Skip to main content

Tissue Engineering for Tracheal Replacement: Strategies and Challenges

  • Conference paper
  • First Online:
Advances in Mesenchymal Stem Cells and Tissue Engineering (ICRRM 2023)

Abstract

The critical feature in trachea replacement is to provide a hollow cylindrical framework that is laterally stable and longitudinally flexible, facilitating cartilage and epithelial tissue formation. Despite advanced techniques and sources of materials used, most inherent challenges are related to the complexity of its anatomy. Limited blood supply leads to insufficient regenerative capacity for cartilage and epithelium. Natural and synthetic scaffolds, different types of cells, and growth factors are part of tissue engineering approaches with varying outcomes. Pre-vascularization remains one of the crucial factors to expedite the regenerative process in tracheal reconstruction. This review discusses the challenges and strategies used in tracheal tissue engineering, focusing on scaffold implantation in clinical and preclinical studies conducted in recent decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Samat, A., Abdul Hamid, Z. A., Jaafar, M., & Yahaya, B. H.. (2021 September 13). Mechanical Properties and In Vitro Evaluation of Thermoplastic Polyurethane and Polylactic Acid Blend for Fabrication of 3D Filaments for Tracheal Tissue Engineering. Polymers (Basel) [Internet]. [cited 2021 Sep 20];13(18):3087. Available from: https://www.mdpi.com/2073-4360/13/18/3087/htm

  • Ahern, B. J., Parvizi, J., Boston, R., & Schaer, T. P. (2009, June). Preclinical animal models in single site cartilage defect testing: A systematic review. Osteoarthritis and Cartilage [Internet]. [cited 2020 Aug 3];17(6):705–13. Available from: https://pubmed.ncbi.nlm.nih.gov/19101179/

  • Aljohani, W., Ullah, M. W., Zhang, X., & Yang, G. (2018). Bioprinting and its applications in tissue engineering and regenerative medicine [Internet]. Vol. 107, International Journal of Biological Macromolecules. Elsevier B.V.; [cited 2020 Feb 9]. p. 261–75. Available from: https://doi.org/10.1016/j.ijbiomac.2017.08.171.

  • Alsberg, E., Kong, H. J., Hirano, Y., Smith, M. K., Albeiruti, A., & Mooney, D. J. (2003). Regulating bone formation via controlled scaffold degradation. Journal of Dental Research, 82(11), 903–908.

    CAS  PubMed  Google Scholar 

  • Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., Horan, R. L., Chen, J., et al. (2003). Silk-based biomaterials. Biomaterials, 24(3), 401–416.

    CAS  PubMed  Google Scholar 

  • Bader, A., & Macchiarini, P. (2010). Moving towards in situ tracheal regeneration: The bionic tissue engineered transplantation approach. Journal of Cellular and Molecular Medicine, 14(7), 1877–1889.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey, A. M., Mendicino, M., & Au, P. (2014). An FDA perspective on preclinical development of cell-based regenerative medicine products. Nature Biotechnology. Nature Publishing Group, 32, 721–723.

    Google Scholar 

  • Banas, A., Teratani, T., Yamamoto, Y., Tokuhara, M., Takeshita, F., & Quinn, G., et al. (2007, July). Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology [Internet]. [cited 2020 Jul 13];46(1):219–28. Available from: https://pubmed.ncbi.nlm.nih.gov/17596885/

  • Baruah, B., Sarawgi, M., Sahu, P., Dubey, K. P., Gupta, A., & Kumar, A. (2017). Polypropylene in endoscopic Dacryocystorhinostomy: A novel stent. Indian Journal of Otolaryngology and Head & Neck Surgery, 70(2), 1–4.

    Google Scholar 

  • Batioglu-Karaaltin, A., Karaaltin, M. V., Ovali, E., Yigit, O., Kongur, M., & Inan, O., et al. (2015, April 1). In Vivo Tissue-Engineered Allogenic Trachea Transplantation in Rabbits: A Preliminary Report. Stem Cell Review Reports [Internet]. [cited 2020 Jul 11];11(2):347–56. Available from: https://link.springer.com/article/10.1007/s12015-014-9570-8

  • Behrend, M., Kluge, E., & Schüttler, W. (2006). On the use of unsealed polypropylene mesh as tracheal replacement. ASAIO Journal, 52(3), 328–333.

    CAS  PubMed  Google Scholar 

  • Bianco, P., Robey, P. G., & Simmons, P. J. (2008, April 10). Mesenchymal stem cells: Revisiting history, concepts, and assays. Cell Stem Cell [Internet]. [cited 2020 Jul 13];2(4):313–9. Available from: /pmc/articles/PMC2613570/?report=abstract.

    Google Scholar 

  • Bogan, S. L., Teoh, G. Z., & Birchall, M. A. (2016 July 1). Tissue engineered airways: A prospects article. Journal of Cellular Biochemistry [Internet]. [cited 2020 Jan 15];117(7):1497–505. Available from: http://doi.wiley.com/10.1002/jcb.25512

  • Butler, C. R., Hynds, R. E., Crowley, C., Gowers, K. H. C., Partington, L., Hamilton, N. J., et al. (2017). Vacuum-assisted decellularization: An accelerated protocol to generate tissue-engineered human tracheal scaffolds. Biomaterials, 124, 95–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caplan, A. I. (2017). Mesenchymal stem cells: Time to change the name! Stem Cells Translational Medicine [Internet]. [cited 2020 Jul 13];6(6):1445–51. Available from: https://pubmed.ncbi.nlm.nih.gov/28452204/

  • Chang, J. W., Park, S. A., Park, J. K., Choi, J. W., Kim, Y. S., & Shin, Y. S., et al. (2014). Tissue-engineered tracheal reconstruction using three-dimensionally printed artificial tracheal graft: Preliminary report. Artificial Organs [Internet]. [cited 2020 Jan 11];38(6). Available from: https://pubmed.ncbi.nlm.nih.gov/24750044/

  • Chang, C. S., Yang, C. Y., Hsiao, H. Y., Chen, L., Chu, I. M., Cheng, M. H., et al. (2018). Cultivation of auricular chondrocytes in poly(ethylene glycol)/poly(ε-caprolactone) hydrogel for tracheal cartilage tissue engineering in a rabbit model. European Cells & Material, 35, 350–364.

    CAS  Google Scholar 

  • Chen, Q. (2010). A novel technique of tracheal reconstruction with autologous bronchial pedicle flap. The Thoracic and Cardiovascular Surgeon, 58(7), 427–428.

    CAS  PubMed  Google Scholar 

  • Chen, Z., Zhong, N., Wen, J., Jia, M., Guo, Y., Shao, Z., et al. (2018). Porous three-dimensional silk fibroin scaffolds for tracheal epithelial regeneration in vitro and in vivo. ACS Biomaterials Science & Engineering, 4(8), 2977–2985.

