
Herbicide Exposure and Toxicity to Aquatic
Primary Producers

J. Arie Vonk and Michiel H. S. Kraak

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
2 Exposure of Aquatic Primary Producers to Herbicides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

2.1 Sources of Herbicides in the Aquatic Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
2.2 Fate of Herbicides in the Aquatic Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
2.3 Concentrations of Herbicides in the Aquatic Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 125
2.4 Bioavailability of Herbicides to Aquatic Primary Producers . . . . . . . . . . . . . . . . . . . . . . . . 128
2.5 Uptake of Herbicides by Aquatic Primary Producers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3 Toxicity of Herbicides to Aquatic Primary Producers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.1 Mode of Action of Herbicides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.2 Standardized Toxicity Tests with Aquatic Primary Producers . . . . . . . . . . . . . . . . . . . . . . . 134
3.3 Selected Endpoints in Standardized Toxicity Tests with Aquatic Primary Producers 136
3.4 Sensitivity of Aquatic Primary Producers to Herbicides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.5 Mixture Toxicity of Herbicides to Aquatic Primary Producers . . . . . . . . . . . . . . . . . . . . . . 150

4 Retrospective Site-Specific Risks Assessment of Herbicides for Aquatic Primary
Producers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.1 Risk Assessment of Aqueous Herbicides for Aquatic Primary Producers . . . . . . . . . . 153
4.2 Risk Assessment of Sediment-Associated Herbicides for Aquatic Primary Producers 155

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Abbreviations

AF Assessment factor
EC50 Median effect concentration
ECx Calculated concentration at which x% of the tested species are affected

Electronic Supplementary Material: The online version of this chapter (https://doi.org/10.1007/
398_2020_48) contains supplementary material, which is available to authorized users.

J. A. Vonk (*) · M. H. S. Kraak
Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem
Dynamics, University of Amsterdam, Amsterdam, The Netherlands
e-mail: j.a.vonk@uva.nl; m.h.s.kraak@uva.nl

© The Author(s) 2020
P. de Voogt (ed.), Reviews of Environmental Contamination and Toxicology,
Volume 250, Reviews of Environmental Contamination and Toxicology, Volume 250,
https://doi.org/10.1007/398_2020_48

119

http://crossmark.crossref.org/dialog/?doi=10.1007/398_2020_48&domain=pdf
https://orcid.org/0000-0002-8803-1148
https://doi.org/10.1007/398_2020_48#DOI
https://doi.org/10.1007/398_2020_48#DOI
mailto:j.a.vonk@uva.nl
mailto:m.h.s.kraak@uva.nl
https://doi.org/10.1007/398_2020_48#DOI


KOC Organic carbon-water partitioning coefficient
KOW Octanol-water partition coefficient
LC50 Median lethal concentration
SSD Species sensitivity distribution

1 Introduction

Herbicides are the most used pesticides in North America and in Europe, and
accordingly, herbicides are the most frequently detected pesticide group in North
American and European surface waters (Moschet et al. 2014; Booij et al. 2015;
Lopez et al. 2015; Schreiner et al. 2016). Herbicides are often well soluble in water
to increase the systemic uptake by plants. This increases the chances of transport and
discharges into water, and consequently, a wide variety of herbicides often exceed
environmental quality standards (EQS) and regulatory acceptable concentrations
(RACs) in European surface waters (Moschet et al. 2014; Schreiner et al. 2016;
Casado et al. 2019). Hence, herbicides are expected to have a significant effect on
aquatic ecosystem functioning (Moschet et al. 2014; Knauer 2016; Schreiner et al.
2016). Herbicides are often phytotoxic to non-target aquatic organisms such as algae
and macrophytes, and these adverse effects on primary producers can cascade up the
food web altering community structure (DeLorenzo et al. 2001; Ralph et al. 2007;
Wood et al. 2016), since algae and plants provide food and habitat for higher trophic
levels (e.g. Whatley et al. 2014; Bakker et al. 2016).

Since herbicides specifically target essential processes in primary producers, all
substances with a herbicidal mode of action require regulatory testing on non-target
primary producers. For the USA, data on five aquatic plants are required and in
Europe data on two algal species and on one to three macrophytes. Higher-tier
approaches focus on the most sensitive taxonomic groups identified in tier 1 based
on obligatory data requirements from regulatory testing. If macrophytes are an order
of magnitude more sensitive than algae, additional tests with macrophytes are
required. Still, despite the prevalence and their documented effects on primary
producers, herbicides remain relatively understudied compared to pesticides
targeting various groups of animals. More toxicity tests focus on fish and
macroinvertebrates compared to tests focusing on the effects of herbicides on
macrophytes and algae in the environment (Birk et al. 2012). Yet, for both marine
and freshwater environments, standardized ecotoxicity tests are available for
microalgae (unicellular microorganisms sometimes forming larger colonies), includ-
ing the prokaryotic Cyanobacteria (blue-green algae) and the eukaryotic
Chlorophyta (green algae) and Bacillariophyceae (diatoms) (OECD 2011; USEPA
2012d; Wood et al. 2016). Macrophytes (macroalgae and aquatic plants) are
multicellular organisms, the latter consisting of differentiated tissues, with several
species included in standardized ecotoxicity tests (Knauer et al. 2006; Feiler et al.
2014; Van Wijngaarden and Arts 2018). While macroalgae grow in the water
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compartment only, aquatic plants are divided into groups related to their growth
form (emergent; free-floating; submerged and sediment-rooting; floating and
sediment-rooting) and can extend from the sediment (roots, stolons and rhizomes)
through the water into the air (Cronk and Fennesy 2001).

There is strong evidence that anthropogenic compounds threaten the ecological
integrity and consequently the biodiversity of almost half of the water bodies in
Europe, with herbicides accounting for 96% of the risks to algae (Malaj et al. 2014).
The aim of the present review was therefore to give an overview of the current state
of science concerning herbicide exposure and toxicity to aquatic primary producers.
To this end, we assessed the open literature to address the sources and fate of
herbicides in the aquatic environment, their bioavailability and subsequent uptake
by algae and plants. Next, the hazard of herbicides to primary producers was
assessed, including their modes of action and toxicity to algae and aquatic plants
determined in the various available toxicity tests, making an inventory of reported
effect concentrations. Retrospective risk assessments were performed to determine
whether the presence of herbicides represented an actual risk to aquatic primary
producers in various environments, including water and sediment of freshwater and
marine/estuarine ecosystems.

2 Exposure of Aquatic Primary Producers to Herbicides

Herbicides originate from different urban and agricultural usages and are transferred
to surface waters from point and diffuse sources by several transport pathways
(Moser et al. 2018). Exposure of aquatic primary producers to herbicides can
occur through water for all algae and aquatic plants, through air for emergent and
floating plants and through sediment for rooting plants and benthic algae (Fig. 1).
For phytoplankton and free-living submerged aquatic plants, water is the main
medium through which they are exposed to dissolved herbicides. Resuspension of
sediments contaminated with herbicides can result in the release of herbicides into
the water column (Pandey et al. 2019). Resuspension can therefore also expose
phytoplankton and free-living aquatic plants indirectly to herbicides accumulated in
the sediment. Spraying of herbicides near emergent and floating plants can result in
direct exposure to herbicides transported by wind (spray drift), while volatilization
of herbicides and subsequent transport by wind (vapour drift) can also result in
exposure of these aquatic plant growth forms (EFSA PPR 2015). All growth forms
of aquatic plants with roots extending into the sediment are additionally exposed via
this environmental compartment. Sediment exposure also occurs in macroalgae with
rhizoids extending into the sediment (e.g. Characeae and Caulerpa spp.) and in
microalgae living on top of the sediment (e.g. benthic autotrophic biofilms including
diatoms). In this chapter we will focus on sources, fate and concentrations of
herbicides in the aquatic environment leading to exposure and subsequent uptake
of herbicides by aquatic primary producers through surface water and pore water.
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2.1 Sources of Herbicides in the Aquatic Environment

Herbicides can enter surface waters from several sources through various processes,
with the main source being runoff and drainage from agricultural fields (e.g. Knauer
2016). Urban sources of herbicide pollution to surface water are wastewater treat-
ment plants, storm sewers or combined sewer overflows and runoff from urban areas
(Wittmer et al. 2010; Ensminger et al. 2013). Herbicides flow into the ditches
surrounding the agricultural fields, spread over the surface waters from diffuse and
point sources and drain into the groundwater. The mean annual use of herbicides in
agriculture, on average 0.69 kg/ha during 2010–2014, is generally higher compared
to use of insecticides (0.22 kg/ha) and fungicides and bactericides together (0.32 kg/
ha) (Zhang 2018). Compounds ranking at the top of global herbicides use (expressed
as tonnes active ingredient in 2014) are amides (38.3k), phenoxy hormone products
(23.9k), bipyridyls (17.2k), urea derivatives (9.5k), dinitroanilines (6.5k), carbamate
herbicides (4.0k), sulfonylureas (2.7k) and uracil (0.6k) (Zhang 2018).

New compounds are synthesized at high rates (Chemical Abstracts Service,
https://www.cas.org/). However, few herbicides make it into a developed and
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Fig. 1 Potential exposure routes to herbicides for different growth forms of aquatic primary
producers through air, water and sediment from indirect sources and direct application. Growth
forms depicted are [1] emergent plants, [2] rooting floating plants, [3] free-floating plants,
[4] rooting submerged plants and rhizoid macroalgae, [5] free-living submerged plants, [6] phyto-
plankton and [7] benthic microalgae and biofilms
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registered product actually entering the market, e.g. in 2019 in Europe only approval
for florpyrauxifen-benzyl. The environmental hazard and risk of new compounds
have to be investigated and assessed, before any herbicide may enter the market.
From a European perspective, the tier 1 data requirement always has to be fulfilled
before putting an herbicide on the market. For herbicides, this includes a significant
amount of information on effects on non-target plants, which is thus available from
regulatory data, but often not yet from the open literature. Herbicides are often
marketed as products with two to three different active ingredients. Accordingly,
there will be at least some information from regulatory testing on the mixture toxicity
of these active ingredients. However, application of a wide variety of herbicides by
different users in a river catchment increases the potential of interactions between the
active herbicides in the environment. This is especially relevant since there are
additional legacies of pesticides in aquatic ecosystems, consisting of herbicides
that have already been banned from the regions (e.g. triazine herbicides
terbuthylazine and simazine in the EU; Rasmussen et al. 2015).

Herbicides are also directly applied in the aquatic environment to eradicate
expansions of invasive aquatic plant species in various parts of the world, especially
in North America, Australia and New Zealand (Lake and Minteer 2018). Invasive
species targeted by herbicide application include Phragmites australis (common
reed), Myriophyllum spicatum (Eurasian watermilfoil), Hydrilla verticillata (water
thyme) and Eichornia crassipes (water hyacinth) (Hershner and Havens 2008;
Kettenring and Adams 2011; Hussner et al. 2017). Various herbicides are used for
the control of these invasive species, including glyphosate, 2,4-D, picloram, diquat
and triclopyr (Kettenring and Adams 2011; Hussner et al. 2017). Often herbicide
applications are combined with other management strategies, including biological
controls and plant competition, although herbicide application can influence biolog-
ical control through direct and indirect effects of the herbicide on other biota (Lake
and Minteer 2018). Generally, herbicides need carefully timed and repeated appli-
cations, have modest success and induce significant collateral risk (Hershner and
Havens 2008). Common problems associated with the application of herbicides
include effects on non-target species and novel invasions following control of initial
invasive species (Kettenring and Adams 2011). One solution is the application of
systemic herbicides to dewatered or drawdown canals to allow herbicides to directly
target the plant populations while strongly limiting the transport of the herbicide by
the water (Hussner et al. 2017). Hence, the unintentional as well as intentional
sources of herbicides in the aquatic environment are numerous, evidently leading
to the widespread presence of herbicides, inevitably leading to the exposure of
non-target primary producers.

