, Y. (2023). Secretome Analysis of Human Nasal Fibroblast Identifies Proteins That Promote Wound Healing. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 21. Advances in Experimental Medicine and Biology(), vol 1450. Springer, Cham. https://doi.org/10.1007/5584_2023_777

Download citation

Publish with us

Policies and ethics