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Abstract. The idea of evidence accumulation for the combination of
multiple clusterings was recently proposed [7]. Taking the K-means as
the basic algorithm for the decomposition of data into a large number, k£,
of compact clusters, evidence on pattern association is accumulated, by
a voting mechanism, over multiple clusterings obtained by random ini-
tializations of the K-means algorithm. This produces a mapping of the
clusterings into a new similarity measure between patterns. The final
data partition is obtained by applying the single-link method over this
similarity matrix. In this paper we further explore and extend this idea,
by proposing: (a) the combination of multiple K-means clusterings us-
ing variable k; (b) using cluster lifetime as the criterion for extracting
the final clusters; and (c) the adaptation of this approach to string pat-
terns. This leads to a more robust clustering technique, with fewer design
parameters than the previous approach and potential applications in a
wider range of problems.

1 Introduction

Clustering algorithms can be categorized into hierarchical methods and parti-
tional methods [3,12]. A partitional structure organizes patterns into a small
number of clusters. The K-means is one of the simplest clustering algorithms in
this class: it is computationally efficient and does not require the specification
of many parameters. Hierarchical methods propose a nesting of clusterings, pro-
viding additional information about data structure, represented graphically as
a dendrogram. A particular partition is obtained by cutting the dendrogram at
some level. The single link algorithm is one of the most popular methods in this
class [12].

A large number of clustering algorithms exist [12,13]. Examples of differ-
ent classes of algorithms are model-based techniques [3,18,23], non-parametric
density estimation based methods [21], central clustering [2], square-error clus-
tering [19], and graph theoretical based [4,26] methods. Each handles differently
the issues related to cluster validity [1,10,20,8], number of clusters [15,25], and
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structure imposed on the data [6,24,16]; yet, no single algorithm can adequately
handle all sorts of cluster shapes and structures.

Inspired by the work in sensor fusion and classifier combination techniques
in pattern recognition [14], Fred [7] proposed a combination of clusterings in
order to devise a consistent data partition. It follows a split and merge strategy.
First, the data is split into a large number of small clusters, using the K-means
algorithm; with fixed k, different clusterings are produced by an arbitrary ini-
tialization of cluster centers. The clustering results are combined using a voting
mechanism, leading to a new similarity matrix between patterns. The final clus-
ters are obtained by applying the single-link (SL) method on this matrix, thus
merging small clusters produced in the first stage of the method.

In this paper we further analyze the above method and propose three main
refinements/extensions: the use of cluster lifetime as a criterion for the identi-
fication of the final data partition from the dendrogram produced by the SL
method, instead of fixed level thresholding; the combination of clusterings with
different values of k in a reasonably large range; adaptation of this approach to
process string patterns. These modifications improve the previous strategy in
terms of robustness and simplicity of the method, with fewer parameters to be
defined.

Section 2 discusses the method in [7]. Refinements and extensions of the
method are proposed in section 3. The performance of the new method is illus-
trated through a set of experimental results given in section 4, followed by the
conclusions.

2 Evidence Accumulation Clustering

The idea of evidence accumulation clustering is to combine the results of mul-
tiple clusterings into a single data partition, by viewing each clustering result
as an independent evidence of data organization. Fred [7] used the K-means
algorithm as the basic algorithm for decomposing the data into a large num-
ber, k, of compact clusters; evidence on pattern association is accumulated, by
a voting mechanism, over N clusterings obtained by random initializations of
the K-means algorithm. This produces a mapping of the clusterings into a new
similarity measure between patterns, summarized in the matrix co_assoc, where
co_assoc(i, j) indicates the fraction of times the pattern pair (i,7) is assigned
to the same cluster among N clusterings. The final data partition is obtained
by applying the single-link method over this similarity matrix, using a fixed
threshold, ¢.

The method has two design parameters: k, the number of clusters for the
K-means algorithm; and ¢, the threshold on the dendrogram produced by the
SL method. We discuss these parameters using the half-rings data set example,
depicted in figure 1(a). This data set is composed of 400 two-dimensional pat-
terns (upper cluster - 100 patterns; lower cluster - 300 patterns). Due to the
particular cluster shapes, the K-means algorithm by itself is unable to identify
the two natural clusters (see figure 1(b)). The uneven data sparseness of the two
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(c) Single-link method. Thresholding (d) Evidence accumulation cluster-
this graph splits the upper ring clus- ing, k=5
ter into several small clusters

(e) Evidence accumulation cluster- (f) Evidence accumulation cluster-
ing, k=15 ing, k =80

Fig. 1. Half-rings data set. Vertical axis on dendrograms (d) to (f) corresponds
to distances, d(i,j), with d(i,j) = 1 — co_assoc(i, j)