2.2 Fate of Herbicides in the Aquatic Environment

The fate of herbicides in the environment is determined by the combination of (1) the
chemical properties and the formulation of the pesticides, (2) the local environmental
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conditions and (3) the timing, rate and method of application (Kookana et al. 1998;
Rabodonirina et al. 2015). Together, they govern the fate of herbicides in the aquatic
environment by influencing retention processes (e.g. adsorption to particles and
uptake by organisms), transformation processes (abiotic and biotic degradation
into other (toxic) compounds), and transport processes of the herbicides. Transport
of herbicides into aquatic environments is driven by runoff from nearby agricultural
or other terrestrial environments, drift of herbicides along the catchment and
leaching of herbicides into groundwater sources. Leaching of herbicides into
groundwater is a rather negligible source of contamination in Europe, since any
compound that might end up in groundwater at a concentration greater than 0.1 μg/L
would be prohibited. Instead, in agricultural areas where drainage canals are used,
relevant amounts of herbicides may be transported via drainage water into receiving
aquatic ecosystems. In this way, local hydrological processes form the main drivers
for the mobilization and transport of herbicides into surface water (Klaus et al.
2014). Charged and hydrophilic herbicides generally remain in the water column.
However, herbicides with a higher octanol-water partitioning coefficient (KOW) are
more hydrophobic and accumulate at higher rates in the sediment through sorption
on clay particles and organic matter (Voice and Weber 1983).

Many herbicides interact with the dissolved and particulate organic matter in the
water, resulting in the adsorption of active herbicides (Voice and Weber 1983;
Chefetz et al. 2004; Pandey et al. 2019). These aggregates may sink to the bottom
causing the transport of herbicides from the water column to the sediment. Accu-
mulation of herbicides in the sediment is primarily determined by the organic carbon
content of the solid and the clay-size fraction (Chefetz et al. 2004; Clausen et al.
2004) causing sediments to be the main sink for many herbicides. Furthermore,
herbicides can be adsorbed or taken up by aquatic primary producers (Crum et al.
1999; Turgut 2005). Especially vascular species, like Cabomba aquatica,
Eichhornia crassipes, Elodea canadensis, Lemna minor, Ludwigia peploides,
Myriophyllum aquaticum and Spirodela polyrhiza, have efficient capacities to take
up pesticides from the aquatic environment, leading to accumulation of herbicides at
target sites (Turgut 2005; Olette et al. 2008; Anudechakul et al. 2015; Pérez et al.
2017). Reported removal rates of herbicides by phytoplankton species vary consid-
erably, ranging from negligible or a few percent after a couple of days (Weiner et al.
2004; Chalifour et al. 2016) up to 80% removal after 24 h (González-Barreiro et al.
2006), revealing the potential of aquatic primary producers as sink for herbicides.

Environmental conditions such as the pH, redox and light conditions and tem-
perature are important factors determining the degradation of herbicides in the
environment. In the absence of light, degradation of herbicides can be one order of
magnitude slower (Mercurio et al. 2016). Surface water pH can alter the charge of
herbicides and the hydrolysis and degradation rates of herbicides (Schneiders et al.
1993). Degradation of herbicides is often faster at the sediment-water interface
compared to the surface water (Rice et al. 2004; Mercurio et al. 2016). Degradation
processes of herbicides in the sediment including hydrolysis, volatilization and
microbial degradation are related to the pH, redox conditions and temperature of
the sediment (Kookana et al. 1998; Graymore et al. 2001). Especially at the interface
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between water and sediments, microbial activity is higher compared to both surface
water and in the sediment. Under anaerobic conditions in aquatic ecosystems, as
often present in the sediment, biodegradation is generally limited (Mercurio et al.
2016; Ghattas et al. 2017). Contrary, microbial activity is stimulated by plant
exudates, resulting in higher degradation rates or accumulation of herbicides nearby
roots in both the water and in the sediment (Anudechakul et al. 2015; Singh and
Singh 2016). Overall, microbes are the main vehicle for remediation of herbicides in
the environment (Singh and Singh 2016). Half-lives of the herbicides in aquatic
ecosystems can be over 100 days, as observed by Mercurio et al. (2016) for diuron,
atrazine, hexazinone and tebuthiuron. Only for metolachlor exposed under light
conditions and for 2,4-D exposed in dark conditions, these authors measured half-
lives of less than 100 days. Metabolites of herbicides are significantly less biolog-
ically active than the parent compounds and are generally more polar and more water
soluble than the parent compounds. This results in different transport behaviours
between the parent herbicides and the metabolites (Boxall et al. 2004). Although, at
least in Europe, the hazard and risks of the main metabolites have to be assessed in
prospective risk assessments (e.g. EFSA PPR 2013, 2015), the bioavailability and
mode of action of metabolites is not always known (Busch et al. 2016).

2.3 Concentrations of Herbicides in the Aquatic Environment

Changing and differential use has had a strong impact on the concentrations of
herbicides in the aquatic environment. Nevertheless, herbicides are the main con-
tributor to the total amount (expressed in μg/L) of pesticides present in aquatic
ecosystems (Casado et al. 2019). The most frequently detected herbicides present in
the highest concentrations in source waters in the USA in 1999–2000 had a
photosynthesis-inhibiting mode of action (Coupe and Blomquist 2004). In a more
recent study, herbicides with an auxin stimulating mode of action (2,4-D, triclopyr
and dicamba) were three of the five most frequently detected herbicides (Ensminger
et al. 2013). Out of the ten most frequently used herbicides in the USA in 1999–2000
(Coupe and Blomquist 2004), only two, atrazine and simazine, were detected in
streams and groundwaters in Europe in 2016 (Schreiner et al. 2016). In a recent
analysis of 29 small waterways across 10 countries in the European Union, Casado
et al. (2019) analysed in total 103 different pesticides, 45% of them being herbicides.
Herbicides were detected in 52% of the samples, and the most frequently detected
herbicides were terbuthylazine (100% of the samples) and metolachlor (90%). The
same substances are also included in the list of the most frequently detected
pesticides in the USA, Germany, France and the Netherlands compiled by Schreiner
et al. (2016).

Detection of herbicides is often related to recent application on nearby fields and
rain-induced runoff to adjacent aquatic ecosystems. In terms of total amount of
pesticides (as ng/L) detected by Casado et al. (2019), 97% corresponded to herbi-
cides, which was mainly due to the outstandingly high concentrations of six

Herbicide Exposure and Toxicity to Aquatic Primary Producers 125



herbicides (dimethenamid, MCPA, 2,4-D, ethofumesate, prosulfocarb and
terbuthylazine) present in concentrations above 1,000 ng/L at specific sites. These
six herbicides were also reported by Moschet et al. (2014) in small Swiss rivers.
Concentrations of specific herbicides in surface waters are generally not very high,
although a large number of different herbicides can be found. Yet, high peak values
with short exposure times occur generally in small streams and ditches related to
application in nearby agricultural fields and concurring runoff to these aquatic
ecosystems. In larger streams and water bodies lower in the catchment, peak values
of specific herbicides are lower due to dilution, while at the same time more different
herbicides are present. Monitoring studies on herbicides in the aquatic environment
have focused often on the water phase (e.g. Schreiner et al. 2016), while these
herbicides have been detected in biota and sediments as well (e.g. Masiá et al. 2013).
In fact, herbicides quickly disappear from the surface waters through absorption to
the sediment, degradation into other compounds through various processes including
hydrolysis and photolysis or accumulation in plants (Kookana et al. 1998; Ramezani
et al. 2008; Remucal 2014). The concentrations of herbicides are related to the
sediment type (organic matter, sand and clay content) (Kronvang et al. 2003), and
sediments have been shown to be a sink for many anthropogenic pollutants including
various herbicides. Sediments can also become sources of pesticides. Studying
aquatic systems influenced mainly by urban runoff in the USA, Ensminger et al.
(2013) observed that concentrations of the most frequently detected pesticides in
sediments (bifenthrin and other pyrethroids) increased strongly during storm events
in the water. Hence, they concluded that resuspension of sediments was a source of
bifenthrin for surface waters.

Comparing herbicides in surface waters and sediments is challenging, since only
a few studies present an overview of the most detected herbicides in sediments.
Comparing the most frequently detected herbicides in European rivers for sediments
(Massei et al. 2018) and surface waters (Schreiner et al. 2016) showed similarities as
well as differences between both compartments (Table 1). The five most frequently
detected herbicides in the sediment are also in the top ten of the surface waters, albeit
in different order, and for terbuthylazine and atrazine, mainly their transformation
products were measured in the sediment. The remaining top ten of most frequently
detected herbicides were completely different for sediments and surface waters,
indicating that the herbicide mixture present in both compartments differs substan-
tially. It is therefore argued that for a complete risk assessment of herbicides, both
aquatic environmental compartments, water and sediment, should be taken into
consideration.

Although herbicides are also released from treated wastewater discharged from
point sources (Munz et al. 2017), diffuse pollution is often the dominant source for
herbicides (Moschet et al. 2014). Quantification of herbicides in streams is therefore
challenging and especially demanding due to the high spatial-temporal concentration
dynamics, which require large sampling and analytical efforts to obtain representa-
tive data on the actual water quality (Wittmer et al. 2010). Grab sampling generally
provides only a snapshot of the herbicides present in a water body (Jones et al. 2015)
and results in underestimations of concentrations, except when sampling occurred
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during a runoff event (e.g. Casado et al. 2019). Two possible solutions are event-
driven sampling and passive sampling. The primary transport routes for pesticides to
aquatic ecosystems are surface runoff and tile drainage induced by heavy precipita-
tion events (Leu et al. 2004; Stehle and Schulz 2015). During precipitation events
after pesticide application, maximum pesticide concentrations can be a factor of
10–100 higher than during base-flow conditions (e.g. Rasmussen et al. 2015).
Therefore, assessing exposure by event-driven sampling following spray application
outperforms the widely used automatic water sampling at fixed intervals (Lorenz

Table 1 The top ten most frequently detected herbicides in the surface waters and sediments of
river ecosystems in Europe (rank # in each environmental compartment) based on percentage sites
at which the compound was present, analysed by Schreiner et al. (2016; surface water) and by
Massei et al. (2018; sediment)

Herbicide

MoA

Surface water Sediment

Compound CAS
Rank
#

% Sites
detected

Rank
#

% Sites
detected

Acetochlor 34256821 Inhibition of cell
division

- 6 16.7

Atrazine/2-
hydroxyatrazine

1912249/
2163680

Photosynthesis
inhibition/?

5 25.9 2 40.0

Bentazon 25057890 Photosynthesis
inhibition

8 22.8 -

Diuron 330541 Photosynthesis
inhibition

2 46.2 3 36.7

Flurtamone 96525234 Carotenoid bio-
synthesis
inhibition

- 10 10.0

Irgarol 28159980 Photosynthesis
inhibition

- 7 13.3

Isoproturon 34123596 Photosynthesis
inhibition

1 51.0 4 26.7

MCPA 94746 Synthetic auxin 3 36.7 -

Mecoprop 93652 Synthetic auxin 7 22.9 -

Metazachlor 67129082 Inhibition of cell
division

9 22.3 -

Metolachlor 51218452 Inhibition of cell
division

6 25.2 5 23.3

Simazine 122349 Photosynthesis
inhibition

10 21.4 -

Simetryn 1014706 Photosynthesis
inhibition

- 9 13.3

Terbuthylazine/
terbuthylazine-2-
hydroxy

5915413/
66753079

Photosynthesis
inhibition/?

4 29.4 1 70.0

Terbutryn 886500 Photosynthesis
inhibition

- 8 13.3

Modes of action (MoA) were obtained from Busch et al. (2016). (rank # ‘-’means that the herbicide
is not in the top ten for that environmental compartment)
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et al. 2017). Passive sampling can overcome the limitations of grab sampling by
exposing a sorbent in the aquatic environment for several weeks to months, accu-
mulating herbicides from the water over time (Vrana et al. 2005). In this way,
passive sampling integrates fluctuations in herbicide concentrations in time and
simultaneously enriches surface water samples to an extent that (bio)analytical
detection limits become very low (De Baat et al. 2019). Passive samplers have
been successfully applied to quantify exposure to both lipophilic and more water-
soluble compounds (e.g. range log KOW 0.47–4.92; Fernández et al. 2014).

