Skip to main content

Optimal Delivery Route of Mesenchymal Stem Cells for Cardiac Repair: The Path to Good Clinical Practice

  • Conference paper
  • First Online:
Advances in Mesenchymal Stem Cells and Tissue Engineering (ICRRM 2023)

Abstract

Research has shown that mesenchymal stem cells (MSCs) could be a promising therapy for treating progressive heart disease. However, translation into clinics efficiently and successfully has proven to be much more complicated. Many questions remain for optimizing treatment. Application method influences destiny of MSCs and afterwards impacts results of procedure, yet there is no general agreement about most suitable method of MSC delivery in the clinical setting. Herein, we explain principle of most-frequent MSCs delivery techniques in cardiology. This chapter summarizes crucial translational obstacles of clinical employment of MSCs for cardiac repair when analysed trough a prism of latest research centred on different techniques of MSCs application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AICI:

Antegrade intracoronary infusion

AICI:

antegrade intracoronary infusion

AMI:

acute myocardial infarction

AT-MSCs:

adipose tissue–derived mesenchymal stem cells

bFGF:

basic fibroblast growth factor

BM-MSCs:

bone marrow–derived mesenchymal stem/stromal cells

CABG:

coronary artery bypass grafting

CCR2:

chemokine receptor type-2 surface receptors

CROs:

contract research organizations

CVDs:

Cardiovascular diseases;

CXCR2:

C–X–C chemokine receptor type 2

CXCR-4:

C–X–C chemokine receptor type 4

DI:

direct implantation

EPCs:

endogenous endothelial regenerative progenitor cells

EPCs:

endogenous endothelial regenerative progenitor cells GCP-good clinical practice

ET-1:

endothelin-1

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

HF:

heart failure

HGF:

hepatocyte growth factor

HO-1:

heme oxygenase-1

IA:

intra-arterial infusion

IC:

intracoronary

IC:

ischemic cardiomyopathy

IDO:

indoleamine 2,3-dioxygenase

IGF:

insulin-like growth factor

IHD:

ischemic heart disease

IL-10:

interleukin-10

IM:

intramyocardial

iNOS:

inducible nitric oxide synthase

IV:

intravenous

LIF:

leukaemia inhibitory factor

LVAD:

left ventricular assist device

LVEF:

left ventricle ejection fraction

LVF:

left ventricular function

MCP-1:

monocyte chemoattractant protein 1

MHC:

the major histocompatibility complex

MMP-9:

Matrix metallopeptidase 9

MSCs:

mesenchymal stem cells

NICM:

non-ischemic cardiomyopathy

PCI:

percutaneous transluminal coronary intervention

PDGF:

Platelet-derived growth factor

PGE2:

prostaglandin E2

RCVI:

retrograde coronary venous infusion

SDF1:

stromal cell–derived factor 1

TE:

transendocardial

TESI:

transendocardial stem cell injection

TGF-β:

transforming growth factor-β

UC-MSC:

Umbilical cord–derived mesenchymal stem cells

VEGF:

Vascular endothelial growth factor

References

  • Amado, L. C., Saliaris, A. P., Schuleri, K. H., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11474–11479.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, J. D., Johansson, H. J., Graham, C. S., et al. (2016). Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-KappaB signaling. Stem Cells, 34(3), 601–613.

    CAS  PubMed  Google Scholar 

  • Ang, K. L., Chin, D., Leyva, F., et al. (2008). Randomized, controlled trial of intramuscular or intracoronary injection of autologous bone marrow cells into scarred myocardium during CABG versus CABG alone. Nature Clinical Practice. Cardiovascular Medicine, 5(10), 663–670.

    PubMed  Google Scholar 

  • Ankrum, J., & Karp, J. M. (2010). Mesenchymal stem cell therapy: Two steps forward, one step back. Trends in Molecular Medicine, 16(5), 203–209.

    PubMed  PubMed Central  Google Scholar 

  • Arslan, F., Lai, R. C., Smeets, M. B., et al. (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Research, 10(3), 301–312.

    CAS  PubMed  Google Scholar 

  • Assmus, B., Walter, D. H., Seeger, F. H., et al. (2013). Effect of shock wave-facilitated intracoronary cell therapy on LVEF in patients with chronic heart failure: The CELLWAVE randomized clinical trial [published correction appears in JAMA. 2013 may 15;309(19):1994]. Journal of the American Medical Association, 309(15), 1622–1631.

    CAS  PubMed  Google Scholar 

  • Atluri, P., Miller, J. S., Emery, R. J., et al. (2014). Tissue-engineered, hydrogel-based endothelial progenitor cell therapy robustly revascularizes ischemic myocardium and preserves ventricular function. The Journal of Thoracic and Cardiovascular Surgery, 148(3), 1090–1098.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbash, I. M., Chouraqui, P., Baron, J., et al. (2003). Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: Feasibility, cell migration, and body distribution. Circulation, 108(7), 863–868.

