Skip to main content

Effects of Inhalation of STIM-Orai Antagonist SKF 96365 on Ovalbumin-Induced Airway Remodeling in Guinea Pigs

  • Chapter
  • First Online:
Best Practice in Health Care

Abstract

Airway remodeling (AR) consists of wall thickening and hyperreactivity. STIM (stromal interaction molecule) and Orai protein pathways mediate extracellular Ca2+ signals involved in AR. This study aims to define the effects on AR of the STIM-Orai antagonist SKF 96365 given by inhalation in three increasing doses in ovalbumin-induced AR. In the control group, the antiasthmatic budesonide and salbutamol were given in the same model. The airway structure was evaluated by histological and immunohistochemistry and reactivity by specific airway resistance, contraction strength of isolated airway smooth muscles, and mucociliary clearance expressed by ciliary beating frequency. The immuno-biochemical markers of chronic inflammation were evaluated by BioPlex and ELISA assays. The AR was mediated by inflammatory cytokines and growth factors. The findings show significant anti-remodeling effects of SKF 96365, which were associated with a decrease in airway hyperreactivity. The anti-remodeling effect of SKF 96365 was mediated via the suppression of IL-4, IL-5, and IL-13 synthesis, and IL-12–INF-γ–TGF-β pathway. The budesonide-related AR suppression had to do with a decrease in proinflammatory cytokines and an increase in the anti-inflammatory IL-10, with negligible influence on growth factors synthesis and mucous glands activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Muhsen S, Johnson JR, Hamid Q (2011) Remodelling in asthma. J Allergy Clin Immunol 128(3):451–462

    Article  Google Scholar 

  • Amishima M, Munakata M, Nasuhara Y, Sato A, Takahashi T, Homma Y, Kawakami Y (1998) Expression of epidermal growth factor and epidermal growth factor receptor immunoreactivity in the asthmatic human airway. Am J Respir Crit Care Med 157(6 Pt 1):1907–1912

    Article  Google Scholar 

  • Barnes PJ (2008) The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest 118(11):3546–3556

    Article  Google Scholar 

  • Bergeron C, Tulic MK, Hamid Q (2010) Airway remodeling in asthma: from bench side to clinical practice. Can Respir J 17(4):e85–e93

    Article  Google Scholar 

  • Biedermann T, Röcken M, Carballido JM (2004) Th1 and Th2 lymphocyte development and regulation of Th cell–mediated immune responses of the skin. J Invest Derm Symp Proc 9(1):5–14

    Article  Google Scholar 

  • Borish L (2002) The role of leukotrienes in upper and lower airway inflammation and the implications for treatment. Ann Allergy Asthma Immunol 88(4 Suppl 1):16–22

    Article  Google Scholar 

  • Boulet LP (2018) Airway remodeling in asthma: update on mechanisms and therapeutic approaches. Curr Opin Pulm Med 24(1):56–62

    Article  Google Scholar 

  • Burgess JK, Mauad T, Tjin G, Karlsson JC, Westergren-Thorsson G (2016) The extracellular matrix – the under-recognized element in lung disease? J Pathol 240(4):397–409

    Article  Google Scholar 

  • Bush A (2019) Cytokines and chemokines as biomarkers of future asthma. Front Pediatr 7:72

    Article  Google Scholar 

  • Busse P, Zhang TF, Srivastava K, Lin BP, Schofield B, Sealfon SC, Li XM (2005) Chronic exposure to TNF-α increases airway mucus gene expression in vivo. J Allergy Clin Immunol 116:1256–1263

    Article  Google Scholar 

  • Caramori G, Groneberg D, Ito K, Casolari P, Adcock IM, Papi A (2008) New drugs targeting Th2 lymphocytes in asthma. J Occup Med Toxicol 3(1):6

    Article  Google Scholar 

  • Chakir J, Shannon J, Molet S, Fukakusa M, Elias J, Laviolette M, Boulet LP, Hamid Q (2003) Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol 111(6):1293–1298

    Article  Google Scholar 

  • Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang M-Z, Harris RC (2016) Expression and function of the epidermal growth factor receptor in physiology and disease. Physiol Rev 96:1025–1069

    Article  Google Scholar 

  • Chen ZY, Zhou SH, Zhou QF, Tang HB (2017) Inflammation and airway remodeling of the lung in guinea pigs with allergic rhinitis. Exp Ther Med 14(4):3485–3490