Since hydrological processes are the main drivers for the mobilization and
transport of pollutants into surface water (Klaus et al. 2014), key transport mecha-
nisms for herbicides can be derived from insight into concentration and discharge
dynamics at the catchment outlet (Wittmer et al. 2010). An alternative method is the
event-based hysteresis analysis, regarded as a valuable tool to infer the source areas,
transport mechanisms, storage and mobilization capacity of herbicides and biolog-
ically active metabolites (Tang et al. 2017). Modelling expected concentrations of
herbicides in catchments can provide essential insights into the exposure of aquatic
primary producers to herbicides. Moser et al. (2018) showed that key drivers and
processes are reasonably well approximated by a simple model that includes land use
as a proxy for herbicide use, weather data for the timing of herbicide applications and
discharge or precipitation as drivers for transport. They could predict the timing and
level of peak concentrations within a factor of 2 to 3 in a spatially distributed manner
at the scale of large river basins. Better quantification of episodic pesticide pollution
events would result in more comprehensive assessments of variations in herbicide
exposure (Munz et al. 2017), and coupled progress in modelling, such as the FOCUS
modelling approach, and in measuring herbicide concentrations in the field remain
necessary to improve exposure assessments in aquatic ecosystems (Moser et al.
2018).

2.4 Bioavailability of Herbicides to Aquatic Primary
Producers

The bioavailable concentration is defined as the concentration that is freely available
for uptake, crossing an organism’s cellular membrane from the medium the organ-
ism inhabits at a given time (Semple et al. 2004). The bioavailability of herbicides
depends on the molecular characteristics of the herbicide and on environmental
conditions (Landrum et al. 1996; Delle Site 2001), but is also greatly influenced
by the test species and their physiology (Gomes and Juneau 2017). Furthermore,
after entering the environment, bioavailability of herbicides is altered by the
prevailing environmental conditions of the soil, surface waters and sediments
(Delle Site 2001; Semple et al. 2013). Only by direct contact to herbicides of aquatic
primary producers through nearby spraying activities (direct or wind-driven), the
resulting exposure is not altered through processes influencing bioavailability of the
herbicide (Lockhart et al. 1989; EFSA PPR 2015).
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Environmental conditions affecting the bioavailability of herbicides in the water
column are mainly temperature, pH and dissolved organic matter (DOM) concen-
trations and quality (Landrum et al. 1996). Since herbicides generally have a low
hydrophobicity (log KOW < 3), the impact of particles on their bioavailability is
generally small (Knauer et al. 2017). Water and particle-associated concentrations of
herbicides are estimated based on the organic carbon-water partitioning coefficient
(KOC). As for neutral organic compounds, the log KOC of herbicides correlates
positively with the octanol-water partitioning coefficient (log KOW), but for polar
and ionizable herbicides, KOW is a weaker predictor of the KOC (Delle Site 2001).
Also, black carbon can sorb herbicides, making them less available to primary
producers (Knauer et al. 2006; Semple et al. 2013). Bioavailability of herbicides is
high when they are weakly adsorbed or dissolved, in contrast to being part of more
complex aggregates or when strongly bound to minerals (Eggleton and Thomas
2004).

The bioavailability of herbicides in sediments depends on a wide range of
environmental conditions: sediment particle size distribution, sediment total organic
carbon concentration and composition, DOM and colloid concentrations in pore
water and sediment redox conditions (Landrum et al. 1996). Sorption and desorption
from sediment particles under different conditions make that the exposure and
bioavailability of organic contaminants in sediment is difficult to predict. The
organic matrix of the sediment is competing with the organism’s lipids for the
available herbicide molecules (Landrum and Fisher 1998). In sediments, typically
between 16 and 50% of the herbicides is bioavailable depending on the compound
and characteristics of the sediment (Lamoureux and Brownawell 1999). Bioavail-
ability of herbicides in sediments is determined by adsorption, desorption,
non-extractable residue formation and biodegradation, which are all occurring
interdependent and in parallel, with the latter also depending on the availability of
the herbicide to organisms degrading the compounds (e.g. microorganisms)
(Kanissery et al. 2019). Finally, interaction between sediment and surface water
can also enhance the bioavailability of herbicides in the water. Sediment
resuspension and exchange between surface water and pore water act as important
emission sources for both historic-use and current-use herbicides to the water
column (Cui et al. 2020).

In regulatory risk assessments, predicted concentrations for herbicides in surface
waters are derived using models (e.g. European FOrum for the Co-ordination of
pesticide fate models and their USe (FOCUS)), which distinguish between exposure
to dissolved and particle-associated compound concentrations, because the dissolved
concentration is thought to be the best predictor of bioavailability (Knauer et al.
2017). Assessment of the bioavailability of herbicides in the water column can be
achieved by passive sampling, exposing a sorbent in the aquatic environment to
accumulate available herbicides from the water over time (Vrana et al. 2005; De Baat
et al. 2019). Characterization of the bioavailability of herbicides in the sediment can
also be conducted using passive samplers, which have been developed to indirectly
measure the freely dissolved concentration of compounds by chemical partitioning
(e.g. Wang et al. 2018). Likewise, the ecotoxicological relevant concentration (ERC)

Herbicide Exposure and Toxicity to Aquatic Primary Producers 129



in herbicide effect and risk assessment is considered to be the freely dissolved
herbicide concentration in pore water and overlying water (ESFA PPR 2015).

2.5 Uptake of Herbicides by Aquatic Primary Producers

Aquatic primary producers take up herbicides from the water and depending on their
growth form also from the air (emergent and floating plants) and from the sediment
and pore water (all rooting plants, macroalgae with rhizoids and benthic algal
communities). Uptake from the air is mainly the result of (intentional) spraying
activities nearby aquatic ecosystems and is induced by direct contact of the herbi-
cides dissolved in droplets with the leaves of the plants (Hussner et al. 2017).
Aquatic primary producers take up herbicides directly from the surface water and
sediment pore water through their cell membranes. Mechanisms for uptake of
herbicides by aquatic primary producers are strongly depending on chemical prop-
erties of the herbicides. Small and nonpolar (log KOW < 1) herbicides can diffuse into
the cell passively by dissolving through the membrane’s hydrophobic core, driven
by a concentration gradient (Hsu and Kleier 1996), while for large or strongly
charged herbicides, active transport via protein transporters is needed (Ge et al.
2014). Dissolved weakly acidic herbicides penetrate the cell membranes primarily in
their undissociated lipophilic form and accumulate by an ion trapping mechanism
(Fahl et al. 1995). Accumulation inside the cells by ion trapping is based on the
relatively low permeability of the membranes to the dissociated species (Devine
et al. 1987) and differences in pH between surface water and cell cytoplasm. Uptake
of these herbicides by aquatic primary producers is thus strongly influenced by the
pH of the environment (Fahl et al. 1995; de Carvalho et al. 2007b).

Reported uptake rates of herbicides vary strongly between compounds and
between aquatic primary producer species. For various species of phytoplankton,
uptake rates of 1–3% of the total amount of atrazine available in the test vials have
been measured over 24 h using 14C-atrazine (Tang et al. 1998; Weiner et al. 2004),
while for Microcystis novacekii, an uptake rate of around 25% of the total available
atrazine over 96 h has been reported (Campos et al. 2013). This large range in uptake
rates may be due to differences in phytoplankton cell size and lipid composition
(Tang et al. 1998; Tuckey et al. 2002; Weiner et al. 2004). Smaller phytoplankton
cells with higher surface area-to-volume ratios will incorporate more herbicides and
will be more sensitive to exposure compared to larger phytoplankton cells (Tang
et al. 1998; Weiner et al. 2004). Besides cell size, also cell lipid content and
composition affect the ability of algae to take up lipophilic compounds, since the
presence of sterols influences the fluidity and permeability of cell membranes
(Tuckey et al. 2002). In addition to cell characteristics, also environmental condi-
tions influence the uptake of herbicides by aquatic primary producers. Temperature
and light conditions alter the uptake of herbicides by phytoplankton species mainly
through changes in cell size and photosynthetic activity, although responses to
interactions between light, temperature and herbicides are species-specific (Gomes
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and Juneau 2017). Moreover, the uptake of herbicides by phytoplankton species can
occur extremely rapid, with nearly 90% of the total uptake occurring within the first
hour of exposure of the algae (Tang et al. 1998), indicating that short pulse exposures
occurring after runoff or spill events can rapidly affect phytoplankton communities.

The uptake of herbicides by the roots of aquatic macrophytes occurs also fast,
with various phenylureas (range log KOW 1.0–3.7) reaching an equilibrium in
Lagarosiphon major within 24 h of exposure (de Carvalho et al. 2007b). The uptake
of herbicides by aquatic plants occurs often by partitioning of the compound over the
cell membrane (Hsu and Kleier 1996). Accumulation of herbicides in aquatic plants
is described well for most non-ionized compounds by equilibration into the aqueous
phase in the plant cells together with partitioning onto the plant solids; however, the
uptake of some herbicides (isoproturon and chlorotoluron) was better explained
using solvation descriptors (de Carvalho et al. 2007b). These herbicides are taken
up by specific binding at their site of action in the plant. The uptake of the herbicide
isoproturon was ascribed to specific binding to the D1 protein of the photosynthetic
PSII complex (Feurtet-Mazel et al. 1996). According to Knuteson et al. (2002), the
age of the plant also influences the uptake rate of herbicides, since 4-week-old
aquatic plants took up more simazine than 2-week-old plants. However, the tissue
burden normalized for plant biomass was lower in the older plants (Knuteson et al.
2002).

Rooted aquatic plants can take up herbicides via both the roots and the leaves,
with herbicide-specific differences in relative uptake rates between shoot and root
(Turgut and Fomin 2002; Turgut 2005). The uptake by the roots was related linearly
to the external herbicide concentrations over a wide concentration range, implying
that transport across the membrane proceeds via non-facilitated diffusion (Devine
et al. 1987). Briggs et al. (1982) reported a very strong relationship between the
lipophilicity (log KOW) of compounds and the transpiration stream concentration
factor (TSCF). However, this was only applicable to emergent aquatic macrophytes,
since submerged aquatic plants do not experience leaf transpiration (Turgut 2005).
Still, a high KOW value increased the uptake rate of sediment-associated herbicides
via the pore water due to the high lipid content of macrophytes (Jones and Winchell
1984; Guilizzoni 1991; Cedergreen et al. 2005). In contrast, the more polar herbi-
cides are rapidly taken up by macrophyte roots directly from the pore water
(Burešová et al. 2013).

Translocation of nutrients and energy, but also other compounds, plays an
important role in the exchange between shoots and roots of macrophytes. After the
contact of herbicides to macrophytes has been established, they can either act as
contact herbicides (e.g. diquat) and be non-mobile, i.e. only affecting the part of the
organisms that it comes into contact with, or act as systemic herbicides
(e.g. glyphosate and imazapyr) and be mobile, i.e. can be translocated through the
organisms via the phloem or xylem (Netherland 2014). Contact herbicides only
influence the plant parts directly exposed to the herbicide, like floating and emergent
parts when exposed to herbicide spraying (Lockhart et al. 1989), with potential
regrowth possible from non-exposed plant parts. Translocation through the plant via
the phloem or xylem enables the systemic herbicides to affect all parts of the plant,
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limiting recovery or regrowth from stored resources in belowground parts. After a
rapid uptake of linuron by Elodea canadensis and Myriophyllum spicatum shoots,
translocation to the roots of this herbicide occurred within 1–3 days (Diepens et al.
2014a). After atrazine exposure of Hydrilla verticillata in solution, Hinman and
Klaine (1992) observed that uptake and release approached equilibrium within 1 and
2 h for shoot and root tissue, respectively. Translocation of compounds through the
plant is directly related to their water solubility (Hinman and Klaine 1992). Trans-
location of three analogues of phenylurea herbicides in Myriophyllum aquaticum
was passive and reached optimal efficiency for herbicides with a log KOW value of
around 1.8 (de Carvalho et al. 2007a). Heine et al. (2015) developed a mechanistic
model of toxicokinetic processes to predict the uptake and the elimination of
herbicides, as well as the distribution processes between plant compartments (leaves,
stems, roots) of M. spicatum. Their results showed that toxicokinetic patterns were
mainly based on two chemical-specific parameters: the cuticular permeability and
the plant/water partition coefficient.