    PubMed  Google Scholar 

  • Bartolucci, J., Verdugo, F. J., González, P. L., et al. (2017). Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: A phase 1/2 randomized controlled trial (RIMECARD trial [randomized clinical trial of intravenous infusion umbilical cord mesenchymal stem cells on Cardiopathy]). Circulation Research, 121(10), 1192–1204.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bervar, M., Kozelj, M., Poglajen, G., et al. (2017). Effects of Transendocardial CD34+ cell transplantation on diastolic parameters in patients with nonischemic dilated cardiomyopathy. Stem Cells Translational Medicine, 6(6), 1515–1521.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bian, S., Zhang, L., Duan, L., et al. (2014). Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. Journal of Molecular Medicine (Berlin, Germany), 92(4), 387–397.

    CAS  PubMed  Google Scholar 

  • Boomsma, R. A., Swaminathan, P. D., & Geenen, D. L. (2007). Intravenously injected mesenchymal stem cells home to viable myocardium after coronary occlusion and preserve systolic function without altering infarct size. International Journal of Cardiology, 122(1), 17–28.

    PubMed  Google Scholar 

  • Breitbach, M., Bostani, T., Roell, W., et al. (2007). Potential risks of bone marrow cell transplantation into infarcted hearts. Blood, 110(4), 1362–1369.

    CAS  PubMed  Google Scholar 

  • Butler, J., Epstein, S. E., Greene, S. J., et al. (2017). Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy: Safety and efficacy results of a phase II-A randomized trial. Circulation Research, 120(2), 332–340.

    CAS  PubMed  Google Scholar 

  • Campbell, N. G., & Suzuki, K. (2012). Cell delivery routes for stem cell therapy to the heart: Current and future approaches. Journal of Cardiovascular Translational Research, 5(5), 713–726.

    PubMed  Google Scholar 

  • Carr, C. A., Stuckey, D. J., Tatton, L., et al. (2008). Bone marrow-derived stromal cells home to and remain in the infarcted rat heart but fail to improve function: An in vivo cine-MRI study. American Journal of Physiology. Heart and Circulatory Physiology, 295(2), H533–H542.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chamberlain, G., Fox, J., Ashton, B., & Middleton, J. (2007). Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 25(11), 2739–2749.

    CAS  PubMed  Google Scholar 

  • Charwat, S., Gyöngyösi, M., Lang, I., et al. (2008). Role of adult bone marrow stem cells in the repair of ischemic myocardium: Current state of the art. Experimental Hematology, 36(6), 672–680.

    CAS  PubMed  Google Scholar 

  • Chen, S. L., Fang, W. W., Ye, F., et al. (2004). Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. The American Journal of Cardiology, 94(1), 92–95.

    PubMed  Google Scholar 

  • Choudhury, T., Mozid, A., Hamshere, S., et al. (2017). An exploratory randomized control study of combination cytokine and adult autologous bone marrow progenitor cell administration in patients with ischaemic cardiomyopathy: The REGENERATE-IHD clinical trial. European Journal of Heart Failure, 19(1), 138–147.

    CAS  PubMed  Google Scholar 

  • Chullikana, A., Majumdar, A. S., Gottipamula, S., et al. (2015). Randomized, double-blind, phase I/II study of intravenous allogeneic mesenchymal stromal cells in acute myocardial infarction. Cytotherapy, 17(3), 250–261.

    CAS  PubMed  Google Scholar 

  • Copland, I. B. (2011). Mesenchymal stromal cells for cardiovascular disease. Journal of Cardiovascular Disease Research, 2(1), 3–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies, J. E., & Walker, J. T. (2017). Keating a concise review: Wharton’s jelly: The rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Translational Medicine, 6, 1620–1630.

    PubMed  PubMed Central  Google Scholar 

  • de la Fuente, L. M., Stertzer, S. H., Argentieri, J., et al. (2007). Transendocardial autologous bone marrow in chronic myocardial infarction using a helical needle catheter: 1-year follow-up in an open-label, nonrandomized, single-center pilot study (the TABMMI study). American Heart Journal, 154(1), 79.e1–79.e797.

    PubMed  Google Scholar 

  • Detante, O., Rome, C., & Papassin, J. (2017). How to use stem cells for repair in stroke patients. Revue Neurologique (Paris), 173(9), 572–576.

    CAS  Google Scholar 

  • Dib, N., Dinsmore, J., Lababidi, Z., et al. (2009). One-year follow-up of feasibility and safety of the first U.S., randomized, controlled study using 3-dimensional guided catheter-based delivery of autologous skeletal myoblasts for ischemic cardiomyopathy (CAuSMIC study). JACC. Cardiovascular Interventions, 2(1), 9–16.

    PubMed  Google Scholar 

  • Dib, N., Menasche, P., Bartunek, J. J., et al. (2010). Recommendations for successful training on methods of delivery of biologics for cardiac regeneration: A report of the International Society for Cardiovascular Translational Research. JACC. Cardiovascular Interventions, 3(3), 265–275.

    PubMed  Google Scholar 

  • Dib, N., Khawaja, H., Varner, S., McCarthy, M., & Campbell, A. (2011). Cell therapy for cardiovascular disease: A comparison of methods of delivery. Journal of Cardiovascular Translational Research, 4(2), 177–181.

    PubMed  Google Scholar 

  • Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    CAS  PubMed  Google Scholar 

  • Formigli, L., Perna, A. M., Meacci, E., et al. (2007). Paracrine effects of transplanted myoblasts and relaxin on post-infarction heart remodelling. Journal of Cellular and Molecular Medicine, 11(5), 1087–1100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freyman, T., Polin, G., Osman, H., Crary, J., Lu, M., Cheng, L., Palasis, M., & Wilensky, R. L. (2006). A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. European Heart Journal, 27(9), 1114–1122.

