Skip to main content

Heat Shock Proteins: Central Players in Oncological and Immuno-Oncological Tracks

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 18

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1409))

Abstract

Heat shock proteins (HSPs) are a group of proteins that promote protein folding, inhibit denaturation of cellular proteins, and maintain other proteins’ functional activities when cells are subjected to stress and/or high temperature. HSP classification is generally based on their molecular weights into large and small HSP. The family of small HSPs includes HSPs 27, 40, 60, 70, and 90. The potential roles of HSP27 and HSP70 are quite evident in different solid malignancies, including breast, colorectal, pancreatic, and liver cancers. In this chapter, the authors focus on HSP27 and HSP70 signaling in oncology and their role in different solid malignancies as well as they shed light on the novel role of HSP70 and HSP90 in the immune-oncology field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AAD:

Apoptosis activation domain

AIF:

Apoptosis-inducing factor

Apaf-1 :

Apoptotic protease-activating factor 1

APC:

Antigen-presenting cells

Ask1:

Apoptosis signal-regulating kinase 1

BID:

BH3 interacting-domain death agonist

BT-474:

Human breast tumor cell line

CARD:

Caspase-recruitment domain

CDK4:

Cyclin-dependent kinase 4

Clever:

Common lymphatic endothelial and vascular endothelial receptor

CRC:

Colorectal cancer

Daxx:

Death domain-associated protein 6

DEN:

Diethylnitrosamine

DR:

Death receptor

EMT:

Epithelial to mesenchymal transition

ER:

Endoplasmic reticulum

FADD:

Fas-associated death domain

FBD:

Fas binding domain

GADD153:

Growth arrest and DNA damage-inducible gene 153

GRP:

Glucose-related protein

HCC:

Hepatocellular carcinoma

HER-2:

Human epidermal growth factor 2

HSF:

Heat shock factor

HSP:

Heat shock protein

HUGO:

Human genome organisation

JNK:

C-Jun N-terminal kinase

LOX-1:

Low-density lipoprotein receptor-1

MDS:

Myelodysplastic syndrome

MHC:

Major histocompatibility complex

NY-ESO-1:

New York-esophageal

PES:

Phenylethynesulfonamide

PHC:

Primary hepatocellular carcinoma

PKC:

Protein kinase C

PTEN:

Phosphatase and tensin homolog

SPAG9:

Sperm-associated antigen 9 protein

SREC-1:

Scavenger receptor expressed by endothelial cell 1

SUMO:

Small ubiquitin-like modifier

TNF:

Tumor necrosis factor

VEGF:

Vascular endothelial growth factor

WT:

Wild type

References

  • Cayado-Gutierrez N et al (2013) Downregulation of Hsp27 (HSPB1) in MCF-7 human breast cancer cells induces upregulation of PTEN. Cell Stress Chaperones 18(2):243–249

    Article  CAS  PubMed  Google Scholar 

  • Chakafana G, Zininga T, Shonhai A (2019) The link that binds: the linker of Hsp70 as a helm of the protein’s function. Biomol Ther 9(10)

    Google Scholar 

  • Chang HY et al (1998) Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 281(5384):1860–1863

    Article  CAS  PubMed  Google Scholar 

  • Charette SJ, Landry J (2000) The interaction of HSP27 with Daxx identifies a potential regulatory role of HSP27 in Fas-induced apoptosis. Ann N Y Acad Sci 926:126–131

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Burns TF (2017) Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci 18(9)

    Google Scholar 

  • Cho W et al (2019) The molecular chaperone heat shock protein 70 controls liver cancer initiation and progression by regulating adaptive DNA damage and mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathways. Mol Cell Biol 39(9)

    Google Scholar 

  • Choi S-K et al (2019) Targeting heat shock protein 27 in cancer: a druggable target for cancer treatment? Cancers 11(8):1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuma M et al (2003) Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology 37(1):198–207

    Article  CAS  PubMed  Google Scholar 

  • Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10(2):86–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz FM et al (2017) The biology and underlying mechanisms of cross-presentation of exogenous antigens on MHC-I molecules. Annu Rev Immunol 35:149–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das JK et al (2019) Heat shock proteins in cancer immunotherapy. J Oncol 2019:3267207