    CAS  Google Scholar 

  • Chiang, T., Pepper, V., Best, C., Onwuka, E., & Breuer, C. K. (2016 Nov 1). Clinical translation of tissue engineered trachea grafts. The Annals of Otology, Rhinology, and Laryngology [Internet]. [cited 2019 Nov 4];125(11):873–85. Available from: /pmc/articles/PMC5800778/?report=abstract

    Google Scholar 

  • Conconi, M. T., De Coppi, P., Di Liddo, R., Vigolo, S., Zanon, G. F., Parnigotto, P. P., et al. (2005). Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transplant International, 18(6), 727–734.

    CAS  PubMed  Google Scholar 

  • Crowley, C., Birchall, M., & Seifalian, A. M. (2015, April). Trachea transplantation: From laboratory to patient. Journal of Tissue Engineering and Regenerative Medicine [Internet]. [cited 2019 Dec 24];9(4):357–67. Available from: http://doi.wiley.com/10.1002/term.1847

  • Dal Pra, I., Freddi, G., Minic, J., Chiarini, A., & Armato, U. (2005). De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials, 26(14), 1987–1999.

    CAS  PubMed  Google Scholar 

  • Dean, D., Topham, N. S., Meneghetti, S. C., Wolfe, M. S., Jepsen, K., He, S., et al. (2003). Poly(propylene fumarate) and poly(DL-lactic-co-glycolic acid) as scaffold materials for solid and foam-coated composite tissue-engineered constructs for cranial reconstruction. Tissue Engineering, 495–504.

    Google Scholar 

  • Delaere, P., & Van Raemdonck, D. (2016). Tracheal replacement. Journal of Thoracic Disease, 8, S186–S196.

    PubMed  PubMed Central  Google Scholar 

  • Delaere, P. R., Liu, Z. Y., Hermans, R., Sciot, R., & Feenstra, L. (1995). Experimental tracheal allograft revascularization and transplantation. The Journal of Thoracic and Cardiovascular Surgery [Internet]. [cited 2020 Jun 27];110(3):728–37. Available from: https://pubmed.ncbi.nlm.nih.gov/7564440/

  • Delaere, P., Vranckx, J., Verleden, G., De Leyn, P., Van Raemdonck, D. (2010, January 14). Tracheal allotransplantation after withdrawal of immunosuppressive therapy. The New England Journal of Medicine [Internet]. [cited 2020 Aug 3];362(2):138–45. Available from: https://pubmed.ncbi.nlm.nih.gov/20071703/

  • Delaere, P. R., Vranckx, J. J., Meulemans, J., Vander Poorten, V., Segers, K., Van Raemdonck, D., et al. (2012). Learning curve in tracheal allotransplantation. American Journal of Transplantation, 12(9), 2538–2545.

    CAS  PubMed  Google Scholar 

  • Delaere, P. R., Vranckx, J. J., & Hondt, M. Den. (2014). Tracheal allograft after withdrawal of immunosuppressive therapy [Internet]. Vol. 370, New England Journal of Medicine. Massachussetts Medical Society; [cited 2020 Aug 3]. pp. 1568–70. Available from: http://www.nejm.org/doi/10.1056/NEJMc1315273

  • Delaere, P., Van Raemdonck, D., & Vranckx, J. (2019). Tracheal transplantation (Intensive Care Medicine) (Vol. 45, pp. 391–393). Springer.

    Google Scholar 

  • Deng, Z. H., Li, Y. S., Gao, X., Lei, G. H., & Huard, J. (2018). Bone morphogenetic proteins for articular cartilage regeneration (Osteoarthritis and Cartilage) (Vol. 26, pp. 1153–1161). W.B. Saunders Ltd.

    Google Scholar 

  • Dikina, A. D., Strobel, H. A., Lai, B. P., Rolle, M. W., & Alsberg, E. (2015). Engineered cartilaginous tubes for tracheal tissue replacement via self-assembly and fusion of human mesenchymal stem cell constructs. Biomaterials, 52(1), 452–462.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott, M. J., De Coppi, P., Speggiorin, S., Roebuck, D., Butler, C. R., Samuel, E., et al. (2012). Stem-cell-based, tissue engineered tracheal replacement in a child: A 2-year follow-up study. Lancet [Internet]. [cited 2020 Aug 31];380(9846):994–1000. Available from: https://pubmed.ncbi.nlm.nih.gov/22841419/

  • Engert, A. (2000). Recombinant human erythropoietin as an alternative to blood transfusion in cancer-related anaemia. Disease Management & Health Outcomes, 8(5), 259–272.

    Google Scholar 

  • Erjefält, J. S., Erjefält, I., Sundler, F., & Persson, C. G. A. (1995, August). In vivo restitution of airway epithelium. Cell Tissue Research [Internet]. [cited 2020 Jul 12];281(2):305–16. Available from: https://link.springer.com/article/10.1007/BF00583399

  • Etienne, H., Fabre, D., Caro, A. G., Kolb, F., Mussot, S., Mercier, O., et al. (2018). Tracheal replacement. European Respiratory Journal, 51.

    Google Scholar 

  • Fabre, D., Kolb, F., Fadel, E., Mercier, O., Mussot, S., Le Chevalier, T., et al. (2013). Successful tracheal replacement in humans using autologous tissues: An 8-year experience. Annals of Thoracic Surgery, 1146–1155.

    Google Scholar 

  • Faraj, K. A., Van Kuppevelt, T. H., & Daamen, W. F. (2007). Construction of collagen scaffolds that mimic the three-dimensional architecture of specific tissues. Tissue Engineering, 13(10), 2387–2394.

    CAS  PubMed  Google Scholar 

  • Fuchs, E. (2008). Skin stem cells: Rising to the surface. Journal of Cell Biology, 180, 273–284.

    Google Scholar 

  • Gao, M., Zhang, H., Dong, W., Bai, J., Gao, B., Xia, D., et al. (2017). Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair. Scientific Reports, 7(1).

    Google Scholar 

  • Gao, B., Jing, H., Gao, M., Wang, S., Fu, W., Zhang, X., et al. (2019). Long-segmental tracheal reconstruction in rabbits with pedicled tissue-engineered trachea based on a 3D-printed scaffold. Acta Biomaterialia, 97, 177–186.

    CAS  PubMed  Google Scholar 

  • George, M., Lang, F., Pasche, P., & Monnier, P. (2005). Surgical management of laryngotracheal stenosis in adults. European Arch Oto-Rhino-Laryngology, 262(8), 609–615.

    Google Scholar 

  • Gilbert, T. W., Stewart-Akers, A. M., & Badylak, S. F. (2007). A quantitative method for evaluating the degradation of biologic scaffold materials. Biomaterials, 28(2), 147–150.

    CAS  PubMed  Google Scholar 

  • Giwa, S., Lewis, J. K., Alvarez, L., Langer, R., Roth, A. E., Church, G. M., et al. (2017). The promise of organ and tissue preservation to transform medicine. Nature Biotechnology, 35(6), 530–542.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Go, T., Jungebluth, P., Baiguero, S., Asnaghi, A., Martorell, J., & Ostertag, H., et al. (2010, February). Both epithelial cells and mesenchymal stem cell-derived chondrocytes contribute to the survival of tissue-engineered airway transplants in pigs. The Journal of Thoracic and Cardiovascular Surgery [Internet]. [cited 2020 Jun 26];139(2):437–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19995663

  • GonfiOtti, A., Jaus, M. O., Barale, D., Baiguera, S., Comin, C., Lavorini, F., et al. (2014). The fi rst tissue-engineered airway transplantation: 5-year follow-up results. Lancet, 383(9913), 238–244.