Besides translocation of herbicides to different plant parts or cell structures,
detoxification can occur after the uptake of herbicides by aquatic primary producers.
Uptake by aquatic plants can accelerate degradation of the herbicide by metabolic
processes (Fernandez et al. 1999; de Carvalho et al. 2007b). Glutathione-S-trans-
ferases are the main group of enzymes involved in this process by conjugating
herbicides with tripeptide glutathione (Dhir et al. 2009). The biodegradation mech-
anism for metabolism of simazine probably involves dealkylation into
hydroxysimazine followed by storage of end products in vacuoles (Knuteson et al.
2002). In this way, there is an interaction between the influence of exposure of
aquatic primary producers to herbicides and the removal of herbicides by these
species. Differences in sensitivity and mechanisms to deal with herbicides can
therefore influence overall species composition in areas prone to herbicide exposure
(Gomes and Juneau 2017).

Toxicokinetic/toxicodynamic (TKTD) models provide a conceptual framework
to better understand the causes for species-specific sensitivities to a single com-
pound, as well as the causes for different toxicities of different compounds to a single
species (Ashauer and Escher 2010). TKTD models are based on the principle that
processes influencing internal exposure of an organism (TK) are separated from the
processes that lead to damage and effects (TD) (EFSA PPR 2018). TKTD models
appear furthermore advantageous in terms of gaining a mechanistic understanding of
the chemical mode of action and deriving time-independent parameters (Baudrot and
Charles 2019). This is especially relevant since exposure time is an important source
of uncertainty, which is associated with chemical-specific toxicokinetic and
toxicodynamic characteristics (Wu et al. 2020). Different types of TKTD models
have been successfully developed, including the general unified threshold model of
survival (GUTS) and models for primary producers (EFSA PPR 2018; Baudrot and
Charles 2019). For aquatic primary producers exposed to pesticides, TKTD models
have been developed for algae, Lemna and Myriophyllum (EFSA PPR 2018).
Although TKTD models are species- and compound-specific, toxicity data can be
used derived from both standard test species and additional species for model
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calibrations. However, for validation of TKTD models, compound-specific and
species-specific datasets from independent refined-exposure experiments are
required.

3 Toxicity of Herbicides to Aquatic Primary Producers

3.1 Mode of Action of Herbicides

There is a wide diversity of herbicides that have been synthesized to attack specific
biochemical targets in plants. In an attempt to classify herbicides by mode of action,
a system of 22 different categories is often used (Sherwani et al. 2015). Here we
present a simplified classification specifying only eight categories (Plant and Soil
Sciences eLibrary 2019; Table 2). Inhibition of photosynthesis can occur through
disruption of various steps in the photosynthetic process (Vonk et al. 2009). Triazine
herbicides, like atrazine, simazine, metribuzin and phenylureas, like diuron, linuron
and isoproturon block the electron transfer in the PSII system (Feurtet-Mazel et al.
1996; Van den Brink et al. 2006), while the herbicide isoproturon reduces the carbon
fixation and oxygen production (Feurtet-Mazel et al. 1996). Plants can also repair the
oxidative damage caused by photosynthesis-inhibiting herbicides, which reduces the
negative effects of these herbicides (Cedergreen et al. 2005). Even a fast reversibility
of photosynthesis inhibition (within hours) has been demonstrated for several
photosynthesis-inhibiting herbicides (e.g. Snel et al. 1998). Plant hormone-
disrupting herbicides, comprised of 2,4-D, 2,4,5-T, picloram, clopyralid and

Table 2 Classification of herbicides by mode of action

No. Class (mode of action) Examples of compound groups
Example of active
ingredient

1 Amino acid synthesis
inhibitors

Sulfonylureas, imidazolones,
triazolopyrimidines, epsp synthase
inhibitors

Glyphosate

2 Seedling growth inhibitors Carbamothiates, acetamides,
dinitroanilines

EPTC

3 Growth regulators (inter-
fere with plant hormones)

Phenoxy-acetic acids, benzoic acid,
carboxylic acids, picolinic acids

2,4-D

4 Inhibitors of
photosynthesis

Triazines, uracils, phenylureas,
benzothiadiazoles, nitriles, pyridazines

Atrazine

5 Lipid synthesis inhibitors Aryloxyphenoxypropionates,
cyclohexanediones

Sethoxydim

6 Cell membrane disrupters Diphenyl ethers, aryl triazolinones,
phenylphthalamides, bipyridilium

Paraquat

7 Inhibitors of protective
pigments

Isoxazolidinones, isoxazoles,
pyridazinones

Clomazone

8 Unknown Compounds with proven herbicide
efficacy but unknown mode of action

Ethofumesate
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triclopyr (Van den Brink et al. 2006), are especially hazardous to vascular plants,
having auxin hormones that regulate their growth, in contrast to other groups of
primary producers, like unicellular algae, that lack these hormones (Belgers et al.
2011). Since many of the herbicides that influence the plant hormone system are
auxin stimulators, exposure to these herbicides might initially increase the growth
rate of plants instead of decreasing it (Van den Brink et al. 2006).

3.2 Standardized Toxicity Tests with Aquatic Primary
Producers

Most herbicides have been developed to be selective, i.e. to be phytotoxic to the
competing non-crop plants, but not to the crop plants. This resulted in a wide variety
of modes of action (Table 2). Accordingly, significant differences in toxicity to
aquatic primary producer species are to be expected. Consequently, appropriate test
species should be proposed, covering all presently known modes of action of the
currently applied herbicides. Several standardized guidelines were proposed by
organizations such as the OECD (Organisation for Economic Co-operation and
Development), ASTM (American Society for Testing and Materials), USEPA
(United States Environmental Protection Agency) and ISO (International Organiza-
tion for Standardization), which are globally used for hazard and risk assessment.
Most of these guidelines outline toxicity tests to determine the effects of hazardous
herbicides on single species. For regulatory purposes, the majority of the toxicity
tests are done according to freely available OECD or USEPA guidelines. However,
the guidelines of the ISO and the ASTM were not freely available. Therefore, the
guidelines from these organizations could not be evaluated completely, and only
limited information about the species, endpoints and test methods were available.
Among the standard guidelines, 18 tests consider aquatic primary producers
(Table 3). In 9 of the 18 standardized guidelines with aquatic primary producers
provided by the USEPA, ISO, OECD and the ASTM, the standard test species were
algae, including diatoms, green algae and cyanobacteria. In five tests floating
macrophytes have been selected as test organisms, all consisting of duckweed
species. Submerged macrophytes have been selected in four tests and emergent
macrophytes in only one test (Table 3). In addition, only two tests included sediment
toxicity by selecting rooting plant species. Hence, among the available tests, there is
a bias towards algae compared to macrophytes, while the few available macrophyte
tests largely ignore the sediment as environmental compartment of concern. One
reason for the relative lack of sediment tests is the usually perceived lower toxicity of
herbicides in sediment tests compared to water-only tests. However, partitioning of
herbicides to the sediment can result in exposure via root uptake (OECD 2014b) and
enhanced toxicity in sediment tests compared to water-only tests. Hence, the paucity
of tests with rooting macrophytes leaves the effect of contaminated sediments on
aquatic primary producers largely unknown. Another knowledge gap concerns
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marine species that are often neglected. Only three standard guidelines were pro-
posed to test the effects of polluted marine waters on primary producers (Table 3).
Moreover, no standard guidelines at all were proposed to test the effect of polluted
marine sediments.

Outdoor microcosms and mesocosms can be an important tool in bridging the gap
between lower-tier and higher-tier laboratory studies (single-species and multi-
species) and in attempting to understand, predict and confirm what may occur in
the natural environment upon herbicide exposure (Coors et al. 2006; OECD 2006c).
Various guidance documents have been developed for summarizing and harmoniz-
ing the results of micro- and mesocosm studies (e.g. Giddings et al. 2002; OECD
2006c; De Jong et al. 2008), because of the unique nature of each microcosm or
mesocosm study in at least some aspects of the experimental design (OECD 2006c).
In comparison to standardized toxicity tests, microcosm and mesocosm studies can
include (1) multiple species, functional groups or habitat types, (2) more environ-
mentally realistic exposure conditions and (3) the impact on structural and functional
attributes of natural ecosystems (OECD 2006c). When studying the impact of
herbicides on aquatic macrophytes, special efforts are required to establish a diverse
and representative community (Giddings et al. 2002). Still, not all ecological rele-
vant processes can be included in mesocosm studies. Due to the isolate character of
mesocosms, external recovery and avoidance will not be taken into account (De Jong
et al. 2008). Finally, the chosen environmental conditions in mesocosms, such as
nutrient availability and substrate, can influence the effects of herbicides (cf. Dalton
et al. 2015).

3.3 Selected Endpoints in Standardized Toxicity Tests
with Aquatic Primary Producers

An obvious condition for herbicides to be effective is that they are actually taken up
by the primary producers. Accumulation after uptake and translocation to specific
cell organelles or plant tissue can result in increased herbicide concentrations at
target sites in primary producers. Although elevated concentrations in primary pro-
ducers are indicative of the presence of bioavailable herbicides, this does not
necessarily imply that adverse effects on these organisms occur. Measurements
assessing the accumulation of herbicides in aquatic primary producers can therefore
be best combined with one or more biological endpoint assessments. The most
frequently used endpoints in toxicity tests with primary producers are growth-
related effects. These endpoints are the most relevant for ecological risk assessment
and are independent of the herbicides’ mode of action. Other endpoints like enzyme
activities or photosynthesis provide insight into the mode of action of the herbicide,
but may be less relevant for ecological risk assessment. Yet, photosynthesis is the
most essential metabolic pathway for primary producers, and therefore photosyn-
thesis inhibition is the mode of action of many herbicides, whereby different steps in
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the photosynthetic pathway can be targeted. Hence, photosynthesis is relevant for
assessing acute effects on the chlorophyll electron transport and can be assessed
using pulse-amplitude modulation (PAM) fluorometry or from oxygen production or
carbon fixation.

Growth represents the accumulation of biomass of primary producers. Growth
inhibition is the most important endpoint in test with primary producers, since this
endpoint integrates responses of a wide range of metabolic effects into a whole
organism or a population response. However, it takes longer to assess, especially for
larger primary producers. Cell counts; increase in size over time for either leaves,
roots or whole organisms; and (bio)mass (fresh weight and dry weight) are the
growth endpoints mostly used. Although area under the growth curve based on cell
counts is a sensitive endpoint for both freshwater and marine algae (Hampel et al.
2001), assessing inhibition of growth rate is preferred over inhibition of biomass,
since the latter is more affected by deviations in test conditions among studies
(Bergtold and Dohmen 2011). For vascular aquatic plants, not only growth is a
relevant endpoint but also endpoints specifically related to various life stages.
Flowering and seed production are relevant endpoints for certain floating and
emergent plant species, although vegetative reproduction is omnipresent in aquatic
primary producers. Seedling emergence and early development of seedlings into
plants are especially relevant for perennial and biannual aquatic plants (Muller et al.
2001). Successful germination of aquatic plants after seed dispersal can help to
disperse species and to maintain healthy populations. For terrestrial plants seedling
emergence tests are available (e.g. OECD 2006a; USEPA 2012e); however, no
standardized seedling emergence test is currently available for aquatic plants.
Other relevant endpoints for aquatic primary producers include elongation of differ-
ent plant parts (e.g. roots), necrosis of leaves and disturbances in plant-microbial
symbiont relationships (e.g. Mynampati et al. 2015).