    PubMed  Google Scholar 

  • Fukushima, S., Varela-Carver, A., Coppen, S. R., et al. (2007). Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation, 115(17), 2254–2261.

    PubMed  Google Scholar 

  • Fukushima, S., Coppen, S. R., Lee, J., et al. (2008). Choice of cell-delivery route for skeletal myoblast transplantation for treating post-infarction chronic heart failure in rat. PLoS One, 3(8), e3071.

    PubMed  PubMed Central  Google Scholar 

  • Galipeau, J., & Sensébé, L. (2018). Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities. Cell Stem Cell, 22(6), 824–833.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, J., Dennis, J. E., Muzic, R. F., Lundberg, M., & Caplan, A. I. (2001). The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells, Tissues, Organs, 169(1), 12–20.

    CAS  PubMed  Google Scholar 

  • Gathier, W. A., van Ginkel, D. J., van der Naald, M., van Slochteren, F. J., Doevendans, P. A., & Chamuleau, S. A. J. (2018 Jun). Retrograde coronary venous infusion as a delivery strategy in regenerative cardiac therapy: An overview of preclinical and clinical data. Journal of Cardiovascular Translational Research, 11(3), 173–181.

    PubMed  PubMed Central  Google Scholar 

  • Gazdic, M., Volarevic, V., Arsenijevic, N., & Stojkovic, M. (2015). Mesenchymal stem cells: A friend or foe in immune-mediated diseases. Stem Cell Reviews and Reports, 11(2), 280–287.

    CAS  PubMed  Google Scholar 

  • Gazdic, M., Arsenijevic, A., Markovic, B. S., et al. (2017). Mesenchymal stem cell-dependent modulation of liver diseases. International Journal of Biological Sciences, 13(9), 1109–1117.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghajar, C. M., Kachgal, S., Kniazeva, E., et al. (2010). Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Experimental Cell Research, 316(5), 813–825.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gopinath, S., Vanamala, S. K., Gondi, C. S., & Rao, J. S. (2010). Human umbilical cord blood derived stem cells repair doxorubicin-induced pathological cardiac hypertrophy in mice. Biochemical and Biophysical Research Communications, 395(3), 367–372.

    CAS  PubMed  Google Scholar 

  • Gregg, D., & Fisher, L. (1963). Blood supply to the heart. In Handbook of physiology. American Physiological Society.

    Google Scholar 

  • Gyöngyösi, M., Blanco, J., Marian, T., et al. (2008). Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression. Circulation. Cardiovascular Imaging, 1(2), 94–103.

    PubMed  PubMed Central  Google Scholar 

  • Hamshere, S., Arnous, S., Choudhury, T., et al. (2015). Randomized trial of combination cytokine and adult autologous bone marrow progenitor cell administration in patients with non-ischaemic dilated cardiomyopathy: The REGENERATE-DCM clinical trial. European Heart Journal, 36(44), 3061–3069.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hare, J. M., Traverse, J. H., Henry, T. D., et al. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54(24), 2277–2286.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hare, J. M., Fishman, J. E., Gerstenblith, G., et al. (2012). Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: The POSEIDON randomized trial [published correction appears in JAMA. 2013 Aug 21;310(7):750. George, Richard [added]; Lardo, Albert [added]]. Journal of the American Medical Association, 308(22), 2369–2379.

    CAS  PubMed  Google Scholar 

  • Harrell, C. R., Gazdic, M., Fellabaum, C., et al. (2019). Therapeutic potential of amniotic fluid derived mesenchymal stem cells based on their differentiation capacity and immunomodulatory properties. Current Stem Cell Research & Therapy, 14, 327–336.

    CAS  Google Scholar 

  • Hatzistergos, K. E., Quevedo, H., Oskouei, B. N., et al. (2010a). Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circulation Research, 107(7), 913–922.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatzistergos, K. E., Quevedo, H., Oskouei, B. N., Hu, Q., Feigenbaum, G. S., Margitich, I. S., Mazhari, R., Boyle, A. J., Zambrano, J. P., Rodriguez, J. E., Dulce, R., Pattany, P. M., Valdes, D., Revilla, C., Heldman, A. W., McNiece, I., & Hare, J. M. (2010b). Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circulation Research, 107, 913–922.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heldman, A. W., DiFede, D. L., Fishman, J. E., et al. (2014). Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: The TAC-HFT randomized trial. Journal of the American Medical Association, 311(1), 62–73.

    CAS  PubMed  Google Scholar 

  • Heldring, N., Mäger, I., Wood, M. J., Le Blanc, K., & Andaloussi, S. E. (2015). Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Human Gene Therapy, 26(8), 506–517.

    CAS  PubMed  Google Scholar 

  • Hong, S. J., Hou, D., Brinton, T. J., et al. (2014). Intracoronary and retrograde coronary venous myocardial delivery of adipose-derived stem cells in swine infarction lead to transient myocardial trapping with predominant pulmonary redistribution. Catheterization and Cardiovascular Interventions, 83(1), E17–E25.

    PubMed  Google Scholar 

  • Hoogduijn, M. J., Roemeling-van Rhijn, M., Engela, A. U., et al. (2013). Mesenchymal stem cells induce an inflammatory response after intravenous infusion. Stem Cells and Development, 22(21), 2825–2835.