    PubMed  Google Scholar 

  • Gray, F. L., Turner, C. G., Ahmed, A., Calvert, C. E., Zurakowski, D., & Fauza, D. O. (2012). Prenatal tracheal reconstruction with a hybrid amniotic mesenchymal stem cells-engineered construct derived from decellularized airway. Journal of Pediatric Surgery, 1072–1079.

    Google Scholar 

  • Grillo, H. C. (2002). Tracheal replacement: A critical review. The Annals of Thoracic Surgery [Internet]. [cited 2020 Sep 4];73(6):1995–2004. Available from: https://pubmed.ncbi.nlm.nih.gov/12078821/

  • Grimmer, J. F., Gunnlaugsson, C. B., Alsberg, E., Murphy, H. S., Kong, H. J., Mooney, D. J., et al. (2004). Tracheal reconstruction using tissue-engineered cartilage. Archives of Otorhinolaryngology-Head & Neck Surgery, 130(10), 1191–1196.

    Google Scholar 

  • Haliloglu, T., Onar, V., Yildirim, G., Sapci, T., Savci, N., Kahvecioglu, O., et al. (2000). Tracheal reconstruction with porous high-density polyethylene tracheal prosthesis. The Annals of Otology, Rhinology, and Laryngology, 109(10 I), 981–987.

    PubMed  Google Scholar 

  • Hamilton, N. J., Kanani, M., Roebuck, D. J., Hewitt, R. J., Cetto, R., Culme-Seymour, E. J., et al. (2015). Tissue-engineered tracheal replacement in a child: A 4-year follow-up study. American Journal of Transplantation, 15(10), 2750–2757.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haykal, S., Soleas, J. P., Salna, M., Hofer, S. O. P., & Waddell, T. K. (2012). Evaluation of the structural integrity and extracellular matrix components of tracheal allografts following cyclical decellularization techniques: Comparison of three protocols. Tissue Engineering - Part C Methods, 18(8), 614–623.

    CAS  PubMed  Google Scholar 

  • Haykal, S., Zhou, Y., Marcus, P., Salna, M., Machuca, T., Hofer, S. O. P., et al. (2013). The effect of decellularization of tracheal allografts on leukocyte infiltration and of recellularization on regulatory T cell recruitment. Biomaterials, 34(23), 5821–5832.

    CAS  PubMed  Google Scholar 

  • Haykal, S., Salna, M., Waddell, T. K., & Hofer, S. O. (2014). Advances in tracheal reconstruction. Plastic and Reconstructive Surgery, 2(7).

    Google Scholar 

  • Heikal, M. Y. M., Aminuddin, B. S., Jeevanan, J., Chen, H. C., Sharifah, S. H., & Ruszymah, B. H. I. (2010 October). Autologous implantation of bilayered tissue-engineered respiratory epithelium for tracheal mucosal regenesis in a sheep model. Cells Tissues Organs [Internet]. [cited 2020 Feb 3];192(5):292–302. Available from: https://pubmed.ncbi.nlm.nih.gov/20616535/

  • Hong, H. J., Lee, J. S., Choi, J. W., Min, B-H., Lee, H-B., Kim, C-H. (2012, November 1). Transplantation of autologous chondrocytes seeded on a fibrin/hyaluronan composite gel into tracheal cartilage defects in rabbits: Preliminary results. Artificial Organs [Internet]. [cited 2020 Jan 15];36(11):998–1006. Available from: http://doi.wiley.com/10.1111/j.1525-1594.2012.01486.x

  • Hong, H. J., Chang, J. W., Park, J. K., Choi, J. W., Kim, Y. S., Shin, Y. S., et al. (2014, November 1). Tracheal reconstruction using chondrocytes seeded on a poly(L-lactic-co-glycolic acid)-fibrin/hyaluronan. Journal of Biomedical Materials Research - Part A [Internet]. [cited 2020 Jan 31];102(11):4142–50. Available from: https://pubmed.ncbi.nlm.nih.gov/24443290/

  • Horan, R. L., Antle, K., Collette, A. L., Wang, Y., Huang, J., Moreau, J. E., et al. (2005). In vitro degradation of silk fibroin. Biomaterials, 26(17), 3385–3393.

    CAS  PubMed  Google Scholar 

  • Igai, H., Chang, S. S., Gotoh, M., Yamamoto, Y., Misaki, N., Okamoto, T., et al. (2006). Regeneration of canine tracheal cartilage by slow release of basic fibroblast growth factor from gelatin sponge. ASAIO Journal, 52(1), 86–91.

    CAS  PubMed  Google Scholar 

  • Igai, H., Chang, S. S., Gotoh, M., Yamamoto, Y., Yamamoto, M., Tabata, Y., et al. (2008). Tracheal cartilage regeneration and new bone formation by slow release of bone morphogenetic protein (BMP)-2. ASAIO Journal, 54(1), 104–108.

    CAS  PubMed  Google Scholar 

  • Igai, H., Chang, S. S., Gotoh, M., Yamamoto, Y., Yamamoto, M., & Tabata, Y., et al. (2009, May). Widespread and early tracheal cartilage regeneration by synchronous slow release of b-FGF and BMP-2. ASAIO Journal [Internet]. [cited 2020 Aug 2];55(3):266–70. Available from: https://pubmed.ncbi.nlm.nih.gov/19318920/

  • Imaizumi, M., Nomoto, Y., Sato, Y., Sugino, T., Miyake, M., Wada, I., et al. (2013). Evaluation of the use of induced pluripotent stem cells (iPSCs) for the regeneration of tracheal cartilage. Cell Transplantation, 22(2), 341–353.

    PubMed  Google Scholar 

  • Inoue, S., Tanaka, K., Arisaka, F., Kimura, S., Ohtomo, K., & Mizuno, S. (2000). Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. The Journal of Biological Chemistry, 275(51), 40517–40528.

    CAS  PubMed  Google Scholar 

  • Jing, X., Mi, H. Y., Salick, M. R., Cordie, T., Crone, W. C., & Peng, X. F., et al. (2014, July 6). Morphology, mechanical properties, and shape memory effects of poly(lactic acid)/ thermoplastic polyurethane blend scaffolds prepared by thermally induced phase separation. Journal of Cellular Plastics [Internet]. [cited 2020 Jan 15];50(4):361–79. Available from: http://journals.sagepub.com/doi/10.1177/0021955X14525959

  • Jones, B., & Bes, M. (2012). Keeping kidneys. Bulletin of the World Health Organization, 90, 718–719.