Since the selected endpoint can influence the outcome of the toxicity test (Eklund
and Kautsky 2003; Cedergreen et al. 2005), it is recommended to combine several
endpoints in a single test. After exposure to herbicides influencing plant elongation
(e.g. auxin stimulators), shoot length can be increased compared to control plants
(Van den Brink et al. 2006), which is not especially beneficial to aquatic plants since
this my limit their hydrodynamic resistance and further development. Growth and
change in biomass or abundance are therefore generally considered to be the most
robust endpoints (Knauer et al. 2006; Maltby et al. 2009; Bergtold and Dohmen
2011), showing the overall result of alterations in plant metabolic pathways by
herbicides. An additional advantage is that growth can be calculated for any species,
including population growth in the case of algae, facilitating the comparison of
species-specific sensitivities between aquatic primary producers. Challenges to
improve ecotoxicity tests with aquatic primary producers would be to include
more sensitive and early response endpoints and to relate these endpoints to impact
on growth, development and biomass of aquatic primary producers. Also, the
development of ecotoxicogenomic endpoints (e.g. metabolomics) in the field of
plant ecotoxicity tests would enable us to determine effects on a wider range of
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plant metabolic pathways. However, quantifying the effects on these metabolic
pathways in terms of overall productivity of primary producers is not yet possible.

The OECD proposed growth inhibition and yield of total shoot length, fresh
weight and dry weight as endpoints for a sediment-free test and additionally qual-
itative observations of symptoms such as chlorosis, necrosis and growth deformities
for a water-sediment test with rooting macrophytes (OECD 2014a, b). For this group
of primary producers, somatic endpoints like total plant length, main shoot length,
fresh weight and root length are more sensitive than pigment endpoints, similar as
for floating macrophytes (Hanson et al. 2003; Brain et al. 2004; Knauer et al. 2006).
For soil and sediment exposure of aquatic plants to herbicides, development of
endpoints related to root morphology and root metabolism could provide insights
into early impact of herbicides on exposed plant parts. For auxin-type acting
herbicides, root endpoints are the most sensitive somatic endpoints for rooting
macrophytes (Hanson et al. 2003; Arts et al. 2008). However, development of
belowground endpoints is still challenging since root development is also strongly
impacted by available nutrients and redox conditions in the sediment (Barko et al.
1991; Boros et al. 2011).

3.4 Sensitivity of Aquatic Primary Producers to Herbicides

All herbicides are extensively tested before they can be applied in the environment.
For this review, we merged the available EC50 data of aquatic primary producers
used for the regulatory assessment of herbicides in Europe, mainly from the EFSA
website (European Food and Safety Authority; http://www.efsa.europa.eu/; accessed
Feb 2020) and from the USEPA ECOTOX knowledgebase (https://cfpub.epa.gov/
ecotox/, accessed Feb 2020). The selected herbicides were the most commonly
encountered herbicides mentioned in Table 1 and supplemented with 2,4-D (CAS
94757), dicamba (CAS 1918009) and triclopyr (CAS 55335063), three commonly
analysed herbicides in the environment which act as synthetic auxin growth regula-
tors (Ensminger et al. 2013). On the EU regulatory websites, limited or no data were
present for the herbicides that were not approved or even banned (atrazine, irgarol,
metolachlor, simazine, simetryn and terbutryn) in Europe. From the USEPA
ECOTOX database, we first selected laboratory tests on plant species with water
as exposure medium (freshwater and marine) and EC50 values at the individual or
the population level (abundance, (bio)mass and (population) growth rate), excluding
short-term physiological endpoints like photosynthetic activity. Exposure types
‘renewal’ and ‘flow through’ as well as all EC50 values reported as ‘NR’ were
removed. To use as much of the available data as possible, no distinction was made
between nominal, initial measured and mean measured concentrations during the
test. Incorrectly mentioned media types for some species (wrongly placed in either
saltwater or freshwater) were corrected, and in the case of multiple EC50 values
from a single combination of species and study, the average EC50 was calculated.
The available effect concentrations were grouped by generic endpoint, e.g. growth
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included length, yield and biomass. Species were then divided into freshwater
(§4.4.1; Supplement Table S1) and marine (§4.4.2; Supplement Table S2). For
sediment-associated herbicide exposure, we searched for aquatic tests on plant
species and terrestrial tests on algae, in both cases using sediment and soil as
exposure medium, respectively, applying the same criteria as mentioned above.

3.4.1 Sensitivity of Freshwater Primary Producers to Herbicides

The inventory of the available ecotoxicity data, expressed as EC50 values with
abundance, (bio)mass and (population) growth rate as endpoints, revealed that the
most frequently tested herbicides were atrazine, simetryn, diuron and metolachlor,
followed by irgarol, isoproturon, simazine, 2,4-D, acetochlor and MCPA (Table 4).
In total, 109 freshwater taxa belonging to 66 genera were tested, the most frequently
selected test genera being the algae Pseudokirchneriella (synonym of Raphidocelis,
previously also classified as Selenastrum or Ankistrodesmus; www.algaebase.org)
and Chlorella and the floating macrophyte Lemna. The toxicity of each herbicide
varied substantially (Table 4), with the lowest effect concentration observed for
irgarol (EbC50 0.09 μg/L) and the highest for mecoprop (ErC50 729 mg/L). Toxicity
data varied most for acetochlor, ranging from 0.0003 mg/L to 110 mg/L, hence a six
orders of magnitude difference, followed by atrazine, irgarol and mecoprop with a
five orders of magnitude difference between the lowest and highest EC50. But also
for other herbicides (2,4-D, metazachlor and metolachlor), an around four orders of
magnitude difference between the highest and lowest effect concentration was not
uncommon. Only for bentazon the range in effect concentrations was quite small,
and these EC50 values were all relatively high (3.88–42.5 mg/L). In spite of these
wide ranges in effect concentrations, we calculated the median of the available data,
which allowed a general ranking of the toxicity of the herbicides. Based on median
EC50 values, irgarol, terbutryn, terbuthylazine, flurtamone and simetryn were the
most toxic herbicides (Table 4). On the other hand, the highest median effect
concentrations were obtained for mecoprop, triclopyr, MCPA, 2,4-D and bentazon,
indicating that these herbicides were the least toxic to aquatic primary producers.

Considering the species-specific sensitivities to the 18 herbicides included in our
analyses, hardly any pattern was observed. Generally, the most sensitive as well as
the least sensitive species differed per herbicide. Pseudokirchneriella subcapitata
(¼Selenastrum capricornutum) was the most sensitive and the least sensitive species
for one third of herbicides (i.e. six) included in our study. Chlorella sp. was least
sensitive to three herbicides, but most sensitive to isoproturon, while Anabaena flos-
aquae was most sensitive to two herbicides and least sensitive to one herbicide. For
five herbicides, macrophytes showed the highest sensitivities, while for two herbi-
cides, macrophytes were the least sensitive aquatic primary producers. Dividing the
EC50 values obtained for aquatic primary producers into algae and macrophytes
showed a large difference in available data, i.e. 456 values for algae but only
95 values for macrophytes. Consequently, most of the general patterns for aquatic
primary producers described above related to the responses of algae. In fact, only for
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11 herbicides, at least 4 EC50 values were available for macrophytes. However,
ranking these herbicides based on median EC50 values showed a similar ranking for
algae and macrophytes.

The wide variety in effect concentrations per herbicide are due to species-specific
sensitivities, but also due to variation in effect concentrations within the same
species, among others caused by differences in exposure time between the various
studies (Thompson and Couture 1991), but also on the lack of information on the
used exposure metrics (nominal, measured initial or mean concentration). To dis-
tinguish these two sources of variation, effect concentrations may be best compared
per herbicide and per exposure time between species. This reduces the accompany-
ing margins of uncertainty extensively, as shown for atrazine, the herbicide for
which most toxicity data are available. Generally, at a given exposure time, the
maximal variability in effect concentrations for a specific herbicide per species was
reduced to approximately a factor of 10. Moreover, considering the toxicity of the
herbicides per exposure time also allowed to evaluate if and how much the toxicity
of the herbicides increases with increasing exposure time, although this may be
masked by the use of different exposure metrices.

If enough toxicity data are available for a specific herbicide at a given exposure
time, these can best be visualized and evaluated by species sensitivity distributions.
A SSD is a distribution describing the variance in sensitivity of multiple species
exposed to a hazardous compound. A SSD curve can be used to derive a so-called
hazardous concentration on the X-axis: a benchmark concentration that can be used
as regulatory criterion to protect the environment. By selecting a protection level on
the Y-axis, representing a certain fraction of species affected (e.g. 5%), one derives
the compound-specific hazardous concentration 5 (HC5). The obtained EC50 values
(Supplement Table S1) were combined to construct SSDs using a SSD generator
(USEPA 2016). The available effect concentrations were grouped by generic end-
point, e.g. growth rate (ErC50), yield (EyC50) and biomass (EbC50). Since algal
ecotoxicity data were significantly more available than macrophyte data, we first
constructed SSDs based on algae. In addition, we could also construct SSDs for
macrophytes for atrazine and metolachlor. An overview of the calculated HC5
concentrations for the most frequently observed herbicides per exposure time is
provided in Table 5.

For nine herbicides (acetochlor, atrazine, diuron, irgarol, isoproturon, MCPA,
metolachlor, simetryn and simazine), enough ecotoxicity data (either EbC50, ErC50
or EyC50) were available to construct SSD curves for 4 days of exposure, the
exposure time that had most herbicides in common (Table 5). Comparing the HC5
values derived from these SSDs allowed a clear ranking of the herbicides (Fig. 2),
with irgarol being the most toxic one (HC5 0.31 μg/L), followed by diuron
(0.35 μg/L), isoproturon (4.4 μg/L), simetryn (5.4 μg/L), atrazine (6.9 μg/L),
acetochlor (11.0 μg/L), simazine (35.4 μg/L), metolachlor (97.3 μg/L) and MCPA
(11.6 mg/L). This ranking only partly matched the one based on the rough estimates
derived from Table 4, underlining that the precise and detailed analysis of the
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ecotoxicity data by means of constructing SSD curves is the only reliable way to
compare herbicides and exposure times. Yet, SSDs are data hungry, requiring
preferably at least EC50 values for eight different species (EFSA PPR 2013),
although for the present study we went down to five data points.

Since atrazine was the most frequently studied herbicide, enough algae data were
available to construct SSDs for 1, 2, 3, 4 and 5d of exposure. The median HC5 values
derived from these SSD curves ranged from 4.4 to 32.6 μg/L (Fig. 3a), but these
values were not related to the exposure time (ANOVA F1,4 ¼ 1.257, p ¼ 0.69).
Although only algal species were included in this analysis, differences in test species
per exposure times could have contributed to the variation in these median HC5
values. For six other herbicides, we could calculate HC5 values based on algal
species for two different exposure times. As for atrazine, no difference in HC5
values between exposure times was observed for simazine (Fig. 3f), simetryn
(Fig. 3g) and irgarol (Fig. 4B). This is most likely due to the direct mode of action
of these herbicides, all interfering with photosynthesis. Apparently, the herbicide
concentration at the target site and the expression of the toxic effect takes already
place within the shortest exposure time (1 d). In contrast, for herbicides that need
more time to build up lethal concentrations and that are characterized by slower time-
to-events EC50 values, SSD curves and HC5 values decrease with increasing
exposure time (Schroer et al. 2004; Roessink et al. 2006). In the present study, this
decrease in HC5 values was observed for the herbicides diuron (Fig. 3b) and
isoproturon (Fig. 3c). For MCPA, a contrasting pattern in HC5 values was obtained
(Fig. 3d). Finally, comparing HC5 values for different groups of aquatic primary
producers showed that the sensitivity to atrazine was comparable for macrophytes
after 14d exposure and algae after 1d to 5d exposure (Fig. 3A). This is also reflected
by the HC5 values obtained from both groups after 7d exposure. Contrastingly,
sensitivity of macrophytes to metolachlor (14d exposure) was around one order of
magnitude higher compared to algae (4d exposure; Fig. 3E).
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Fig. 2 Order of increasing toxicity of herbicides to freshwater algae, based on HC5 values
(median � 90% CI) derived from ecotoxicity tests after 4 days of exposure to the compound
(Overview of the studies and species included in the SSDs in Supplement Table S1)
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The wide range of effect concentrations per herbicide and the rather random
distribution of the species being the most or the least sensitive one underline the
urgent need to test different species, certainly more than one. The OECD and
USEPA guidelines contain standard information on parameters like temperature
and light conditions, but these may vary between the reported studies. The observed
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simetryn. (Overview of the studies and species included in the SSDs in Supplement Table S1)
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species-specific sensitivities can therefore also at least partly be attributed to the
testing methods. For example, light conditions can have a strong influence on the
sensitivity of aquatic primary producers, but this confounding effect differs between
herbicides. The extent of the light-saturated region of photosynthesis of a species is
modulated by a number of factors (e.g. availability of carbon dioxide, temperature,
developmental stage, etc.), and these factors also influence the sensitivity of aquatic
primary producers to herbicides (Snel et al. 1998). Comparing the sensitivity of ten
aquatic macrophytes under low light intensity (irradiance 200 μmol/m2/s) and high
light intensity (irradiance 550 μmol/m2/s), Cedergreen et al. (2004) showed that the
sensitivity of the macrophytes, expressed as mean HC5 values based on EC50 values
14d of repeated exposure, decreased for terbuthylazine (11 and 39 μg/L, respec-
tively), but increased for metsulfuron-methyl (0.031 and 0.014 μg/L, respectively).
In situ, this means that an individual plant in full sunlight might be nearly unaffected,
while another plant of the same species in the shade might be affected to a much
greater extent by a single herbicide with a photosynthesis II inhibition mode of
action (Snel et al. 1998). Also, Sjollema et al. (2014) showed that the toxicity of
diuron and irgarol to the marine flagellate was higher under simulated spring
irradiance than under autumn irradiance, which indicates that herbicide toxicity in
the field is also seasonally variable. This clearly shows that the sensitivity of aquatic
primary producers to herbicides is also depending on their metabolic activity, hence
the strict set of standardized test conditions used in regulatory assessment of
herbicides.
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3.4.2 Sensitivity of Marine Primary Producers to Herbicides