    CAS  PubMed  Google Scholar 

  • Hou, D., Youssef, E. A., Brinton, T. J., et al. (2005a). Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: Implications for current clinical trials. Circulation, 112(9 Suppl), I150–I156.

    PubMed  Google Scholar 

  • Hou, D., Youssef, E. A., Brinton, T. J., et al. (2005b). Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: Implications for current clinical trials. Circulation, 112(9 Suppl), I150–I156.

    PubMed  Google Scholar 

  • https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1

  • Huang, Z., Shen, Y., Sun, A., et al. (2013). Magnetic targeting enhances retrograde cell retention in a rat model of myocardial infarction. Stem Cell Research & Therapy, 4(6), 149.

    Google Scholar 

  • Huang, P., Wang, L., Li, Q., et al. (2019). Combinatorial treatment of acute myocardial infarction using stem cells and their derived exosomes resulted in improved heart performance. Stem Cell Research & Therapy, 10(1), 300.

    Google Scholar 

  • Ichihara, Y., Kaneko, M., Yamahara, K., et al. (2018). Self-assembling peptide hydrogel enables instant epicardial coating of the heart with mesenchymal stromal cells for the treatment of heart failure. Biomaterials, 154, 12–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janowski, M., Lyczek, A., Engels, C., et al. (2013). Cell size and velocity of injection are major determinants of the safety of intracarotid stem cell transplantation. Journal of Cerebral Blood Flow and Metabolism, 33(6), 921–927.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janssens, S., Dubois, C., Bogaert, J., et al. (2006). Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: Double-blind, randomised controlled trial. Lancet, 367(9505), 113–121.

    PubMed  Google Scholar 

  • Jeong, J. O., Han, J. W., Kim, J. M., et al. (2011). Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circulation Research, 108(11), 1340–1347.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanelidis, A. J., Premer, C., Lopez, J., Balkan, W., & Hare, J. M. (2017). Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction: A meta-analysis of preclinical studies and clinical trials. Circulation Research, 120(7), 1139–1150.

    PubMed  Google Scholar 

  • Kang, S. K., Shin, I. S., Ko, M. S., Jo, J. Y., & Ra, J. C. (2012). Journey of mesenchymal stem cells for homing: Strategies to enhance efficacy and safety of stem cell therapy. Stem Cells International, 2012, 342968.

    PubMed  PubMed Central  Google Scholar 

  • Karantalis, V., DiFede, D. L., Gerstenblith, G., et al. (2014). Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The prospective randomized study of mesenchymal stem cell therapy in patients undergoing cardiac surgery (PROMETHEUS) trial. Circulation Research, 114(8), 1302–1310.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawada, H., Fujita, J., Kinjo, K., et al. (2004). Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood, 104(12), 3581–3587.

    CAS  PubMed  Google Scholar 

  • Kean, T. J., Lin, P., Caplan, A. I., & Dennis, J. E. (2013). MSCs: Delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells International, 2013, 732742.

    PubMed  PubMed Central  Google Scholar 

  • Kim, J. Y., Jeon, H. B., Yang, Y. S., Oh, W., & Chang, J. W. (2010). Application of human umbilical cord blood-derived mesenchymal stem cells in disease models. The World Journal Stem Cells, 2(2), 34–38.

    Google Scholar 

  • Kocher, A. A., Schlechta, B., Gasparovicova, A., Wolner, E., Bonaros, N., & Laufer, G. (2007). Stem cells and cardiac regeneration. Transplant International, 20(9), 731–746.

    PubMed  Google Scholar 

  • Krause, K., Jaquet, K., Schneider, C., et al. (2009). Percutaneous intramyocardial stem cell injection in patients with acute myocardial in farction: First-Inman study. Heart, 95(14), 1145–1152.

    CAS  PubMed  Google Scholar 

  • Kyriakou, C., Rabin, N., Pizzey, A., et al. (2008). Factors that influence short-term homing of human bone marrow-derived mesenchymal stem cells in a xenogeneic animal model. Haematologica, 93, 1457–1465.

    CAS  PubMed  Google Scholar 

  • Lalu, M. M., Mazzarello, S., Zlepnig, J., et al. (2018). Safety and efficacy of adult stem cell therapy for acute myocardial infarction and ischemic heart failure (SafeCell heart): A systematic review and meta-analysis. Stem Cells Translational Medicine, 7(12), 857–866.

    PubMed  PubMed Central  Google Scholar 

  • Le Blanc, K., & Mougiakakos, D. (2012). Multipotent mesenchymal stromal cells and the innate immune system. Nature reviews. Immunology, 12(5), 383–396.

    PubMed  Google Scholar 

  • Lee, C., Mitsialis, S. A., Aslam, M., et al. (2012). Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation, 126(22), 2601–2611.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leistner, D. M., Fischer-Rasokat, U., Honold, J., et al. (2011). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI): Final 5-year results suggest long-term safety and efficacy. Clinical Research in Cardiology, 100(10), 925–934.

    PubMed  Google Scholar 

  • Levy, O., Kuai, R., Siren, E. M. J., et al. (2020). Shattering barriers toward clinically meaningful MSC therapies. Science Advances, 6(30), eaba6884.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, M., Wang, W., Liang, L., et al. (2018). Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute myocardial infarction. Stem Cell Research & Therapy, 9(1), 129.