    Google Scholar 

  • Kang, N., Liu, X., Guan, Y., Wang, J., Gong, F., Yang, X., et al. (2012). Effects of co-culturing BMSCs and auricular chondrocytes on the elastic modulus and hypertrophy of tissue engineered cartilage. Biomaterials, 33(18), 4535–4544.

    CAS  PubMed  Google Scholar 

  • Keogh, M. B., O’Brien, F. J., & Daly, J. S. (2010). Substrate stiffness and contractile behaviour modulate the functional maturation of osteoblasts on a collagen-GAG scaffold. Acta Biomaterialia, 6(11), 4305–4313.

    CAS  PubMed  Google Scholar 

  • Kern, S., Eichler, H., Stoeve, J., Klüter, H., & Bieback, K. (2006, May). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells [Internet]. [cited 2020 Jul 13];24(5):1294–301. Available from: https://pubmed.ncbi.nlm.nih.gov/16410387/

  • Kim, W. S., Vacanti, J. P., Cima, L., Mooney, D., Upton, J., Puelacher, W. C., et al. (1994). Cartilage engineered in predetermined shapes employing cell transplantation on synthetic biodegradable polymers. Plastic and Reconstructive Surgery, 94(2), 233–237.

    CAS  PubMed  Google Scholar 

  • Kim, J. H. J., Suh, S. W., Shin, J. Y., Kim, J. H. J., Choi, Y. S., & Kim, H. (2004 July). Replacement of a tracheal defect with a tissue-engineered prosthesis: Early results from animal experiments. The Journal of Thoracic and Cardiovascular Surgery [Internet]. [cited 2020 Jun 28];128(1):124–9. Available from: https://pubmed.ncbi.nlm.nih.gov/15224031/

  • Kim, D. Y., Pyun, J. H., Choi, J. W., Kim, J. H., Lee, J. S., Shin, H. A., et al. (2010). Tissue-engineered allograft tracheal cartilage using fibrin/hyaluronan composite gel and its in vivo implantation. The Laryngoscope, 120(1), 30–38.

    CAS  PubMed  Google Scholar 

  • Kim, J. H., Kong, W. H., Kim, J. G., Kim, H. J., Seo, S. W. (2011, February). Possibility of Skin Epithelial Cell Transdifferentiation in Tracheal Reconstruction. Artificial Organs [Internet]. [cited 2020 Jun 28];35(2):122–30. Available from: https://pubmed.ncbi.nlm.nih.gov/20946312/

  • Kim, I. G., Park, S. A., Lee, S. H., Choi, J. S., Cho, H., & Lee, S. J., et al. (2020, December 1). Transplantation of a 3D-printed tracheal graft combined with iPS cell-derived MSCs and chondrocytes. Sci Rep [Internet]. [cited 2020 Jul 11];10(1):1–14. Available from: https://doi.org/10.1038/s41598-020-61405-4.

  • Klimek, K., & Ginalska, G. (2020). Proteins and peptides as important modifiers of the polymer scaffolds for tissue engineering applications-A review. Polymers (Basel), 12(4).

    Google Scholar 

  • Knoepfler, P. S. (2015). From bench to FDA to bedside: US regulatory trends for new stem cell therapies. Advanced Drug Delivery Reviews. Elsevier, 82, 192–196.

    Google Scholar 

  • Ko, C. Y., Ku, K. L., Yang, S. R., Lin, T. Y., Peng, S., Peng, Y. S., et al. (2016). In vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCL–PEG–PCL hydrogels enhances cartilage formation. Journal of Tissue Engineering and Regenerative Medicine, 10(10), E485–E496.

    CAS  PubMed  Google Scholar 

  • Kobayashi, K., Suzuki, T., Nomoto, Y., Tada, Y., Miyake, M., & Hazama, A., et al. (2010 June). A tissue-engineered trachea derived from a framed collagen scaffold, gingival fibroblasts and adipose-derived stem cells. Biomaterials [Internet]. [cited 2020 Jun 28];31(18):4855–63. Available from: https://pubmed.ncbi.nlm.nih.gov/20347137/

  • Kojima, K., & Vacanti, C. A. (2014). Tissue engineering in the trachea. The Anatomical Record, 297(1), 44–50.

    CAS  PubMed  Google Scholar 

  • Kojima, K., Bonassar, L. J., Roy, A. K., Mizuno, H., Cortiella, J., & Vacanti, C. A. (2003a). A composite tissue-engineered trachea using sheep nasal chondrocyte and epithelial cells. The FASEB Journal, 17(8), 823–828.

    CAS  PubMed  Google Scholar 

  • Kojima, K., Bonassar, L. J., Ignotz, R. A., Syed, K., Cortiella, J., & Vacanti, C. A. (2003b). Comparison of tracheal and nasal chondrocytes for tissue engineering of the trachea. The Annals of Thoracic Surgery, 76(6), 1884–1888.

    PubMed  Google Scholar 

  • Komura, M., Komura, H., Kanamori, Y., Tanaka, Y., Suzuki, K., Sugiyama, M., et al. (2008). An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis. Journal of Pediatric Surgery, 43(12), 2141–2146.

    PubMed  Google Scholar 

  • Kucera, K. A., Doss, A. E., Dunn, S. S., Clemson, L. A., & Zwischenberger, J. B. (2007). Tracheal replacements: Part 1. ASAIO Journal, 53, 497–505.

    Google Scholar 

  • Laschke, M. W., Häufel, J. M., Thorlacius, H., & Menger, M. D. (2005, September 15). New experimental approach to study host tissue response to surgical mesh materials in vivo. Journal of Biomedical Materials Research - Part A [Internet]. [cited 2020 Jun 27];74(4):696–704. Available from: https://pubmed.ncbi.nlm.nih.gov/16037956/

  • Laurent, T. C., Laurent, U. B. G., & Fraser, J. R. (1995). Functions of hyaluronan. Annals of the Rheumatic Diseases, 54(5), 429–432.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Law, J. X., Liau, L. L., & Aminuddin, B. S. (2016, December 1). Ruszymah BHI. Tissue-engineered trachea: A review. International Journal of Pediatric Otorhinolaryngology [Internet]. [cited 2019 Dec 17];91:55–63. Available from: https://pubmed.ncbi.nlm.nih.gov/27863642/

  • Lee, K., Silva, E. A., & Mooney, D. J. (2011a). Growth factor delivery-based tissue engineering: General approaches and a review of recent developments. Journal of the Royal Society Interface, 8(55), 153–170.

    CAS  PubMed  Google Scholar 

  • Lee, Y. C., Hung, M. H., Liu, L. Y., Chang, K. T., Chou, T. Y., Wang, Y. C., et al. (2011b). The roles of transforming growth factor-β 1 and vascular endothelial growth factor in the tracheal granulation formation. Pulmonary Pharmacology & Therapeutics, 24(1), 23–31.

    CAS  Google Scholar 

  • Lee, J. Y., Park, J. H., & Cho, D. W. (2018). Comparison of tracheal reconstruction with allograft, fresh xenograft and artificial trachea scaffold in a rabbit model. Journal of Artificial Organs, 21(3), 325–331.