    Article  Google Scholar 

  • Chung SC, McDonald TV, Gardner P (1994) Inhibition by SKF 96365 of Ca2+current, IL-2 production and activation in T lymphocytes. Br J Pharmacol 113(3):861–868

    Article  Google Scholar 

  • Doherty T, Broide D (2007) Cytokines and growth factors in airway remodeling in asthma. Curr Opin Immunol 19(6):676–680

    Article  Google Scholar 

  • Durrani SR, Viswanathan RK, Busse WW (2011) What effect does asthma treatment have on airway remodeling? Current perspectives. J Allergy Clin Immunol 128(3):439–448

    Article  Google Scholar 

  • Erle DJ, Sheppard D (2014) The cell biology of asthma. J Cell Biol 205(5):621–631

    Article  Google Scholar 

  • Flood-Page P, Menzies-Gow A, Phipps S, Ying S, Wangoo A, Ludwig MS, Barnes N, Robinson D, Kay AB (2003) Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest 112:1029–1036

    Article  Google Scholar 

  • Ford JG, Rennick D, Donaldson DD, Venkayya R, Hansell E, Kurup VP, Warnock M, Grünig G (2001) Il-13 and IFN-gamma: interactions in lung inflammation. J Immunol 167(3):1769–1777

    Article  Google Scholar 

  • Gao YD, Zheng JW, Li P, Cheng M, Yang J (2013) Store-operated Ca+ entry is involved in transforming growth factor-β1 facilitated proliferation of rat airway smooth muscle cells. J Asthma 50(5):439–448

    Article  Google Scholar 

  • Grainge CL, Lau LC, Ward JA, Dulay V, Lahiff G, Wilson S, Holgate S, Davies DE, Howarth PH (2011) Effect of bronchoconstriction on airway remodeling in asthma. N Engl J Med 364:2006–2015

    Article  Google Scholar 

  • Halwani R, Al-Muhsen S, Hamid Q (2010) Airway remodeling in asthma. Curr Opin Pharmacol 10(3):236–245

    Article  Google Scholar 

  • Halwani R, Al-Muhsen S, Al-Jahdali H, Hamid Q (2011) Role of transforming growth factor-β in airway remodeling in asthma. Am J Respir Cell Mol Biol 44(2):127–133

    Article  Google Scholar 

  • Hargas L, Koniar D, Stofan S (2011) In: Folea S (ed) Sophisticated biomedical tissue measurement using image analysis and virtual instrumentation, practical applications and solutions using LabVIEW™ software. IntechOpen, London. eBook (PDF) ISBN: 978-953-307-650-8; https://www.intechopen.com/books/practical-applications-and-solutions-using-labview-software. Accessed on 2 Feb 2021

    Google Scholar 

  • Hirota N, Risse PA, Novali M, McGovern T, Al-Alwan L, McCuaig S, Proud D, Hayden P, Hamid Q, Martin JG (2012) Histamine may induce airway remodeling through release of epidermal growth factor receptor ligands from bronchial epithelial cells. FASEB J 26(4):1704–1716

    Article  Google Scholar 

  • Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signalling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533

    Article  Google Scholar 

  • Hostettler KE, Roth M, Burgess JK, Gencay MM, Gambazzi F, Black JL, Tamm M, Borger P (2008) Airway epithelium-derived transforming growth factor-beta is a regulator of fibroblast proliferation in both fibrotic and normal subjects. Clin Exp Allergy 38(8):1309–1317

    Article  Google Scholar 

  • Jahromi SR, Mahesh PA, Jayaraj BS, Madhunapantula SRV, Holla AD, Vishweswaraiah S, Ramachandra NB (2014) Serum levels of IL-10, IL-17F and IL-33 in patients with asthma: a case-control study. J Asthma 51(10):1004–1013

    Article  Google Scholar 

  • Jairaman A, Maguire CH, Schleimer RP, Prakriya M (2016) Allergens stimulate store-operated calcium entry and cytokine production in airway epithelial cells. Sci Rep 6:32311

    Article  Google Scholar 

  • Jia L, Delmotte P, Aravamudan B, Pabelick CM, Prakash YS, Sieck GC (2013) Effects of the inflammatory cytokines TNF-α and IL-13 on stromal interaction molecule-1 aggregation in human airway smooth muscle intracellular Ca2+ regulation. Am J Respir Cell Mol Biol 49(4):601–608