    CAS  Google Scholar 

  • Liu, C. B., Huang, H., Sun, P., et al. (2016a). Human umbilical cord-derived mesenchymal stromal cells improve left ventricular function, perfusion, and remodeling in a porcine model of chronic myocardial ischemia. Stem Cells Translational Medicine, 5(8), 1004–1013.

    PubMed  PubMed Central  Google Scholar 

  • Liu, S., Zhou, J., Zhang, X., et al. (2016b). Strategies to optimize adult stem cell therapy for tissue regeneration. International Journal of Molecular Sciences, 17(6), 982.

    PubMed  PubMed Central  Google Scholar 

  • Liu, L., Jin, X., Hu, C. F., et al. (2017). Exosomes derived from mesenchymal stem cells rescue myocardial Ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cellular Physiology and Biochemistry, 43(1), 52–68.

    CAS  PubMed  Google Scholar 

  • Llano, R., Epstein, S., Zhou, R., et al. (2009). Intracoronary delivery of mesenchymal stem cells at high flow rates after myocardial infarction improves distal coronary blood flow and decreases mortality in pigs. Catheterization and Cardiovascular Interventions, 73(2), 251–257.

    PubMed  PubMed Central  Google Scholar 

  • Losordo, D. W., Schatz, R. A., White, C. J., Udelson, J. E., Veereshwarayya, V., Durgin, M., et al. (2007). Intramyocardial transplantation of autologous CD34+ stem cells for intractable angin a. Circulation, 115(25), 3165–3172.

    PubMed  Google Scholar 

  • Lu, L. L., Liu, Y. J., Yang, S. G., et al. (2006). Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica, 91(8), 1017–1026.

    CAS  PubMed  Google Scholar 

  • Luger, D., Lipinski, M. J., Westman, P. C., et al. (2017). Intravenously delivered mesenchymal stem cells: Systemic anti-inflammatory effects improve left ventricular dysfunction in acute myocardial infarction and ischemic cardiomyopathy. Circulation Research, 120(10), 1598–1613.

    CAS  PubMed  Google Scholar 

  • Ma, T., Chen, Y., Chen, Y., et al. (2018). MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem Cells International, 2018, 3290372.

    PubMed  PubMed Central  Google Scholar 

  • Markovic, B. S., Kanjevac, T., Harrell, C. R., et al. (2018). Molecular and cellular mechanisms involved in mesenchymal stem cell-based therapy of inflammatory bowel diseases. Stem Cell Reviews, 14(2), 153–165.

    CAS  Google Scholar 

  • Mathiasen, A. B., Qayyum, A. A., Jørgensen, E., et al. (2015). Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: A randomized placebo-controlled trial (MSC-HF trial). European Heart Journal, 36(27), 1744–1753.

    CAS  PubMed  Google Scholar 

  • Mazhari, R., & Hare, J. M. (2007). Mechanisms of action of mesenchymal stem cells in cardiac repair: Potential influences on the cardiac stem cell niche. Nature Clinical Practice. Cardiovascular Medicine, 4(Suppl 1), S21–S26.

    PubMed  Google Scholar 

  • Menasché, P., Alfieri, O., Janssens, S., et al. (2008). The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: First randomized placebo-controlled study of myoblast transplantation. Circulation, 117(9), 1189–1200.

    PubMed  Google Scholar 

  • Mewhort, H. E., Turnbull, J. D., Satriano, A., et al. (2016). Epicardial infarct repair with bioinductive extracellular matrix promotes vasculogenesis and myocardial recovery. The Journal of Heart and Lung Transplantation, 35(5), 661–670.

    PubMed  Google Scholar 

  • Meyer, G. P., Wollert, K. C., Lotz, J., et al. (2006). Intracoronary bone marrow cell transfer after myocardial infarction: Eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation, 113(10), 1287–1294.

    PubMed  Google Scholar 

  • Moll, G., Ankrum, J. A., Kamhieh-Milz, J., et al. (2019). Intravascular mesenchymal stromal/stem cell therapy product diversification: Time for new clinical guidelines. Trends in Molecular Medicine, 25(2), 149–163.

    PubMed  Google Scholar 

  • Monsel, A., Zhu, Y. G., Gennai, S., Hao, Q., Liu, J., & Lee, J. W. (2014). Cell-based therapy for acute organ injury: Preclinical evidence and ongoing clinical trials using mesenchymal stem cells. Anesthesiology, 121(5), 1099–1121.

    CAS  PubMed  Google Scholar 

  • Mueller, S. M., & Glowacki, J. (2001). Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. Journal of Cellular Biochemistry, 82(4), 583–590.

    CAS  PubMed  Google Scholar 

  • Mushtaq, M., DiFede, D. L., Golpanian, S., et al. (2014). Rationale and design of the percutaneous stem cell injection delivery effects on Neomyogenesis in dilated cardiomyopathy (the POSEIDON-DCM study): A phase I/II, randomized pilot study of the comparative safety and efficacy of transendocardial injection of autologous mesenchymal stem cell vs. allogeneic mesenchymal stem cells in patients with non-ischemic dilated cardiomyopathy. Journal of Cardiovascular Translational Research, 7(9), 769–780.