    CAS  PubMed  Google Scholar 

  • Li, A., Pouliot, N., Redvers, R., & Kaur, P. (2004). Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. The Journal of Clinical Investigation, 113(3), 390–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Wang, J., Ni, Y., Yan, X., Lu, Q., Xu, H., et al. (2009). Bone morphogenetic Protein-2 stimulation of cartilage regeneration in canine tracheal graft. The Journal of Heart and Lung Transplantation, 28(3), 285–289.

    CAS  PubMed  Google Scholar 

  • Li, Y. C., Zhu, K., & Young, T. H. (2017). Induced pluripotent stem cells, form in vitro tissue engineering to in vivo allogeneic transplantation [Internet]. Vol. 9, Journal of Thoracic Disease. AME Publishing Company; [cited 2020 Jul 13]. pp. 455–9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394022/

  • Liang, L., & Bickenbach, J. R. (2002). Somatic epidermal stem cells can produce multiple cell lineages during development. Stem Cells, 20(1), 21–31.

    PubMed  Google Scholar 

  • Liang, G., & Zhang, Y. (2013). Embryonic stem cell and induced pluripotent stem cell: An epigenetic perspective [Internet]. Vol. 23, Cell Research. [cited 2020 Jul 13]. p. 49–69. Available from: https://pubmed.ncbi.nlm.nih.gov/23247625/

  • Liao, Y. H., Jones, S. A., Forbes, B., Martin, G. P., & Brown, M. B. (2005). Hyaluronan: Pharmaceutical characterization and drug delivery. Drug Delivery, 12(6), 327–342.

    CAS  PubMed  Google Scholar 

  • Lin, C. H., Su, J. M., Hsu, S. H. (2008, March 1). Evaluation of type II collagen scaffolds reinforced by poly(ε- caprolactone) as tissue-engineered trachea. Tissue Engineering - Part C Methods [Internet]. [cited 2020 Jan 15];14(1):69–77. Available from: https://pubmed.ncbi.nlm.nih.gov/18454647/

  • Lin, C. H., Hui, H. S., Huang, C. E., Cheng, W. T., & Su, J. M. (2009). A scaffold-bioreactor system for a tissue-engineered trachea. Biomaterials, 30(25), 4117–4126.

    CAS  PubMed  Google Scholar 

  • Lippiello, L. (2003). Glucosamine and chondroitin sulfate: Biological response modifiers of chondrocytes under simulated conditions of joint stress. Osteoarthritis and Cartilage, 11(5), 335–342.

    CAS  PubMed  Google Scholar 

  • Liu, L., Wu, W., Tuo, X., Geng, W., Zhao, J., & Wei, J, et al. (2010, May). Novel strategy to engineer trachea cartilage graft with marrow mesenchymal stem cell macroaggregate and hydrolyzable scaffold. Artif Organs [Internet]. [cited 2020 Feb 19];34(5):426–33. Available from: https://pubmed.ncbi.nlm.nih.gov/20633157/

  • Liu, W., Xiao, P., Liang, H., An, R., Cheng, G., & Yu, F. (2013). Trachea repair and reconstruction with new composite artificial trachea transplantation. Chinese Journal of Reparative and Reconstructive Surgery, 27(3), 330–334.

    PubMed  Google Scholar 

  • Liu, Y., Zhou, G., & Cao, Y. (2017a). Recent Progress in cartilage tissue engineering—Our experience and future directions. Engineering, 3(1), 28–35.

    CAS  Google Scholar 

  • Liu, Y. Y., Li, D., Yin, Z., Luo, X., Liu, W., Zhang, W., et al. (2017b, February 1). Prolonged in vitro precultivation alleviates post-implantation inflammation and promotes stable subcutaneous cartilage formation in a goat model. Biomedical Materials [Internet]. [cited 2020 Jan 11];12(1):015006. Available from: https://iopscience.iop.org/article/10.1088/1748-605X/12/1/015006

  • Luo, X., Zhou, G., Liu, W., Zhang, W. J., Cen, L., Cui, L., et al. (2009). In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage. Biomedical Materials, 4(2).

    Google Scholar 

  • Luo, X., Liu, Y., Zhang, Z., Tao, R., Liu, Y., He, A., et al. (2013). Long-term functional reconstruction of segmental tracheal defect by pedicled tissue-engineered trachea in rabbits. Biomaterials, 34(13), 3336–3344.

    CAS  PubMed  Google Scholar 

  • Malafaya, P. B., Silva, G. A., & Reis, R. L. (2007). Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews, 59(4–5), 207–233.

    CAS  PubMed  Google Scholar 

  • Martinod, E., Paquet, J., Dutau, H., Radu, D. M., Bensidhoum, M., Abad, S., et al. (2017). In vivo tissue engineering of Human airways. The Annals of Thoracic Surgery, 103(5), 1631–1640.

    PubMed  Google Scholar 

  • Mercier, O., Kolb, F., & Dartevelle, P. G. (2018). Autologous tracheal replacement: Surgical technique and outcomes. Thoracic Surgery Clinics, 28(3), 347–355.

    PubMed  Google Scholar 

  • Mhanna, R., & Hasan, A. (2017). Introduction to tissue engineering. In: Tissue engineering for artificial organs [Internet]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; [cited 2019 Dec 12]. pp. 1–34. Available from: http://doi.wiley.com/10.1002/9783527689934.ch1

  • Möhle, R., Green, D., Moore, M. A. S., Nachman, R. L, & Rafii, S. (1997, January 21). Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proceedings of the National Academy of Sciences of the United States of America [Internet]. [cited 2020 Jun 27];94(2):663–8. Available from: https://pubmed.ncbi.nlm.nih.gov/9012841/

  • Mooney, D., Hansen, L., Vacanti, J., Langer, R., Farmer, S., & Ingber, D. (1992). Switching from differentiation to growth in hepatocytes: Control by extracellular matrix. Journal of Cellular Physiology, 151(3), 497–505.

    CAS  PubMed  Google Scholar 

  • Mueller, D. K. (2018). Tracheal resection: Background, indications, Contraindications. Medscape Med Journal [Internet]. [cited 2019 Nov 26]; Available from: https://emedicine.medscape.com/article/1969880-overview

  • Murphy, C. M., O’Brien, F. J., Little, D. G., & Schindeler, A. (2013). Cell-scaffold interactions in the bone tissue engineering triad. European Cells & Materials, 26, 120–132.

    CAS  Google Scholar 

  • Nematollahi, Z., Tafazzoli-Shadpour, M., Zamanian, A., Seyedsalehi, A., Mohammad-Behgam, S., Ghorbani, F., et al. (2017). Fabrication of chitosan silk-based tracheal scaffold using freeze-casting method. Iranian Biomedical Journal, 21(4), 228–239.

    PubMed  PubMed Central  Google Scholar 

  • Nishinari, K., & Takahashi, R. (2003). Interaction in polysaccharide solutions and gels. Current Opinion in Colloid & Interface Science, 8(4–5), 396–400.