For marine primary producers, 98 EC50 values for the endpoints abundance
(EyC50), biomass (EbC50) and growth rate (ErC50) of mainly algae were obtained
for 11 herbicides, and only a single macrophyte was tested (Supplement Table S2).
Hence, far less studies have tested the effects of a lower diversity of herbicides on
marine macrophytes and algae (Table 6) compared to freshwater primary producers.
The only macrophyte included was Zostera marina, which was tested for only two
herbicides (irgarol and diuron) (Chesworth et al. 2004), while microalgae were much
more frequently represented. Consequently, only the sensitivities of algae to the
most frequently detected and studied herbicides could be compared. Moreover, for
several herbicides, data for only one or two marine species were available
(acetochlor, bentazon, dicamba, metolachlor and terbuthylazine), leaving only five
herbicides that were tested on more than one species. This strongly hampers the
identification of species-specific and herbicide-specific sensitivities in the marine
environment.

The inventory of the available marine ecotoxicity data revealed that the only
extensively tested herbicides were 2,4-D, atrazine, diuron, irgarol and simazine
(Table 6). In total 28 marine taxa belonging to 25 genera were tested, about a quarter
of the numbers of freshwater taxa tested. Moreover, the marine genera were
represented by fewer species than the freshwater genera. The only frequently
selected test species (>15 tests) were the algae Skeletonema costatum and Dunaliella
tertiolecta (Supplement Table S2). Also for marine test species, the toxicity of each
herbicide varied substantially (Table 6). The lowest effect concentration was
observed for irgarol (0.1 μg/L), the same value as the lowest effect concentration
observed in the freshwater tests. Similar to freshwater, the highest effect

Table 6 Overview of the sensitivity of marine primary producers to herbicides expressed as EC50
values based on measured abundance, (bio)mass or population growth (Overview of the studies and
species included in the SSDs in Supplement Table S2)

Herbicide

Marine algae

Genera (#) Taxa (#)

ExC50 (mg/L)

(#) median range

2,4-D 5 5 8 48 0.68–75

Acetochlor 1 1 1 0.0051 –

Atrazine 17 17 43 0.069 0.017–0.43

Bentazon 1 1 1 10.1 –

Dicamba 1 1 1 0.49 –

Diuron 11 11 15 0.008 0.0006–0.02

Irgarol 13 14 19 0.0004 0.0001–0.01

Isoproturon 2 2 2 0.04 0.027–0.053

Metolachlor 1 1 1 0.061 –

Simazine 6 6 6 1.8 0.11–12.5

Terbuthylazine 1 1 1 0.031 –
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concentration was observed for 2,4-D (75 mg/L), but this concentration was lower
than the highest effect concentration observed in the freshwater tests (729 mg/L).

Toxicity data varied most for 2,4-D and simazine, for which an around two orders
of magnitude difference for both herbicides was observed. Yet, this range was
substantially smaller than the six orders of magnitude difference observed for
MCPA in freshwater. This is potentially due to the lack of data on marine macro-
phytes, causing the dataset to consist of algae only. Especially for 2,4-D, the range in
effect concentrations was much smaller compared to freshwater primary producers,
and the values were relatively high (EC50 range 0.68–75 mg/L). This indicates that
2,4-D may be considered to be one of the least toxic herbicides to marine algae,
because they are not sensitive to the auxin mode of action of this herbicide. Given the
paucity and the wide range in marine effect concentrations, we refrained from
ranking the herbicides based on their effects on marine primary producers. More-
over, considering the species-specific sensitivities for the five herbicides, also hardly
any pattern was observed.

Given the limited marine ecotoxicity data, only for atrazine and irgarol, SSD
curves could be constructed for 3 and 4d of exposure (Table 5). Similar to freshwa-
ter, no clear relationship was observed between exposure time and the HC5 values
derived from these SSD curves (Fig. 4), with no difference for irgarol and even an
increase in HC5 values for atrazine. Both the 3 and 4d SSD curves showed that
irgarol was at least ten times more toxic to marine algae than atrazine, following the
trend observed for freshwater algae. These HC5 values also showed that irgarol was
more toxic to marine species, whereas atrazine was more toxic to freshwater species.
This shows that the toxicity of herbicides may differ between environmental com-
partments, although this statement is based on two herbicides only and is possibly
biased by testing different taxonomic groups, e.g. more green algae and in freshwater
and more brown and red algae in marine environments. Due to the lack of data, the
ranking of the other herbicides based on their toxicity to marine primary producers
can only be based on the relatively rough estimates listed in Table 5. It is concluded
that toxicity data for herbicides on marine primary producers, especially macro-
phytes, lag behind that of freshwater species and more research is warranted.

3.4.3 Sensitivity of Aquatic Primary Producers to Sediment-Associated
Herbicides

In comparison to exposure through surface water, there is very limited information
available on the sensitivities of aquatic primary producers to exposure to herbicides
via the sediment. Yet, given the accumulation of herbicides in sediments (Haynes
et al. 2000; Devault et al. 2009), rooting macrophytes are expected to be exposed
much more to this source of herbicides than algae or free-floating plants (Lovett-
Doust et al. 1994). Although various rooting macrophytes have been tested, the main
exposure pathway was still often via surface water (e.g. Kemp et al. 1985; Wilson
and Wilson 2010; Ratte and Ratte 2014), and reported differences in sensitivity to
herbicides between rooting macrophytes and other aquatic primary producers were
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consequently often based on surface water exposure. The main species currently
used in standardized sediment toxicity testing is the rooting dicotyledonous
Myriophyllum spp., while monocotyledonous species are mainly mentioned as
suitable test species but not actually tested (Davies et al. 2003; OECD 2014b). In
the USEPA ECOTOX database, there were only a few studies reporting the sensi-
tivity of rooting macrophytes to exposure to herbicides through sediment
(e.g. Burešová et al. 2013).

Given the low number of available studies, the sensitivity of aquatic primary
producers to contaminated sediments is hard to compare with the sensitivity to
contaminated waters. Burešová et al. (2013) reported the effects of linuron on
M. spicatum in sediment-dosed test systems, with EC50 values for various endpoints
ranging from 11.6 to 16.9 mg linuron/kg sediment. Since Myriophyllum can take up
linuron through the roots, pore water effect concentrations provided relevant values
for describing the effects on this rooting aquatic macrophyte and allowed a compar-
ison of sediment pore water and surface water effect concentrations (Burešová et al.
2013). This comparison showed that the mean effect concentration (EC50) for plant
biomass was about one order of magnitude higher in pore water in sediment-dosed
systems (1,115 μg/L; Burešová et al. 2013) compared to the overlying water in
water-dosed test systems (137 μg/L; Kemp et al. 1985). Yet, taken into account the
much lower root biomass (5–20% of plant biomass forM. spicatum; Cao et al. 2012)
compared to the shoot biomass (80–95%), the total exposed plant biomass was about
one order of magnitude lower in the sediment-dosed test systems.

Responses of rooting plants to herbicide exposure through the sediment are
expected to be most strongly in their belowground parts, since in this case these
parts of the plant are most directly exposed to the herbicide. Sensitivity of
Vallisneria americana to sediment-associated contaminants could be assessed by
changes in their shoot-to-root ratios, with plants grown in sediments contaminated
with organic compounds having larger shoot-to-root ratios compared to plants
grown in cleaner sediments (Biernacki et al. 1997). Although root endpoints were
more sensitive than shoot endpoints for M. spicatum exposed to linuron via sedi-
ment, shoot biomass declined more (1.8x lower than control) compared to root
biomass (1.5x lower; Burešová et al. 2013). Generally,Myriophyllum species appear
to have a large variation in shoot-to-root ratios, also strongly influenced by the type
of sediment used, the length of the initial cutting and the incubation time (Knauer
et al. 2006, 2008). Examples for emergent rooting plants are scarce, with rice (Oryza
sativa) showing a more sensitive response in the shoots compared to the roots to
sediment-associated herbicides (Brinke et al. 2015).

Benthic biofilms and microalgae living on the top layer of the sediment are
exposed via the overlaying water and to sediment-associated herbicides. The uptake
of herbicides from the sediment by microalgae is even more direct than that by
higher organisms (Diepens et al. 2014b). The uptake of herbicides from the sediment
matrix is diffusion-driven and relatively fast for microalgae due to the much higher
surface area-to-volume ratio compared to macrophytes. This pathway of uptake also
implies that freely dissolved pore-water concentrations are the most relevant dose
metric for tests with benthic microalgae (Diepens et al. 2014b). Only a few studies
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compared the herbicide sensitivity of algae living on the top layer of sediments, but
some information is available for microalgae living in agricultural soils. Pipe and
Cullimore (1984) showed that diuron, monuron and chloroxuron were more toxic to
the soil diatom Hantzschia than chlortoluron and linuron. Atrazine application
changed the species composition of the soil diatom communities in agricultural
fields, with short-term ecotoxicity tests showing that the communities that had
developed under herbicide stress were more tolerant to further atrazine application
than the control communities (Bérard et al. 2004). Diatoms living on top of the
sediment are the main aquatic primary producers in streams, but their exposure to
herbicides has focused entirely on surface water contaminants (Debenest et al.
2010). Eutrophic and small diatom species were the most tolerant growth forms to
atrazine, irgarol and isoproturon exposure (Debenest et al. 2010). Furthermore,
diatom communities that include species capable of switching from autotrophic to
heterotrophic modes when photosynthesis is inhibited (e.g. after herbicide exposure)
can continue to grow, even in the presence of high concentrations of herbicides
(Debenest et al. 2010).

It is concluded that the largest knowledge gap concerns the effects of sediment-
associated herbicides on primary producers. This is remarkable, since chemical
pollution of water bodies in the past resulted in high concentrations of toxicants in
sediments (De Deckere et al. 2011), and where regulations strongly improved
chemical water quality (De Deckere et al. 2011), sediments are considered to be
the largest chemical repositories on earth (Borja et al. 2004). Consequently, sedi-
ments are the most relevant environmental compartment to link adverse effects on
biota to toxicants (Borja et al. 2004). Although a proposal for a risk assessment of
sediment-associated herbicides is provided by the EFSA PPR (2015), an extensive
catch-up must be made concerning contaminated sediment and sediment-associated
herbicide toxicity to primary producers.