    PubMed  PubMed Central  Google Scholar 

  • Nagaya, N., Fujii, T., Iwase, T., et al. (2004). Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. American Journal of Physiology. Heart and Circulatory Physiology, 287(6), H2670–H2676.

    CAS  PubMed  Google Scholar 

  • Narita, T., Shintani, Y., Ikebe, C., et al. (2013). The use of scaffold-free cell sheet technique to refine mesenchymal stromal cell-based therapy for heart failure. Molecular Therapy, 21(4), 860–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nijboer, C. H., Kooijman, E., van Velthoven, C. T., et al. (2018). Intranasal stem cell treatment as a novel therapy for subarachnoid hemorrhage. Stem Cells and Development, 27(5), 313–325.

    CAS  PubMed  Google Scholar 

  • Ota, T., Patronik, N. A., Schwartzman, D., Riviere, C. N., & Zenati, M. A. (2008). Minimally invasive epi - cardial injections using a novel semiautonomous robotic device. Circulation, 118 115-S120.

    Google Scholar 

  • Passier, R., van Laake, L. W., & Mummery, C. L. (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453(7193), 322–329.

    CAS  PubMed  Google Scholar 

  • Patel, A. N., Mittal, S., Turan, G., et al. (2015). REVIVE trial: Retrograde delivery of autologous bone marrow in patients with heart failure. Stem Cells Translational Medicine, 4(9), 1021–1027.

    PubMed  PubMed Central  Google Scholar 

  • Perea-Gil, I., Prat-Vidal, C., Gálvez-Montón, C., et al. (2016). A cell-enriched engineered myocardial graft limits infarct size and improves cardiac function: Pre-clinical study in the porcine myocardial infarction model. JACC Basic Translational Science, 1(5), 360–372.

    Google Scholar 

  • Perin, E. C., & López, J. (2006). Methods of stem cell delivery in cardiac diseases. Nature Clinical Practice. Cardiovascular Medicine, 1, S110–S113.

    Google Scholar 

  • Pohl, T., Giehrl, W., Reichart, B., et al. (2004). Retroinfusion-supported stenting in high-risk patients for percutaneous intervention and bypass surgery: Results of the prospective randomized myoprotect I study. Catheterization and Cardiovascular Interventions, 62(3), 323–330.

    PubMed  Google Scholar 

  • Price, M. J., Chou, C. C., Frantzen, M., et al. (2006). Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. International Journal of Cardiology, 111(2), 231–239.

    PubMed  Google Scholar 

  • Prockop, D. J., & Olson, S. D. (2007). Clinical trials with adult stem/progenitor cells for tissue repair: let's not overlook some essential precautions. Blood, 109(8), 3147–3151.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Psaltis, P. J., Zannettino, A. C., Gronthos, S., & Worthley, S. G. (2010). Intramyocardial navigation and mapping for stem cell delivery. Journal of Cardiovascular Translational Research, 3(2), 135–146.

    PubMed  Google Scholar 

  • Qi, C. M., Ma, G. S., Liu, N. F., et al. (2008). Transplantation of magnetically labeled mesenchymal stem cells improves cardiac function in a swine myocardial infarction model. Chinese Medical Journal, 121(6), 544–550.

    PubMed  Google Scholar 

  • Raake, P., von Degenfeld, G., Hinkel, R., et al. (2004). Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins: Comparison with surgical and percutaneous intramyocardial gene delivery. Journal of the American College of Cardiology, 44(5), 1124–1129.

    CAS  PubMed  Google Scholar 

  • Rice, M. J., Chou, C. C., Frantzen, M., et al. (2006). Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. International Journal of Cardiology, 111(2), 231–239.

    Google Scholar 

  • Roger, V. L., Go, A. S., Lloyd-Jones, D. M., et al. (2012). Executive summary: heart disease and stroke statistics--2012 update: a report from the American Heart Association [published correction appears in Circulation]. Circulation, 125(1), 188–197.

    PubMed  Google Scholar 

  • Ryan, J. M., Barry, F. P., Murphy, J. M., & Mahon, B. P. (2005). Mesenchymal stem cells avoid allogeneic rejection. Journal of Inflammation (London), 2, 8.

    Google Scholar 

  • Saito, T., Kuang, J. Q., Bittira, B., Al-Khaldi, A., & Chiu, R. C. (2002). Xenotransplant cardiac chimera: Immune tolerance of adult stem cells. The Annals of Thoracic Surgery, 74(1), 19–24.

    PubMed  Google Scholar 

  • Salomon, C., Ryan, J., Sobrevia, L., et al. (2013). Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One, 8(7), e68451.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samper, E., Diez-Juan, A., Montero, J. A., & Sepúlveda, P. (2013). Cardiac cell therapy: Boosting mesenchymal stem cells effects. Stem Cell Reviews and Reports, 9(3), 266–280.

    CAS  PubMed  Google Scholar 

  • Schuleri, K. H., Amado, L. C., Boyle, A. J., et al. (2008). Early improvement in cardiac tissue perfusion due to mesenchymal stem cells. American Journal of Physiology. Heart and Circulatory Physiology, 294(5), H2002–H2011.