    CAS  Google Scholar 

  • Nomoto, Y., Kobayashi, K., Tada, Y., Wada, I., Nakamura, T., & Omori, K. (2008). Effect of fibroblasts on epithelial regeneration on the surface of a bioengineered trachea. The Annals of Otology, Rhinology, and Laryngology, 117(1), 59–64.

    PubMed  Google Scholar 

  • O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95.

    Google Scholar 

  • O’Brien, F. J., Harley, B. A., Yannas, I. V., & Gibson, L. J. (2005). The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials, 26(4), 433–441.

    PubMed  Google Scholar 

  • Oh, S. H., Park, I. K., Kim, J. M., & Lee, J. H. (2007). In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials, 28(9), 1664–1671.

    CAS  PubMed  Google Scholar 

  • OkumuÅŸ, A., Çizmeci, O., Kabakas, F., Kuvat, S. V., Bilir, A., & Aydin, A. (2005). Circumferential trachea reconstruction with a prefabricated axial bio-synthetic flap: Experimental study. International Journal of Pediatric Otorhinolaryngology, 69(3), 335–344.

    PubMed  Google Scholar 

  • Omori, K., Nakamura, T., Kanemaru, S., Asato, R., Yamashita, M., & Tanaka, S., et al. (2005 June). Regenerative medicine of the trachea: the first human case. The Annals of Otology, Rhinology, and Laryngology [Internet]. [cited 2020 Jun 27];114(6):429–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16042099

  • Omori, K., Tada, Y., Suzuki, T., Nomoto, Y., Matsuzuka, T., Kobayashi, K., et al. (2008). Clinical application of in situ tissue engineering using a scaffolding technique for reconstruction of the larynx and trachea. The Annals of Otology, Rhinology, and Laryngology, 117(9), 673–678.

    PubMed  Google Scholar 

  • Ott, L. M., Vu, C. H., Farris, A. L., Fox, K. D., Galbraith, R. A., Weiss, M. L., et al. (2015, September 1). Functional reconstruction of tracheal defects by protein-loaded, cell-seeded, fibrous constructs in rabbits. Tissue Engineering - Part A [Internet]. [cited 2020 Aug 2];21(17–18):2390–403. Available from: https://pubmed.ncbi.nlm.nih.gov/26094554/

  • Ozbolat, I. T. (2015). Bioprinting scale-up tissue and organ constructs for transplantation (Trends in Biotechnology) (Vol. 33, pp. 395–400). Elsevier Ltd.

    Google Scholar 

  • Park, J. H., Hong, J. M., Ju, Y. M., Jung, J. W., Kang, H. W., & Lee, S. J., et al. (2015a, September 1). A novel tissue-engineered trachea with a mechanical behavior similar to native trachea. Biomaterials [Internet]. [cited 2020 Jul 11];62:106–15. Available from: https://pubmed.ncbi.nlm.nih.gov/26041482/

  • Park JH, Park JY, Nam IC, Hwang SH, Kim CS, Jung JW, et al. (2015b, October 1). Human turbinate mesenchymal stromal cell sheets with bellows graft for rapid tracheal epithelial regeneration. Acta Biomaterials [Internet]. [cited 2020 Aug 3];25:56–64. Available from: https://doi.org/10.1016/j.actbio.2015.07.014

  • Park, S. Y., Choi, J. W., Park, J. K., Song, E. H., Park, S. A., Kim, Y. S., et al. (2016). Tissue-engineered artificial oesophagus patch using three-dimensionally printed polycaprolactone with mesenchymal stem cells: A preliminary report. Interactive Cardiovascular and Thoracic Surgery, 22(6), 712–717.

    PubMed  PubMed Central  Google Scholar 

  • Park, J. H., Yoon, J. K., Lee, J. B., Shin, Y. M., Lee, K. W., Bae, S. W., et al. (2019). Experimental tracheal replacement using 3-dimensional bioprinted artificial trachea with autologous epithelial cells and chondrocytes. Scientific Reports, 9(1), 1–11.

    Google Scholar 

  • Peng, W., Unutmaz, D., & Ozbolat, I. T. (2016). Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends in Biotechnology, 34(9), 722–732.

    CAS  PubMed  Google Scholar 

  • Pieper, J. S., Oosterhof, A., Dijkstra, P. J., Veerkamp, J. H., & Van Kuppevelt, T. H. (1999). Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulphate. Biomaterials, 20(9), 847–858.

    CAS  PubMed  Google Scholar 

  • Propst, E. J., Prager, J. D., Meinzen-Derr, J., Clark, S. L., Cotton, R. T., Rutter, M. J.. (2011, June 20). Pediatric tracheal reconstruction using cadaveric homograft. Archives of Otorhinolaryngology-Head & Neck Surgery [Internet]. [cited 2020 Sep 4];137(6):583–90. Available from: https://jamanetwork.com/

  • Przybylski, M. (2009). A review of the current research on the role of bFGF and VEGF in angiogenesis. [Internet]. Vol. 18, Journal of Wound Care. [cited 2020 Jul 19]. p. 516–9. Available from: https://pubmed.ncbi.nlm.nih.gov/20081577/

  • Ravindran, S., Song, Y., & George, A. (2010, January). Development of three-dimensional biomimetic scaffold to study epithelial-mesenchymal interactions. Tissue Engineering Part A [Internet]. [cited 2020 Feb 3];16(1):327–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19712044

  • Rawlins, E. L., & Hogan, B. L. M. (2006, July). Epithelial stem cells of the lung: Privileged few or opportunities for many? Development [Internet]. [cited 2020 Jun 27];133(13):2455–65. Available from: https://pubmed.ncbi.nlm.nih.gov/16735479/

  • Rawlins, E. L., & Hogan, B. L. M. (2008, July). Ciliated epithelial cell lifespan in the mouse trachea and lung. The American Journal of Physiology-Lung Cellular and Molecular Physiology [Internet]. [cited 2020 Jun 27];295(1):L231. Available from: /pmc/articles/PMC2494792/?report=abstract.

    Google Scholar 

  • Rich, J. T., & Gullane, P. J. (2012, August). Current concepts in tracheal reconstruction. Current Opinion in Otolaryngology & Head and Neck Surgery [Internet]. [cited 2020 Sep 4];20(4):246–53. Available from: https://pubmed.ncbi.nlm.nih.gov/22894992/

  • Ris, H. B., Krueger, T., Cheng, C., Pasche, P., Monnier, P., & Magnusson, L. (2008). Tracheo-carinal reconstructions using extrathoracic muscle flaps. European Journal of Cardio-Thoracic Surgery, 33(2), 276–283.

    PubMed  Google Scholar 

  • Rosso, F., Marino, G., Giordano, A., Barbarisi, M., Parmeggiani, D., & Barbarisi, A. (2005 June). Smart materials as scaffolds for tissue engineering. Journal of Cellular Physiology [Internet]. [cited 2019 Nov 22];203(3):465–70. Available from: http://doi.wiley.com/10.1002/jcp.20270

  • Ruszymah, B. H. I., Chua, K., Latif, M. A., Nor Hussein, F., & Bin, S. A. (2005). Formation of in vivo tissue engineered human hyaline cartilage in the shape of a trachea with internal support. International Journal of Pediatric Otorhinolaryngology, 69(11), 1489–1495.