    Article  PubMed  PubMed Central  Google Scholar 

  • Eto D et al (2016) Expression of HSP27 in hepatocellular carcinoma. Anticancer Res 36(7):3775–3779

    CAS  PubMed  Google Scholar 

  • Garrido C et al (1999) HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 13(14):2061–2070

    Article  CAS  PubMed  Google Scholar 

  • Ge H et al (2017) SUMOylation of HSP27 by small ubiquitin-like modifier 2/3 promotes proliferation and invasion of hepatocellular carcinoma cells. Cancer Biol Ther 18(8):552–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotoh T et al (2004) hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ 11(4):390–402

    Article  CAS  PubMed  Google Scholar 

  • Gross C et al (2003) Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol Chem 384(2):267–279

    Article  CAS  PubMed  Google Scholar 

  • Han Z-J et al (2018) The post-translational modification, SUMOylation, and cancer (review). Int J Oncol 52(4):1081–1094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi N et al (2012) Hsp27 silencing coordinately inhibits proliferation and promotes Fas-induced apoptosis by regulating the PEA-15 molecular switch. Cell Death Differ 19(6):990–1002

    Article  CAS  PubMed  Google Scholar 

  • Huang CY et al (2018) Silencing heat shock protein 27 inhibits the progression and metastasis of colorectal cancer (CRC) by maintaining the stability of stromal interaction molecule 1 (STIM1) proteins. Cell 7(12)

    Google Scholar 

  • Jaattela M (1995) Over-expression of hsp70 confers tumorigenicity to mouse fibrosarcoma cells. Int J Cancer 60(5):689–693

    Article  CAS  PubMed  Google Scholar 

  • Jagadish N et al (2016a) Heat shock protein 70-2 (HSP70-2) overexpression in breast cancer. J Exp Clin Cancer Res 35(1):150

    Article  PubMed  PubMed Central  Google Scholar 

  • Jagadish N et al (2016b) Heat shock protein 70-2 (HSP70-2) is a novel therapeutic target for colorectal cancer and is associated with tumor growth. BMC Cancer 16:561–561

    Article  PubMed  PubMed Central  Google Scholar 

  • Kampinga HH et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14(1):105–111

    Article  CAS  PubMed  Google Scholar 

  • Kang SH et al (2008) Upregulated HSP27 in human breast cancer cells reduces Herceptin susceptibility by increasing Her2 protein stability. BMC Cancer 8:286

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasioumi P et al (2019) Hsp70 (HSP70A1A) downregulation enhances the metastatic ability of cancer cells. Int J Oncol 54(3):821–832

    CAS  PubMed  Google Scholar 

  • Kim EH et al (2007) Inhibition of heat shock protein 27-mediated resistance to DNA damaging agents by a novel PKC delta-V5 heptapeptide. Cancer Res 67(13):6333–6341

    Article  CAS  PubMed  Google Scholar 

  • Krajarng A et al (2015) Apoptosis induction associated with the ER stress response through up-regulation of JNK in HeLa cells by gambogic acid. BMC Complement Altern Med 15(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  • Leu JI et al (2011) HSP70 inhibition by the small-molecule 2-phenylethynesulfonamide impairs protein clearance pathways in tumor cells. Mol Cancer Res 9(7):936–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malusecka E et al (2001) Expression of heat shock proteins HSP70 and HSP27 in primary non-small cell lung carcinomas. An immunohistochemical study. Anticancer Res 21(2a):1015–1021

    CAS  PubMed  Google Scholar 

  • Massey AJ et al (2010) A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother Pharmacol 66(3):535–545

    Article  CAS  PubMed  Google Scholar 

  • Meng L et al (2011) Heat shock protein Hsp72 plays an essential role in Her2-induced mammary tumorigenesis. Oncogene 30(25):2836–2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller DJ, Fort PE (2018) Heat shock proteins regulatory role in neurodevelopment. Front Neurosci 12:821

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy ME (2013) The HSP70 family and cancer. Carcinogenesis 34(6):1181–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murshid A, Gong J, Calderwood SK (2012) The role of heat shock proteins in antigen cross presentation. Front Immunol 3:63–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Parcellier A et al (2003) HSP27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation. Mol Cell Biol 23(16):5790–5802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardue ML, Bendena WG, Garbe JC (1987) Heat shock: puffs and response to environmental stress. Results Probl Cell Differ 14:121–131