    Article  Google Scholar 

  • Kim YS, Choi SJ, Choi JP, Jeon SG, Oh S, Lee BJ, Gho YS, Lee CG, Zhu Z, Elias JA, Kim YK (2010) IL-12-STAT4-IFN-gamma axis is a key downstream pathway in the development of IL-13-mediated asthma phenotypes in a Th2 type asthma model. Exp Mol Med 42(8):533–546

    Article  Google Scholar 

  • Kuperman DA, Huang X, Nguyenvu L, Hölscher C, Brombacher F, Erle DJ (2005) IL-4 receptor signaling in Clara cells is required for allergen-induced mucus production. J Immunol 175(6):3746–3752

    Article  Google Scholar 

  • Mahn K, Ojo OO, Chadwick G, Aaronson PI, Ward JP, Lee TH (2010) Ca2+ homeostasis and structural and functional remodeling of airway smooth muscle in asthma. Thorax 65(6):547–552

    Article  Google Scholar 

  • Makinde T, Murphy RF, Agrawal DK (2007) The regulatory role of TGF-beta in airway remodeling in asthma. Immunol Cell Biol 85(5):348–356

    Article  Google Scholar 

  • McGovern AE, Mazzone SB (2014) Guinea pig models of asthma. Curr Protoc Pharmacol 67:Unit:5.26.1–5.26.38

    Google Scholar 

  • McMillan SJ, Xanthou G, Lloyd C (2005) Therapeutic administration of budesonide ameliorates allergen-induced airway remodeling. Clin Exp Allergy 35(3):388–396

    Article  Google Scholar 

  • Miller M, Cho JY, McElwain K, McElwain S, Shim JW, Manni M, Baek JS, Broide DH (2006) Corticosteroids prevent myofibroblast accumulation and airway remodeling in mice. Am J Physiol Lung Cell Mol Physiol 290(1):162–169

    Article  Google Scholar 

  • Munakata M (2006) Airway remodelling and airway smooth muscle in asthma. Allergol Int 55:235–243

    Article  Google Scholar 

  • Nadel JA (2001) Role of epidermal growth factor receptor activation in regulating mucin synthesis. Respir Res 2(2):85–89

    Article  Google Scholar 

  • Oenema TA, Maarsingh H, Smit M, Groothuis GMM, Meurs H, Gosens R (2013) Bronchoconstriction induces TGF-b release and airway remodeling in guinea pig lung slices. PLoS One 8(6):e65580

    Article  Google Scholar 

  • Ogawa Y, Duru EA, Ameredes BT (2008) Role of IL-10 in the resolution of airway inflammation. Curr Mol Med 8(5):437–445

    Article  Google Scholar 

  • Ojiaku CA, Yoo EJ, Panettieri RA (2017) Transforming growth factor β1 function in airway remodelling and hyperresponsiveness. The missing link? Am J Respir Cell Mol 56(4):432–442

    Article  Google Scholar 

  • Pakyari M, Farrokhi A, Maharlooei MH, Ghahary A (2013) Critical role of transforming growth factor beta in different phases of wound healing. Adv Wound Care 2(5):215–224

    Article  Google Scholar 

  • Pennock BE, Cox CP, Rogers RM, Cain WA, Wells JH (1979) A noninvasive technique for measurement of changes in specific airway resistance. J Appl Physiol 46:399–406

    Article  Google Scholar 

  • Perez-Zoghbi JF, Karner C, Ito S, Shepherd M, Alrashdan Y, Sanderson MJ (2009) Ion channel regulation of intracellular calcium and airway smooth muscle function. Pulm Pharmacol Ther 22(5):388–397

    Article  Google Scholar 

  • Pigati PA, Righetti RF, Possa SS, Romanholo BS, Rodrigues AP, dos Santos AS, Xisto DG, Antunes MA, Prado CM, Leick EA, Martins Mde A, Rocco PR, Tibério Ide F (2015) Y-27632 is associated with corticosteroid-potentiated control of pulmonary remodeling and inflammation in guinea pigs with chronic allergic inflammation. BMC Pulm Med 15:85

    Article  Google Scholar 

  • Prochazkova J, Pokorna K, Holan V (2012) IL-12 inhibits the TGF-β-dependent T cell developmental programs and skews the TGF-β-induced differentiation into a Th1-like direction. Immunobiology 217(1):74–82

    Article  Google Scholar 

  • Samanta K, Parekh AB (2016) Store-operated Ca2+ channels in airway epithelial cell function and implications for asthma. Philos Trans R Soc Lond Ser B Biol Sci 371(1700):20150424