    PubMed  Google Scholar 

  • Ruszymah, B. H. I., Azrul Izham, B. A., Mohd Heikal, M. Y., Khor, S. F., Fauzi, M. B., & Aminuddin, B. S. (2011). Human respiratory epithelial cells from nasal turbinate expressed stem cell genes even after serial passaging. The Medical Journal of Malaysia, 66(5), 440–442.

    CAS  PubMed  Google Scholar 

  • Ryan, R. M, Mineo-Kuhn, M. M., Kramer, C. M., & Finkelstein, J. N. (1994). Growth factors alter neonatal type II alveolar epithelial cell proliferation. The American Journal of Physiology-Lung Cellular and Molecular Physiology [Internet]. [cited 2020 Jul 12];266(1 10–1). Available from: https://pubmed.ncbi.nlm.nih.gov/8304465/

  • Scarritt, M. E., Pashos, N. C., & Bunnell, B. A. (2015). A review of cellularization strategies for tissue engineering of whole organs. Frontiers in Bioengineering and Biotechnology. Frontiers Media S.A, 3, Article 43.

    Google Scholar 

  • Schumann, P., Tavassol, F., Lindhorst, D., Stuehmer, C., Bormann, K. H., & Kampmann, A., et al. (2009, September). Consequences of seeded cell type on vascularization of tissue engineering constructs in vivo. Microvascular Research [Internet]. [cited 2020 Jan 12];78(2):180–90. Available from: https://pubmed.ncbi.nlm.nih.gov/19540853/

  • Sekine, T., Nakamura, T., Matsumoto, K., Liu, Y., Ueda, H., Tamura, N., et al. (2000). Carinal reconstruction with a Y-shaped collagen-conjugated prosthesis. The Journal of Thoracic and Cardiovascular Surgery, 119(6), 1162–1168.

    CAS  PubMed  Google Scholar 

  • Shaw, J. P., Chuang, N., Yee, H., & Shamamian, P. (2003). Polymorphonuclear neutrophils promote rFGF-2-induced angiogenesis in vivo. The Journal of Surgical Research, 109(1), 37–42.

    CAS  PubMed  Google Scholar 

  • Shirai, T., Rao, V., Weisel, R. D., Ikonomidis, J. S., Li, R. K., Tumiati, L. C., et al. (1998). Preconditioning human cardiomyocytes and endothelial cells. The Journal of Thoracic and Cardiovascular Surgery, 115(1), 210–219.

    CAS  PubMed  Google Scholar 

  • Silva, M. M. C. G., Cyster, L. A., Barry, J. J. A., Yang, X. B., Oreffo, R. O. C., Grant, D. M., et al. (2006). The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds. Biomaterials, 27(35), 5909–5917.

    CAS  PubMed  Google Scholar 

  • Soleas, J. P., Paz, A., Marcus, P., McGuigan, A., & Waddell, T. K. (2012). Engineering airway epithelium. Journal of Biomedicine & Biotechnology, 2012.

    Google Scholar 

  • Stenhamre, H., Nannmark, U., Lindahl, A., Gatenholm, P., & Brittberg, M. (2011). Influence of pore size on the redifferentiation potential of human articular chondrocytes in poly(urethane urea) scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 5(7), 578–588.

    CAS  PubMed  Google Scholar 

  • Sung, H. J., Meredith, C., Johnson, C., & Galis, Z. S. (2004 November). The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials [Internet]. [cited 2019 Nov 21];25(26):5735–42. Available from: https://pubmed.ncbi.nlm.nih.gov/15147819/

  • Suzuki, T., Kobayashi, K., Tada, Y., Suzuki, Y., Wada, I., Nakamura, T., et al. (2008). Regeneration of the trachea using a bioengineered scaffold with adipose-derived stem cells. The Annals of Otology, Rhinology, and Laryngology, 117(6), 453–463.

    PubMed  Google Scholar 

  • Sykes, M. (2010, January 14). Immune evasion by chimeric trachea. The New England Journal of Medicine [Internet]. [cited 2019 Dec 4];362(2):172–4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045014/

  • Takahashi, K., & Yamanaka, S. (2006, August 25). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell [Internet]. [cited 2020 Jul 13];126(4):663–76. Available from: https://pubmed.ncbi.nlm.nih.gov/16904174/

  • Takebe, T., Kobayashi, S., Kan, H., Suzuki, H., Yabuki, Y., & Mizuno, M., et al. (2012). Human elastic cartilage engineering from cartilage progenitor cells using rotating wall vessel bioreactor. In: Transplantation Proceedings [Internet]. [cited 2020 Aug 3]. p. 1158–61. Available from: https://pubmed.ncbi.nlm.nih.gov/22564652/

  • Tan, Q., Hillinger, S., Van Blitterswijk, C. A., & Weder, W. (2009, January). Intra-scaffold continuous medium flow combines chondrocyte seeding and culture systems for tissue engineered trachea construction. Interactive CardioVascular and Thoracic Surgery [Internet]. [cited 2020 Aug 3];8(1):27–30. Available from: https://pubmed.ncbi.nlm.nih.gov/18550604/

  • Tang, X. L., Li, Q., Rokosh, G., Sanganalmath, S. K., Chen, N., Ou, Q., et al. (2016). Long-term outcome of administration of c-kitPOS cardiac progenitor cells after acute myocardial infarction: Transplanted cells do not become cardiomyocytes, but structural and functional improvement and proliferation of endogenous cells persist for at lea. Circulation Research, 118(7), 1091–1105.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi, D., Matsumoto, K., Tsuchiya, T., Machino, R., Takeoka, Y., & Elgalad, A., et al. (2018, May 1). Scaffold-free trachea regeneration by tissue engineering with bio-3D printing†. Interactive CardioVascular and Thoracic Surgery [Internet]. [cited 2019 Nov 26];26(5):745–52. Available from: https://academic.oup.com/icvts/article/26/5/745/4810383

  • Tao, M. X., Chun, G. S., Qi, X. H., Deng, L., Zhi, W., Xiang, Z., et al. (2009). Variations in the ratios of co-cultured mesenchymal stem cells and chondrocytes regulate the expression of cartilaginous and osseous phenotype in alginate constructs. Bone, 45(1), 42–51.

    Google Scholar 

  • Tatekawa, Y., Kawazoe, N., Chen, G., Shirasaki, Y., Komuro, H., & Kaneko, M. (2010). Tracheal defect repair using a PLGA-collagen hybrid scaffold reinforced by a copolymer stent with bFGF-impregnated gelatin hydrogel. Pediatric Surgery International, 26(6), 575–580.

    PubMed  Google Scholar 

  • Thomson, R. C., Wake, M. C., Yaszemski, M. J., & Mikos, A. G. (1995). Biodegradable polymer scaffolds to regenerate organs. Advances in Polymer Science, 122, 218–274.