3.5 Mixture Toxicity of Herbicides to Aquatic Primary
Producers

Mixture toxicity should be taken into account, since herbicides are frequently
applied in mixtures and mostly occur jointly in the aquatic environment (Schreiner
et al. 2016; Moser et al. 2018). Various studies have evaluated the relative contri-
bution of different pesticide groups to risks to aquatic communities. Although
insecticides (especially the highly toxic pyrethroids) generally play a large role in
the direct effects of mixtures on aquatic communities, herbicides also contribute
substantially. From a nationwide screening of rivers in Swiss using liquid
chromatography-high-resolution mass spectrometry, Moschet et al. (2014) calcu-
lated that herbicide mixtures made up 60–80% of the total risk of pesticides together
in the rivers. However, the pyrethroids were not included in the analysis, while
fungicides were not considered in the risk assessment based on three organism
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groups (plants, vertebrates and invertebrates). Mixture effects of herbicides and
fungicides on aquatic primary producers should also be taken into account, since
fungicides may affect algae as well (Guida et al. 2008) and their risk to aquatic
primary producers may be underestimated (Reilly et al. 2012).

For herbicides with the same mode of action, concentration addition has been
observed for algal community responses (Arrhenius et al. 2004). Hence, the only
difference between the herbicides in the mixture is the relative potency of the
compounds, and a mixture of herbicides with the same mode of action thus poses
a concentration additive effect on primary producers (Backhaus et al. 2004). Devi-
ations from concentration addition can be seen as a first indication of the herbicides
in the mixture having a different mode of action. Herbicides with the same mode of
action often act on a set of biological pathways related to a specific metabolic
process, e.g. photosynthesis. Still there are many pathways involved in most meta-
bolic processes, so herbicides with a specific mode of action (e.g. photosynthesis
inhibition) can act on different molecular targets. Different photosynthesis-inhibiting
herbicides can thus still have different mechanisms of action (Busch et al. 2016). For
photosynthesis-inhibiting herbicides, this mechanism is often known, but for many
other types of herbicides, it is often difficult to assess the exact mechanism of action
in different groups of aquatic primary producers (Vonk et al. 2009).

The effects of herbicide mixtures on aquatic primary producers show variation,
depending on the used herbicide combinations, test species and endpoints assessed.
We have separated here studies using growth or biomass as endpoint and studies
using various endpoints related to photosynthetic activity. Faust et al. (1993) tested
29 binary mixtures of 9 different herbicides on the unicellular green algae Chlorella
fusca over 24 h development, and for 85% of the mixtures, results were consistent
with concentration additivity. This was also observed for growth inhibition in
Pseudokirchneriella subcapitata following exposure to mixtures of diuron and
hexazinone, while the independent action model underestimated the combined effect
(Hasenbein et al. 2017). Contrary, the independent action model fitted best the
effects of a mixture of atrazine and sulfentrazone on the same microalgae
(P. subcapitata) and on the floating macrophyte Lemna minor (Thorngren et al.
2017), indicating different mechanisms of action for these herbicides.

Results from studies assessing mixture toxicity of herbicides to aquatic primary
producers using photosynthesis endpoints are also providing variable results.
Whether additive responses, synergism or antagonism occurred depended on the
mode of action of herbicides and the relative concentrations of the herbicides in the
mixture. Binary mixtures of herbicides (diuron, tebuthiuron, atrazine, simazine and
hexazinone) exhibited additive toxicity to the microalgae Navicula sp.,
Cylindrotheca closterium, Nephroselmis pyriformis and Phaeodactylum
tricornutum (Magnusson et al. 2010). Sjollema et al. (2014) tested the effect of an
equitoxic mixture of the herbicides irgarol and diuron on photosynthesis of
Dunaliella tertiolecta. Although the mode of action of both herbicides was inhibition
of photosynthesis, a more than additive effect of the herbicides in the mixture was
observed. Photosynthetic activity of the marine cyanobacterium Arthrospira maxima
showed both additive and antagonistic effects when exposed to the herbicides diuron
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and irgarol, depending on the relative concentrations of the herbicides in the mixture
(Kottuparambil et al. 2013). Also for the floating macrophyte Lemna sp., binary
herbicide mixtures (atrazine, diuron, simazine and hexazinone) resulted in both
additive and antagonistic effects on photosynthesis (Kumar and Han 2011). Using
a herbicide mixture of atrazine, diuron and isoproturon, Knauert et al. (2010)
observed concentration additive effects on photosynthetic efficiency in
Myriophyllum spicatum exposed to equitoxic herbicide concentrations.

Besides herbicide mixtures, also a wide variety of other pesticides can be present
in the aquatic environment (e.g. Ensminger et al. 2013). These pesticide mixtures
can exhibit toxic effects on aquatic primary producers. Faure et al. (2012) showed
synergistic phytotoxic effects of a mixture of organochlorines (lindane (HCH),
monochlorobenzene (MCB), 1,4-dichlorobenzene (DCB) and 1,2,4-
trichlorobenzene (TCB)) on the aquatic emergent macrophyte Phragmites australis.
Applied herbicides are often products with two or three different active ingredients
with information available on their mixture toxicity from regulatory testing. How-
ever, in aquatic ecosystems, different events of herbicides application can easily
result in different combinations of active herbicides and potential mixture effects on
aquatic primary producers.

4 Retrospective Site-Specific Risks Assessment
of Herbicides for Aquatic Primary Producers

The application of pesticides always involves exposure of non-target organisms,
which can be reduced by increasing the specificity of the pesticides. In the case of
herbicides, animals can be spared at least to some extent if the herbicides have a
plant-specific mode of action, like most of the categories listed in Table 2, with
photosynthesis inhibition being the most obvious one (Van den Brink et al. 2006).
Yet, non-target primary producers remain equally affected as the target ones, causing
aquatic primary producers to be permanently at risk of herbicide exposure. In a
retrospective site-specific risk assessment, these risks may be substantiated by
comparing and weighing effect concentrations and measured environmental con-
centrations. A refinement of this method can be applied if for a specific herbicide
enough ecotoxicity data are available to construct SSD curves. In this case, one can
derive the fraction of species probably affected at a measured ambient concentration
(X to Y in the SSD).

The major drawback of the abovementioned methodologies is that they are based
on single herbicides. Yet, in heavily anthropogenically exploited areas, risks to
aquatic primary producers are generally caused by mixtures of a myriad of (un)-
known compounds, with estimates of up thousands of compounds being present in
large European rivers (Loos et al. 2009; Altenburger et al. 2015; Storck et al. 2015).
Thus, a large portion of toxic risks in surface waters cannot be attributed to
compounds measured by water authorities. To meet these challenges, the SSD
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approach can be further refined by deriving a multi-substance potentially affected
fraction of species (msPAF). The msPAF model is designed to assess the risk of
mixtures of toxicants using the SSD principles (Traas et al. 2002; de Zwart and
Posthuma 2005). This model applies first concentration addition to calculate a single
risk value for substances that have a shared toxic mode of action and then applies
response addition to sum the toxicity risks of each mode of action. The resulting
msPAF value describes the potentially affected fraction of species from exposure to
a complex mixture (Traas et al. 2002; de Zwart and Posthuma 2005). This approach
has been successfully applied to assess the risk of a mixture of pesticides, including
many herbicides, in different regions (e.g. Wilson and Wilson 2011; Rämö et al.
2018).

Alternatively, understanding of the risks of herbicide exposure for aquatic pri-
mary producers can also be achieved by a shift towards new monitoring methods that
do not depend on chemical analysis of priority substances solely, but consider the
biological effects of the entire micro-pollutant mixture first. Therefore, there is a
need for effect-based monitoring strategies that employ bioassays to identify envi-
ronmental risk (e.g. De Baat et al. 2018). Responses in bioassays are caused by all
bioavailable (un)known compounds and their metabolites, whether or not they are
listed as priority substances. All toxicity tests described in §3.2 can be employed as
bioassays, in which the responses of the primary producers to contaminated water
and sediments samples can be determined, providing a direct indication of the
potential ecological risks. Likewise, all the different endpoints described in §3.3
can be assessed in such bioassays, including survival, growth, reproduction, photo-
synthesis, etc. Applying bioassays enables an efficient and effective assessment of
the toxicity of environmental samples to primary producers because it (1) identifies
the presence of herbicides that would be overlooked by routine chemical WFD
monitoring and (2) avoids redundant chemical analyses by focusing only on (non-)
target screening in samples with demonstrated effects (De Baat et al. 2018). Major
drawbacks in applying bioassays are the difficulties in relating the observed effects
to specific compounds and the effects of confounding factors, like a poor nutritional
value of the field samples, causing false positives.

4.1 Risk Assessment of Aqueous Herbicides for Aquatic
Primary Producers

Monitoring efforts may vary widely between countries, the Netherlands being one of
the few countries for which an open online platform on pesticide monitoring is
publicly available (Vijver et al. 2008). Consulting this atlas revealed that for atrazine,
diuron, isoproturon, MCPA, metolachlor and simazine, the measured environmental
concentrations are all in the low ng/L range, hence generally at least three orders of
magnitude lower than the HC5 values listed in Table 5 that generally fall in the μg/L
range. This suggests that in the Netherlands, there is no actual risk of waterborne
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herbicides to aquatic primary producers. However, a number of considerations
should be taken into account, mixture toxicity being the most obvious one. Yet, if
effect concentrations and field concentrations differ a factor thousand, then only
mixtures consisting of thousands of compounds may in the end come close to the
effect concentrations. This may only be the case in the most downstream part of large
rivers, but their concentrations are also generally further diluted. Ten to 20 years ago,
herbicide concentrations were substantially higher, about a factor of 10 (www.
bestrijdingsmiddelenatlas.nl; Vijver et al. 2008), but even then the difference
between environmental concentrations and effect concentrations was still a factor
hundred. Also, peak discharges may be missed by routine grab sampling monitoring,
but this strongly depends on the monitoring frequency and intensity. Alternatively,
passive sampling may be employed, strongly diminishing the chance of missing
these peaks, but on the other hand, the final time integrated concentrations in the
passive samplers also dampen these peaks. Munz et al. (2017) screened 24 Swiss
WWTPs for almost 400 chemically synthesized pesticides and pharmaceuticals.
Detected herbicide concentrations were several orders of magnitude lower than the
HC5 values derived in the present review, confirming the low risk of herbicides to
aquatic primary producers.

Fang et al. (2019) reported the minimum, median and maximum concentrations
of a wide range of pesticides in Europe, China and the USA. For acetochlor, irgarol,
isoproturon, MCPA, metolachlor and simazine, even the maximum concentrations
were still at least a factor of 10 below the HC5 values. In contrast, for atrazine the
maximum concentrations measured in China and the USA were very similar to the
HC5 values listed in Table 5, suggesting an actual risk to aquatic primary producers.
For diuron, the HC5 values varied, but nevertheless the maximum concentrations
measured in the USA (1.36 μg/L) were half of the median 2d HC5 value (2.98 μg/L)
and even around four times higher than the median 4d HC5 values (0.35 μg/L),
indicating serious risks. Exceptional high risks would be anticipated based on the
diuron concentrations measured by Hermosin et al. (2013) in Spain. The median
(0.6 μg/L) and mean concentration (2.36 μg/L) that they reported are very similar to
the HC5 ranges (overall 0.07–8.6 μg/L) calculated in the present review. Moreover,
the maximum concentration that Hermosin et al. (2013) measured (21 μg/L) is even
ten- to a hundred-fold higher than the median HC5 values for diuron. The latter
would imply that approximately 60% of the EC50 values plotted in the SSD would
be exceeded. Moreover, in such cases, mixture toxicity would likely play a role as
well. An appropriate risk assessment of the generally occurring mixtures of com-
pounds is, however, hampered by the compound approach involved in using SSDs.
A reliable estimation of the actual risks at contaminated sites can therefore only be
obtained by employing bioassays that respond to the entire mixture of bioavailable
(un)known herbicides present in the environmental samples.