    Article  Google Scholar 

  • Samanta K, Bakowski D, Parekh AB (2014) Key role for store-operated Ca2+ channels in activating gene expression in human airway bronchial epithelial cells. PLoS One 9(8):e105586

    Article  Google Scholar 

  • Sedaghat MH, Shahmardan MM, Norouzi M, Heydari M (2016) Effect of cilia beat frequency on muco-ciliary clearance. J Biomed Phys Eng 6(4):265–278

    Google Scholar 

  • Shen Y, Chen L, Wang T, Wen F (2012) PPARγ as a potential target to treat airway mucus hypersecretion in chronic airway inflammatory diseases. PPAR Res 2012:256874

    Article  Google Scholar 

  • Shore S (2002) Airway smooth muscle: new tricks for an old dog. Am J Physiol Lung Cell Mol Physiol 282(3):L518–L519

    Article  Google Scholar 

  • Singh A, Hildebrand ME, Garcia E, Snutch TP (2010) The transient receptor potential channel antagonist SKF 96365 is a potent blocker of low-voltage-activated T-type calcium channels. Br J Pharmacol 160(6):1464–1475

    Article  Google Scholar 

  • Spinelli AM, Trebak M (2016) Orai channel-mediated Ca2+ signals in vascular and airway smooth muscle. Am J Physiol Cell Physiol 310(6):C402–C413

    Article  Google Scholar 

  • Spinelli AM, González-Cobos JC, Zhang X, Motiani RK, Rowan S, Zhang W, Garrett J, Vincent PA, Matrougui K, Singer HA, Trebak M (2012) Airway smooth muscle STIM1 and Orai1 are upregulated in asthmatic mice and mediate PDGF-activated SOCE, CRAC currents, proliferation, and migration. Pflugers Arch 464(5):481–492

    Article  Google Scholar 

  • Sutovska M, Kocmalova M, Joskova M, Adamkov M, Franova S (2015) The effect of long-term administered CRAC channels blocker on the functions of respiratory epithelium in guinea pig allergic asthma model. Gen Physiol Biophys 34(2):167–176

    Article  Google Scholar 

  • Sutovska M, Kocmalova M, Franova S, Vakkalanka S, Viswanadha S (2016) Pharmacodynamic evaluation of RP3128, a novel and potent CRAC channel inhibitor in guinea pig models of allergic asthma. Eur J Pharmacol 772:62–70

    Article  Google Scholar 

  • Takami S, Mizuno T, Oyanagi T, Tadaki H, Suzuki T, Muramatsu K, Takizawa T, Arakawa H (2012) Glucocorticoids inhibit MUC5AC production induced by transforming growth factor-α in human respiratory cells. Allergol Int 61(3):451–459

    Article  Google Scholar 

  • Vig M, DeHaven WI, Bird GS, Billingsley JM, Wang H, Rao PE, Hutchings AB, Jouvin MH, Putney JW, Kinet JP (2008) Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat Immunol 9(1):89–96

    Article  Google Scholar 

  • Wong CK, Ho CY, Ko FWS, Chan CHS, Ho ASS, Hui DSC, Lam CWK (2001) Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN-γ, IL-4, IL-10 and IL-13) in patients with allergic asthma. Clin Exp Immunol 125(2):177–183

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ms. Katarina Jesenska for the outstanding technical assistance during the experimental work and Ms. Slavka Drahosova for immunohistochemical analyses. The study was supported by grants: VEGA 1/0314/21, VEGA 1/0253/19, APVV 19-0033, and the research project of the Biomedical Center Martin—ITMS 26220220187, entitled “We support research activities in Slovakia” cofinanced by the EU.

Conflicts of Interest

The authors declare no conflicts of interest concerning this article.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The animals were treated in accord with the Guide for the Care and Use of Laboratory Animals (8th edition, National Academies Press) and the EU and Slovakian legislation regulating the welfare of experimental animals. This study was approved by a local Ethics Committee of the Jessenius Faculty of Medicine in Martin, Slovakia (permit EK 40/2018), registered by the Institutional Review Board/Ethics Board Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela Kocmálová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Šutovská, M. et al. (2021). Effects of Inhalation of STIM-Orai Antagonist SKF 96365 on Ovalbumin-Induced Airway Remodeling in Guinea Pigs. In: Pokorski, M. (eds) Best Practice in Health Care. Advances in Experimental Medicine and Biology(), vol 1335. Springer, Cham. https://doi.org/10.1007/5584_2021_633

Download citation

Publish with us

Policies and ethics