    Google Scholar 

  • Townsend, J. M., Ott, L. M., Salash, J. R., Fung, K. M., Easley, J. T., Seim, H. B., et al. (2018). Reinforced electrospun Polycaprolactone nanofibers for tracheal repair in an in vivo ovine model. Tissue Engineering - Part A, 24(17–18), 1301–1308.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsao, C. K., Ko, C. Y., Yang, S. R., Yang, C. Y., Brey, E. M., Huang, S., et al. (2014). An ectopic approach for engineering a vascularized tracheal substitute. Biomaterials, 35(4), 1163–1175.

    CAS  PubMed  Google Scholar 

  • Udelsman, B., Mathisen, D. J., & Ott, H. C.. (2018). A reassessment of tracheal substitutes-A systematic review [Internet]. Vol. 7, Annals of Cardiothoracic Surgery. AME Publishing Company; [cited 2019 Dec 23]. p. 175–82. Available from: www.annalscts.com

  • US Health Resources and Services Administration. Organ Donation Statistics [Internet]. July. 2019 [cited 2019 Dec 2]. Available from: https://www.organdonor.gov/statistics-stories/statistics.html#waiting-list

  • Viola, J., Lal, B., & Grad, O. (2003) The emergence of tissue engineering as a research field contract # EEC-9815425 task order A-07 Acknowledgements.

    Google Scholar 

  • Walles, T. (2011). Tracheobronchial bio-engineering: Biotechnology fulfilling unmet medical needs. Advanced Drug Delivery Reviews, 63, 367–374.

    Google Scholar 

  • Weidenbecher, M., Tucker, H. M., Awadallah, A., & Dennis, J. E. (2008). Fabrication of a neotrachea using engineered cartilage. The Laryngoscope, 118(4), 593–598.

    PubMed  PubMed Central  Google Scholar 

  • Williams, D. (2004). Benefit and risk in tissue engineering. Materials Today, 7(5), 24–29.

    CAS  Google Scholar 

  • Woodfield, T. B. F., Malda, J., De Wijn, J., Péters, F., Riesle, J., & Van Blitterswijk, C. A. (2004). Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials, 25(18), 4149–4161.

    CAS  PubMed  Google Scholar 

  • Wu, L., Leijten, J. C. H., Georgi, N., Post, J. N., Van Blitterswijk, C. A., & Karperien, M. (2011). Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Engineering - Part A, 17(9–10), 1425–1436.

    CAS  PubMed  Google Scholar 

  • Wu, T., Zhang, J., Wang, Y., Li, D., Sun, B., El-Hamshary, H., et al. (2018). Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Materials Science and Engineering: C, 82, 121–129.

    CAS  PubMed  Google Scholar 

  • Wurtz, A., Porte, H., Conti, M., Desbordes, J., Copin, M. C., Azorin, J., et al. (2006). Tracheal replacement with aortic allografts. The New England Journal of Medicine, 355(18), 1938–1940.

    CAS  PubMed  Google Scholar 

  • Xia, D., Jin, D., Wang, Q., Gao, M., Zhang, J., Zhang, H., et al. (2019). Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair in a goat model. Journal of Tissue Engineering and Regenerative Medicine, 13(4), 694–703.

    CAS  PubMed  Google Scholar 

  • Xing, D., Chen, J., Yang, J., Heng, B. C., Ge, Z., & Lin, J. (2016). Perspectives on animal models utilized for the Research and Development of regenerative therapies for articular cartilage. Current Molecular Biology Reports, 2(2), 90–100.

    Google Scholar 

  • Yin, H., Wang, J., Gu, Z., Feng, W., Gao, M., Wu, Y., et al. (2017). Evaluation of the potential of kartogenin encapsulated poly(L-lactic acid-co-caprolactone)/collagen nanofibers for tracheal cartilage regeneration. Journal of Biomaterials Applications, 32(3), 331–341.

    CAS  PubMed  Google Scholar 

  • Yoon, H. H., Bhang, S. H., Shin, J. Y., Shin, J., & Kim, B. S. (2012, October 1). Enhanced cartilage formation via three-dimensional cell engineering of human adipose-derived stem cells. Tissue Engineering - Part A [Internet]. [cited 2020 Aug 3];18(19–20):1949–56. Available from: https://pubmed.ncbi.nlm.nih.gov/22881427/

  • Zang, M., Zhang, Q., Davis, G., Huang, G., Jaffari, M., Ríos, C. N., et al. (2011). Perichondrium directed cartilage formation in silk fibroin and chitosan blend scaffolds for tracheal transplantation. Acta Biomaterialia, 7(9), 3422–3431.

    CAS  PubMed  Google Scholar 

  • Zeltinger, J., Sherwood, J. K., Graham, D. A., Müeller, R., & Griffith, L. G. (2001). Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Engineering, 7(5), 557–572.

    CAS  PubMed  Google Scholar 

  • Zhang, S., & Liu, Z. (2015). Airway reconstruction with autologous pulmonary tissue flap and an elastic metallic stent. World Journal of Surgery, 39(8), 1981–1985.

    PubMed  Google Scholar 

  • Zhang, Q., Lu, H., Kawazoe, N., & Chen, G. (2014). Pore size effect of collagen scaffolds on cartilage regeneration. Acta Biomaterialia, 10(5), 2005–2013.

    CAS  PubMed  Google Scholar 

  • Zhang, H., Fu, W., & Xu, Z. (2015, November 1). Re-epithelialization: A key element in tracheal tissue engineering. Regenerative Medicine [Internet]. [cited 2020 Jan 14];10(8):1005–23. Available from: https://pubmed.ncbi.nlm.nih.gov/26388452/

  • Zhao, X., Yu, F., Li, C., Li, Y., Chao, S. S., Loh, W. S., et al. (2012). The use of nasal epithelial stem/progenitor cells to produce functioning ciliated cells in vitro. American Journal of Rhinology & Allergy, 26(5), 345–350.

    Google Scholar 

Download references

Acknowledgement

This research was funded by the Ministry of Higher Education, Malaysia, for the Prototype Research Grant Scheme (PRGS) with Project Code PRGS/1/2021/SKK07/USM/02/1 and Universiti Sains Malaysia (USM) Research University Grant (1001/CIPPT/8012203). Additionally, the author would like to thank the Ministry of Higher Education and the International Islamic University, Malaysia, for their support through the Academic Staff Training Scheme fellowship (ASTS) for Asmak Abdul Samat.

Conflict of Interest

All authors declare no conflict of interest. The authors alone are responsible for the content and writing of the article.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Badrul Hisham Yahaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samat, A.A., Hamid, Z.A.A., Mariatti Jaafar @ Mustapha., Yahaya, B.H. (2022). Tissue Engineering for Tracheal Replacement: Strategies and Challenges. In: Pham, P.V. (eds) Advances in Mesenchymal Stem Cells and Tissue Engineering. ICRRM 2023. Advances in Experimental Medicine and Biology(). Springer, Cham. https://doi.org/10.1007/5584_2022_707

Download citation

Publish with us

Policies and ethics