De Baat et al. (2018) employed an algal photosynthesis bioassay on a nationwide
scale in the Netherlands to identify surface water toxicity to algae and subsequently
to identify the causing compound(s). Out of 39 surface water locations, toxicity was
observed at only one location. Chemical screening for 151 commonly applied
pesticides identified 3 suspect herbicides (linuron, dimethenamid and the metabolite
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desethylterbuthylazine) that were present in the water sample above their respective
quality standards. Generating EC50 values revealed that linuron was solely respon-
sible for the observed effects at this location. Neale et al. (2017) applied chemical
analysis and bioanalysis to assess the micro-pollutant burden during low flow
conditions upstream and downstream of three wastewater treatment plants
(WWTPs) discharging into small streams in the Swiss Plateau. They could explain
that the observed effects on the photosystem II inhibition bioassays by ten detected
herbicides, with main contributions by diuron and terbuthylazine). This was in
contrast to the observed effects for most other bioassays, including activation of
the aryl hydrocarbon receptor, activation of the androgen receptor, activation of the
oestrogen receptor and acetylcholinesterase inhibition.

The success of surface water screenings relies largely on the endpoint specificity
and scale of the selected bioassays, with in vitro or small-scale in vivo bioassays with
specific drivers of adverse effects allowing for focused identification of toxicity and
subsequent confirmation of the toxic compounds (Leusch et al. 2014; Brack et al.
2016). Microalgal photosynthesis is a sensitive and well-studied bioassay endpoint
to identify hazardous effects of herbicides in surface waters (e.g. Ralph et al. 2007;
Sjollema et al. 2014; Booij et al. 2015). Adequate selection of bioassays employed in
water quality monitoring can thus greatly aid in narrowing down the identification of
compound(s) that cause environmental risks (De Baat et al. 2018). The bioassays
targeting photosynthesis inhibition by herbicides are often successful due to the
specific mode of action and the sensitivity of PSII inhibition as an endpoint (Neale
et al. 2017). Yet, herbicides with a different mode of action, like commonly observed
auxin stimulating herbicides (e.g. Ensminger et al. 2013), are not detected using such
microalgae bioassays.

4.2 Risk Assessment of Sediment-Associated Herbicides
for Aquatic Primary Producers

While knowledge regarding the analysis and improvement of water quality is
increasing, knowledge considering sediments and sediment-water-plant interactions
specifically remains relatively scarce. Hence, more insight into the impact of changes
induced by human activities on sediment and sediment-inhabiting organisms is
required, since sediments are the largest chemical repositories on earth (Borja
et al. 2004; Babut et al. 2005). Moreover, sediments nowadays act as a source of
pollutants rather than as a sink, releasing a variety of stored toxicants and other
detrimental components (Brils 2002; Förstner 2004; Chon et al. 2012). Despite the
importance of contaminated sediments considering water quality assessment and
risks for aquatic (primary producer) communities, the European Water Framework
Directive (WFD) has focused primarily on compounds in the water column, men-
tioning water 373 times and sediment only 7 times (Borja et al. 2004). Moreover, the
risks of herbicides accumulated in the sediments are strongly linked to the presence
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of other hazardous compounds, since in agricultural and urban areas, rooting primary
producers are often influenced by mixtures of herbicides, heavy metals and many
other unmonitored compounds in the sediment (Kronvang et al. 2003).

Microalgae generally have a short life-span and reproduction occurs often
through simple cell division. Exposing microalgae for a couple of days to a few
weeks, timeframes possible within the available ecotoxicity tests, will therefore also
include reproduction of the species. Also for Lemna species, one can argue that the
whole life-cycle is covered by the available toxicity test. However, assessing the risk
for larger macrophytes is complicated, particularly when taking into account the
seasonal growing and decay phase (Hill et al. 1994). Given the longer life-span of
most (rooting) macrophytes (few months to even years; Cronk and Fennesy 2001),
no standardized ecotoxicity test includes the entire life-cycle of these vascular plants.
Hence, there is limited information available on the effects of herbicides on germi-
nation, flowering, seed formation and resource allocation during senescence of
macrophytes (but see Moore et al. 1999, Gao et al. 2011; Moore and Locke 2012).
Especially in the early life stages (seed germination) and during senescence and
reallocation of resources to belowground parts, aquatic plants could be sensitive to
sediment-associated herbicides. Mesocosm studies can be used to determine long-
term effects of pesticides on aquatic primary producers, since both direct and indirect
effects are taken into account in these studies (Müller et al. 2019). Still, mostly
endpoints related to species composition and plant biomass are reported with less
information on endpoints related to flowering, seed production and belowground
storage of resources.

In the marine environment, suspicions regarding the risks of contaminated sed-
iments are hard to confirm, since there are no standardized ecotoxicity tests using
marine rooting macrophytes available. Assays for marine macrophytes (e.g. using
leaves of the seagrass Halophila ovalis; Wilkinson et al. 2015) are currently being
developed, but these still often focus on exposure through surface water only. Hence,
it cannot be determined whether marine primary producers are affected by sediment-
bound herbicides. Located in the coastal zones and influenced by rivers, seagrass
meadows are contaminated by herbicides transported through the catchment to the
sea (e.g. Scarlett et al. 1999; Haynes et al. 2000). For example, the modelled
discharge of six widely used herbicides (atrazine, tebuthiuron, simazine, ametryn,
diuron and hexazinone) to the Great Barrier Reef was on average 17,000 kg per year
with the main risks for this area (Brodie et al. 2013, 2017). Although detected
concentrations of herbicides in sediments of the Great Barrier Reef were relatively
low (below 1 μg/kg sediment; Haynes et al. 2000), risk assessment of pesticides in
sediments is restricted because the Australian sediment quality guidelines are limited
in their scope to evaluate pesticide bioavailability (Brodie and Landos 2019).
Seagrasses are exposed to herbicides and their degradation products through both
the surface water (leaves) and the sediment (roots). Although a few studies have
reported the impact of herbicides on seagrasses (see Devault and Pascaline (2013)
for an overview), most studies reported impact on plant physiological endpoints
(photosynthesis) only and not on overall growth. Seagrass vulnerability to short
exposures of high concentrations of herbicides has been observed (Macinnis-Ng and
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Ralph 2004), and the combined effects of high temperatures and the herbicide
atrazine were more harmful to seagrass compared to a single pressure (Gao et al.
2017). However, the risk of herbicides through long-term exposure to mixtures of
compounds generally present in the sediment of contaminated coastal areas remains
unknown. Adjustments of environmental quality standards may therefore be needed
in order to increase the protection level of marine species to herbicides. Priority
should be given to evaluate if marine primary producers are currently sufficiently
protected against the risks of exposure to hazardous concentrations of herbicides.

Comparable to surface water screenings, a reliable estimation of the actual risks at
contaminated sediment sites can only be obtained by employing bioassays that
respond to the entire mixture of bioavailable (un)known compounds present in the
sediment and the interstitial water. Magnusson et al. (2013) compared the phytotox-
icity of interstitial water extracts from sediments on benthic microalgae to the
expected phytotoxicity of compounds detected in the overlying water. The herbicide
concentrations in the interstitial water explained most of the phytotoxicity measured
in the bioassay, and this photoinhibition was even higher than expected, indicating
the presence of unidentified phytotoxins in the sediment pore water. Rooting mac-
rophyte species have also been used in bioassays to assess sediment quality. In
estuaries, Lewis et al. (2001) observed significant stimulatory and inhibitory effects
on early seedling growth of Scirpus robustus (saltmarsh bulrush) and Spartina
alterniflora (saltmarsh cordgrass), relative to a reference sediment. However, only
in 3 of the 15 tests, these effects were related to pesticides (Lewis et al. 2001). Feiler
et al. (2004) showed that growth of the freshwater macrophyte Myriophyllum
aquaticum was depending on the origin of the sediment tested, with contamination
in the sediments causing adverse effects on the plants. Successful application of
bioassays to assess the toxicity of sediment-associated herbicides and to identify
compounds of concern relates to (1) the identification of sensitive plant species and
suitable response parameters; (2) the determination of the influence of sediment
chemical and physical characteristics on plant growth; and (3) the quantification of
the (bio)available concentrations of herbicides and other phytotoxins in the
sediment-pore water matrix.

5 Conclusions

The aim of the present review was to give an overview of the current state of science
concerning herbicide exposure and toxicity to aquatic primary producers. Assessing
the open literature revealed that the unintentional as well as intentional sources of
herbicides in the aquatic environment are numerous, evidently leading to the wide-
spread presence of herbicides, inevitably leading to the exposure of non-target
primary producers. The fate of herbicides in the environment is determined by the
combination of the chemical properties and the formulation of the herbicides, the
local environmental conditions and the timing, rate and method of application.
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Overall, this results in exposure concentrations showing strong temporal and spatial
variations and consisting of mixtures of herbicides.

Among the available toxicity tests with aquatic primary producers, there are a bias
towards algae compared to macrophytes and a bias to water compared to sediment
exposure. In response to ignoring the sediment as environmental compartment of
concern, the OECD guideline for the macrophyte Myriophyllum has been extended
with rooting plants allowing to test the toxicity of sediment-associated herbicides,
while a test with the rooted emergent macrophyte Glyceria is currently being
developed. Based on the outcome of the available ecotoxicity tests, it was concluded
that the most sensitive as well as the least sensitive species differed per herbicide and
that the observed effect concentrations for herbicides were rather similar indepen-
dent from the exposure time. To come to a reliable hazard assessment for the effects
of herbicides on primary producers, extensive ecotoxicity testing is required, espe-
cially considering macrophytes and marine herbicide toxicity. Yet, it is concluded
that the largest knowledge gap concerns the effects of sediment-associated herbi-
cides on primary producers.

Comparing environmental concentrations and effect concentrations demonstrated
that generally there is no actual risk of waterborne herbicides to aquatic primary
producers. Still, median concentrations of atrazine and especially of diuron mea-
sured in China, the USA and Europe represented moderate risks for primary pro-
ducers. Maximum concentrations due to misuse and accidents may even cause the
exceedance of almost 60% of the effect concentrations plotted in SSDs. Applying
bioassays to detect the impact of unknown herbicide mixtures and to identify the
herbicide of concern is a successful approach, especially for the photosynthesis-
inhibiting herbicides. However, for herbicides with other modes of action, the use of
bioassays remains challenging. It is concluded that to come to a reliable herbicide
hazard and risk assessment, an extensive catch-up must be made concerning mac-
rophytes, the marine environment and especially sediment as overlooked and
understudied environmental compartment.

6 Summary

The aim of the present review was to give an overview of the current state of science
concerning herbicide exposure and toxicity to primary producers. To this end we
assessed the open literature, revealing the widespread presence of (mixtures of)
herbicides, inevitably leading to the exposure of non-target primary producers.
Yet, herbicide concentrations show strong temporal and spatial variations.
Concerning herbicide toxicity, it was concluded that the most sensitive as well as
the least sensitive species differed per herbicide and that the observed effect con-
centrations for some herbicides were rather independent from the exposure time.
More extensive ecotoxicity testing is required, especially considering macrophytes
and marine herbicide toxicity. Hence, it was concluded that the largest knowledge
gap concerns the effects of sediment-associated herbicides on primary producers in
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the marine/estuarine environment. Generally, there is no actual risk of waterborne
herbicides to aquatic primary producers. Still, median concentrations of atrazine and
especially of diuron measured in China, the USA and Europe represented moderate
risks for primary producers. Maximum concentrations due to misuse and accidents
may even cause the exceedance of almost 60% of the effect concentrations plotted in
SSDs. Using bioassays to determine the effect of contaminated water and sediment
and to identify the herbicides of concern is a promising addition to chemical
analysis, especially for the photosynthesis-inhibiting herbicides using photosynthe-
sis as endpoint in the bioassays. This review concluded that to come to a reliable
herbicide hazard and risk assessment, an extensive catch-up must be made
concerning macrophytes, the marine environment and especially sediment as
overlooked and understudied environmental compartments.
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