    CAS  PubMed  Google Scholar 

  • Shabbir, A., Zisa, D., Suzuki, G., & Lee, T. (2009). Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: A noninvasive therapeutic regimen. American Journal of Physiology. Heart and Circulatory Physiology, 296(6), H1888–H1897.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman, W., Martens, T. P., Viles-Gonzalez, J. F., & Siminiak, T. (2006). Catheter-based delivery of cells to the heart. Nature Clinical Practice. Cardiovascular Medicine, 3(Suppl 1), S57–S64.

    PubMed  Google Scholar 

  • Shi, Y., Wang, Y., Li, Q., et al. (2018). Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nature Reviews. Nephrology, 14(8), 493–507.

    CAS  PubMed  Google Scholar 

  • Shin, E. Y., Wang, L., Zemskova, M., et al. (2018). Adenosine production by biomaterial-supported mesenchymal stromal cells reduces the innate inflammatory response in myocardial ischemia/reperfusion injury. Journal of the American Heart Association, 7(2), e006949.

    PubMed  PubMed Central  Google Scholar 

  • Stenderup, K., Justesen, J., Clausen, C., & Kassem, M. (2003). Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone, 33(6), 919–926.

    PubMed  Google Scholar 

  • Strauer, B. E. (1979). Myocardial oxygen consumption in chronic heart disease: Role of wall stress, hypertrophy and coronary reserve. The American Journal of Cardiology, 44, 730–740.

    CAS  PubMed  Google Scholar 

  • Strauer, B. E., Brehm, M., Zeus, T., et al. (2001). Intrakoronare, humane autologe Stammzelltransplantation zur Myokardregeneration nach Herzinfarkt [intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction]. Deutsche Medizinische Wochenschrift, 126(34–35), 932–938.

    CAS  PubMed  Google Scholar 

  • Suzuki, K., Murtuza, B., Beauchamp, J. R., et al. (2004). Role of interleukin-1beta in acute inflammation and graft death after cell transplantation to the heart. Circulation, 110(11 Suppl 1), II219–II224.

    PubMed  Google Scholar 

  • Tano, N., Narita, T., Kaneko, M., et al. (2014). Epicardial placement of mesenchymal stromal cell-sheets for the treatment of ischemic cardiomyopathy; in vivo proof-of-concept study. Molecular Therapy, 22(10), 1864–1871.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teng, X., Chen, L., Chen, W., Yang, J., Yang, Z., & Shen, Z. (2015). Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cellular Physiology and Biochemistry, 37(6), 2415–2424.

    CAS  PubMed  Google Scholar 

  • Tian, T., Chen, B., Xiao, Y., Yang, K., & Zhou, X. (2014). Intramyocardial autologous bone marrow cell transplantation for ischemic heart disease: A systematic review and meta-analysis of randomized controlled trials. Atherosclerosis, 233(2), 485–492.

    CAS  PubMed  Google Scholar 

  • Tigges, U., Komatsu, M., & Stallcup, W. B. (2013). Adventitial pericyte progenitor/mesenchymal stem cells participate in the restenotic response to arterial injury. Journal of Vascular Research, 50(2), 134–144.

    CAS  PubMed  Google Scholar 

  • Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1), 93–98.

    PubMed  Google Scholar 

  • Tuma, J., Fernández-Viña, R., Carrasco, A., et al. (2011). Safety and feasibility of percutaneous retrograde coronary sinus delivery of autologous bone marrow mononuclear cell transplantation in patients with chronic refractory angina. Journal of Translational Medicine, 9, 183.

    PubMed  PubMed Central  Google Scholar 

  • van Rhijn-Brouwer, F. C. C., Gremmels, H., Fledderus, J. O., & Verhaar, M. C. (2018). Mesenchymal stromal cell characteristics and regenerative potential in cardiovascular disease: Implications for cellular therapy. Cell Transplantation, 27(5), 765–785.

    PubMed  PubMed Central  Google Scholar 

  • Viswanathan, C., Davidson, Y., Cooper, K., Tipnis, S., Pujari, G., & Kurian, V. M. (2010). Tansplantation of autologous bone marrow derived mesenchymal stem cells trans-epicardially in patients undergoing coronary bypass surgery. Indian Heart Journal, 62(1), 43–48.

    PubMed  Google Scholar 

  • Volarevic, V., Ljujic, B., Stojkovic, P., Lukic, A., Arsenijevic, N., & Stojkovic, M. (2011). Human stem cell research and regenerative medicine--present and future. British Medical Bulletin, 99, 155–168.

    PubMed  Google Scholar 

  • Volarevic, V., Gazdic, M., Simovic Markovic, B., et al. (2017). Mesenchymal stem cell-derived factors: Immuno-modulatory effects and therapeutic potential. BioFactors, 43(5), 633–644.

    CAS  PubMed  Google Scholar 

  • Volarevic, V., Markovic, B. S., Gazdic, M., et al. (2018). Ethical and safety issues of stem cell-based therapy. International Journal of Medical Sciences, 15(1), 36–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Degenfeld, G., Raake, P., Kupatt, C., et al. (2003). Selective pressure-regulated retroinfusion of fibroblast growth factor-2 into the coronary vein enhances regional myocardial blood flow and function in pigs with chronic myocardial ischemia. Journal of the American College of Cardiology, 42(6), 1120–1128.