    Article  CAS  PubMed  Google Scholar 

  • Rahmoon MA et al (2017) MiR-615-5p depresses natural killer cells cytotoxicity through repressing IGF-1R in hepatocellular carcinoma patients. Growth Factors 35(2–3):76–87

    Article  CAS  PubMed  Google Scholar 

  • Saleh A et al (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2(8):476–483

    Article  CAS  PubMed  Google Scholar 

  • Saluja A, Dudeja V (2008) Heat shock proteins in pancreatic diseases. J Gastroenterol Hepatol 23(Suppl 1):S42–S45

    Article  CAS  PubMed  Google Scholar 

  • Seo JS et al (1996) T cell lymphoma in transgenic mice expressing the human Hsp70 gene. Biochem Biophys Res Commun 218(2):582–587

    Article  CAS  PubMed  Google Scholar 

  • Shevtsov M, Multhoff G (2016) Heat shock protein-peptide and HSP-based immunotherapies for the treatment of cancer. Front Immunol 7:171–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Sliutz G et al (1996) Drug resistance against gemcitabine and topotecan mediated by constitutive hsp70 overexpression in vitro: implication of quercetin as sensitiser in chemotherapy. Br J Cancer 74(2):172–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Specht HM et al (2015) Heat shock protein 70 (Hsp70) peptide activated natural killer (NK) cells for the treatment of patients with non-small cell lung cancer (NSCLC) after radiochemotherapy (RCTx) – from preclinical studies to a clinical phase II trial. Front Immunol 6:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Taba K et al (2010) Heat-shock protein 27 is phosphorylated in gemcitabine-resistant pancreatic cancer cells. Anticancer Res 30(7):2539–2543

    CAS  PubMed  Google Scholar 

  • Takakuwa JE et al (2019) Oligomerization of Hsp70: current perspectives on regulation and function. Front Mol Biosci 6:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RE et al (2009) Inhibition of heat shock induction of heat shock protein 70 and enhancement of heat shock protein 27 phosphorylation by quercetin derivatives. J Med Chem 52(7):1912–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei L et al (2011) Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-kappaB. Breast Cancer Res 13(5):R101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerheide SD et al (2006) Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J Biol Chem 281(14):9616–9622

    Article  CAS  PubMed  Google Scholar 

  • Wu J et al (2017) Heat shock proteins and cancer. Trends Pharmacol Sci 38(3):226–256

    Article  CAS  PubMed  Google Scholar 

  • Xia Y et al (2012) Targeting heat shock response pathways to treat pancreatic cancer. Drug Discov Today 17(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Yang Y et al (2019) MiR-214 sensitizes human colon cancer cells to 5-FU by targeting Hsp27. Cell Mol Biol Lett 24:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Youness RA et al (2016) Contradicting interplay between insulin-like growth factor-1 and miR-486-5p in primary NK cells and hepatoma cell lines with a contemporary inhibitory impact on HCC tumor progression. Growth Factors 34(3–4):128–140

    Article  CAS  PubMed  Google Scholar 

  • Yun CW et al (2019) Heat shock proteins: agents of cancer development and therapeutic targets in anti-cancer therapy. Cell 9(1)

    Google Scholar 

  • Zaimoku R et al (2019) Monitoring of heat shock response and phenotypic changes in hepatocellular carcinoma after heat treatment. Anticancer Res 39(10):5393–5401

    Article  CAS  PubMed  Google Scholar 

  • Zhang S et al (2015) The effects of HSP27 on gemcitabine-resistant pancreatic cancer cell line through snail. Pancreas 44(7):1121–1129

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Not available.

Conflict of Interest

All authors declare they have no conflict of interest.

Ethical Approval for Studies Involving Humans

This article does not contain any studies with human participants performed by any of the authors.

Ethical Approval for Studies Involving Animals

This article does not contain any studies with animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rana A. Youness or Mohamed El-Shazly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Youness, R.A., Gohar, A., Kiriacos, C.J., El-Shazly, M. (2022). Heat Shock Proteins: Central Players in Oncological and Immuno-Oncological Tracks. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 18. Advances in Experimental Medicine and Biology(), vol 1409. Springer, Cham. https://doi.org/10.1007/5584_2022_736

Download citation

Publish with us

Policies and ethics