    Google Scholar 

  • Vulliet, P. R., Greeley, M., Halloran, S. M., MacDonald, K. A., & Kittleson, M. D. (2004). Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet, 363(9411), 783–784.

    PubMed  Google Scholar 

  • Walczak, P., Zhang, J., Gilad, A. A., et al. (2008). Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke, 39(5), 1569–1574.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Zhang, G., Hou, Y., et al. (2012). Transplantation of microencapsulated Schwann cells and mesenchymal stem cells augment angiogenesis and improve heart function. Molecular and Cellular Biochemistry, 366(1–2), 139–147.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Chen, X., Cao, W., & Shi, Y. (2014). Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nature Immunology, 15(11), 1009–1016.

    CAS  PubMed  Google Scholar 

  • Wang, Q. L., Wang, H. J., Li, Z. H., Wang, Y. L., Wu, X. P., & Tan, Y. Z. (2017). Mesenchymal stem cell-loaded cardiac patch promotes epicardial activation and repair of the infarcted myocardium. Journal of Cellular and Molecular Medicine, 21(9), 1751–1766.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, M., & Yavagal, D. R. (2016). Intra-arterial delivery of mesenchymal stem cells. Brain Circulation, 2(3), 114–117.

    PubMed  PubMed Central  Google Scholar 

  • Wen, Z., Zheng, S., Zhou, C., Yuan, W., Wang, J., & Wang, T. (2012). Bone marrow mesenchymal stem cells for post-myocardial infarction cardiac repair: microRNAs as novel regulators. Journal of Cellular and Molecular Medicine, 16(4), 657–671.

    CAS  PubMed  PubMed Central  Google Scholar 

  • White, I. A., Sanina, C., Balkan, W., & Hare, J. M. (2016). Mesenchymal stem cells in cardiology. Methods in Molecular Biology, 1416, 55–87.

    CAS  PubMed  Google Scholar 

  • Wollert, K. C., Meyer, G. P., Müller-Ehmsen, J., et al. (2017). Intracoronary autologous bone marrow cell transfer after myocardial infarction: The BOOST-2 randomised placebo-controlled clinical trial. European Heart Journal, 38(39), 2936–2943.

    CAS  PubMed  Google Scholar 

  • Wu, J., Li, J., Zhang, N., & Zhang, C. (2011). Stem cell-based therapies in ischemic heart diseases: A focus on aspects of microcirculation and inflammation. Basic Research in Cardiology, 106(3), 317–324.

    PubMed  PubMed Central  Google Scholar 

  • Xie, X. H., Wang, X. L., He, Y. X., et al. (2012). Promotion of bone repair by implantation of cryopreserved bone marrow-derived mononuclear cells in a rabbit model of steroid-associated osteonecrosis. Arthritis and Rheumatism, 64(5), 1562–1571.

    PubMed  Google Scholar 

  • Yavagal, D. R., Lin, B., Raval, A. P., et al. (2014). Efficacy and dose-dependent safety of intra-arterial delivery of mesenchymal stem cells in a rodent stroke model. PLoS One, 9(5), e93735.

    PubMed  PubMed Central  Google Scholar 

  • Ye, X., & Zhang, C. (2017). Effects of hyperlipidemia and cardiovascular diseases on proliferation, differentiation and homing of mesenchymal stem cells. Current Stem Cell Research & Therapy, 12(5), 377–387.

    CAS  Google Scholar 

  • Yokoi, H., Kinoshita, T., & Zhang, S. (2005). Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proceedings of the National Academy of Sciences of the United States of America, 102(24), 8414–8419.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama, S., Fukuda, N., Li, Y., et al. (2006). A strategy of retrograde injection of bone marrow mononuclear cells into the myocardium for the treatment of ischemic heart disease. Journal of Molecular and Cellular Cardiology, 40(1), 24–34.

    CAS  PubMed  Google Scholar 

  • Zhang, S. (2003). Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnology, 21(10), 1171–1178.

    CAS  PubMed  Google Scholar 

  • Zisa, D., Shabbir, A., Suzuki, G., & Lee, T. (2009). Vascular endothelial growth factor (VEGF) as a key therapeutic trophic factor in bone marrow mesenchymal stem cell-mediated cardiac repair. Biochemical and Biophysical Research Communications, 390(3), 834–838.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuba-Surma, E. K., Adamiak, M., & Dawn, B. (2015). Chapter 5 – Stem cell extracellular vesicles: A novel cell-based therapy for cardiovascular diseases. In Mesenchymal stem cell derived exosomes (pp. 93–117). Academic.

    Google Scholar 

  • Zuk, P. A., Zhu, M., Ashjian, P., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13(12), 4279–4295.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Serbian Ministry of Sciences (project number ON 175103) and Faculty of Medical Sciences University of Kragujevac (JP 05/20).

Conflicts of Interest

The authors acknowledge lack of any conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Gazdic Jankovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miloradovic, D., Miloradovic, D., Ljujic, B., Jankovic, M.G. (2022). Optimal Delivery Route of Mesenchymal Stem Cells for Cardiac Repair: The Path to Good Clinical Practice. In: Pham, P.V. (eds) Advances in Mesenchymal Stem Cells and Tissue Engineering. ICRRM 2023. Advances in Experimental Medicine and Biology(). Springer, Cham. https://doi.org/10.1007/5584_2022_709

Download citation

Publish with us

Policies and ethics