clusters also prevents the SL method to produce the correct data partition, as
shown by the associated dendrogram (figure 1(c)). Figures 1(d)- 1(f) plot the
dendrograms produced by the evidence accumulation algorithm after 200 runs
(N = 200) of the K-means algorithm, for different values of k. The K-means
algorithm can be seen as performing a decomposition of the data into a mixture
of Gaussians. k is the critical parameter in this decomposition: low values of k
are not enough to capture the complexity of the data, while large values may
produce an over-fragmentation of the data (in the limit, each pattern forming a
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cluster). By using the method in [5] the data set is decomposed into 10 gaussian
components. This should be a lower bound on the value of k£ to be used with the
K-means, as this algorithm imposes spherical shaped clusters, and therefore a
higher number of components may be needed for evidence accumulation. This is
in agreement with the dendrograms in figures 1(d)- 1(f). As shown in figure 1(d),
although the two-cluster structure starts to emerge in the dendrogram for k = 5,
the two natural clusters cannot yet be identified. A clear cluster separation is
present in the dendrogram for & = 15 (fig. 1(e)). As k increases, similarity values
between pattern pairs decrease, and links in the dendrograms progressively form
at higher levels, causing the two natural clusters to be less clearly defined (see
fig. 1(f) for k = 80). The same conclusions can be drawn by analyzing table 1,
showing the number of clusters identified for different values of k and of ¢. The
lifetime of a cluster in the dendrogram for a given k (distance gap between two
successive merges) can be evaluated on the corresponding line in this table. As
shown, using a fixed threshold, the range of k values for which the true number
of clusters is identified is limited and depends on t. Using the longest lifetime
(clusters persisting for the largest range of ¢) as the criterion for identifying the
final number of clusters, leads to the values on the rightmost column of table 1,
with the identification of the true clusters for a larger k range.

Table 1. Number of clusters identified as a function of k and ¢ for the half-rings
data set (N = 200). The 2* notation indicates that, although the correct number
of clusters is identified, this does not correspond to the correct data partition.
The rightmost column indicates the final number of clusters according to the
largest lifetime criterion

k‘\t .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95|NC
2 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2% 5 711
5 11 11 11 11 11 1 1 1 1 1 2 2 5 20|2"
(1 1 1 1 1 2 2 2 2 2 2 2 2 3 5 7 8 18 71|2
5 (1 2 2 2 2 2 2 2 2 2 3 5 5 6 8 13 33 64 134| 2
2001 2 2 2 2 2 2 2 3 5 6 6 7 9 18 34 61 94 171| 2
25|11 2 2 2 2 2 2 2 4 6 7 10 14 19 31 54 84 121 215| 2
30 {1 1 2 2 2 2 3 5 6 8 9 14 20 25 40 71 99 145 252| 2
40 |1 2 2 2 2 2 3 7 9 11 18 25 34 46 67 95 137 197 279| 2
80 |3 4 4 5 7 14 19 26 31 47 65 85 97 130 157 188 227 276 334| 4

3 Evidence Accumulation Clustering with Varying k£ and
Dynamic Threshold

As noted in the previous section, cluster lifetime is a better criterion for identify-
ing the natural clusters than a fixed threshold, as the dendrogram scales up with
increasing values of k. On the other hand, in order to determine an adequate
value or range for k, one should use some a priori information (for instance,
by applying a mixture decomposition method for determining the number of
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components in the mixture). Otherwise, several values of k should be tested, the
final number of clusters being the most stable solution found.

The evidence of a clear cluster separability on the dendrograms associated
with a large range for k (see figures 1(e), 1(f)) suggests a combination of K-means
clusterings with variable k. Our hypothesis is that the combined evidence will
reinforce the intrinsic data structure, diluting the effect produced by low values
of k (while combined with other values, low k values contribute to a scaling up of
similarity measures - lower values on the dendrograms); high values of k produce
random, high granularity data partitions, so they should also not be disruptive
of the structure imposed by more adequate k values, scaling down the similarity
values. We therefore propose a combination of multiple K-means clusterings with
varying k, the final data partition being obtained as the cluster configuration
with the highest lifetime in the dendrogram produced by the SL method over
the similarity matrix, co_assoc. The proposed evidence accumulation clustering
method is summarized below:

Data clustering using Evidence Accumulation.

Input:
n d—dimensional patterns;
k_min - minimum initial number of clusters;
k_max - maximum initial number of clusters;
N - number of clusterings.
Output: Data partitioning.
Initialization: Set co_assoc to a null n X n matrix.
1. Do N times:
1.1. Randomly select k in the interval [k_min; k_mazx].
1.2. Randomly select k cluster centers.
1.3. Run the K-means algorithm with the above k and initialization, and
produce a partition P.
1.4. Update the co-association matrix: for each pattern pair, (4,7), in the
same cluster in P, set co_assoc(i, j) = co_assoc(i, j) + %
2. Detect consistent clusters in the co-association matrix using the SL technique:
compute the SL dendrogram and identify the final clusters as the ones with
the highest lifetime.

4 Experimental Results

4.1 Vector Representations: Artificial Data Sets

The proposed evidence accumulation clustering method was applied to the half-
rings data set, used as the illustrative example in section 2. Several ranges for k
were tested in order to evaluate the robustness of the method. Dendrograms for
some of these tests are plotted in figure 2. The number of clusterings used were
N = 600; experiments with N = 200 and lower values led to similar results,
since the method converges for values of N around 50 (see figure 2(d)).
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(a) k € [2;20]. (b) k € [60: 901.

@
S

@
S

Final Number of Clusters
IS
S

(c) k € [2;80]. (d) Convergence curve (k €
[2; 80)).

Fig. 2. Combining 600 K-means clusterings, with varying k for data in fig 1(a).
Dendrograms (a) to (c) illustrate the wide range of k values with a clear cluster
separation, showing the robustness of the combination technique. (d)- Conver-
gence curve of the final number of clusterings as a function of N, the number of
clusterings, for k € [2;80]

Table 4 summarizes the experiments and the number of clusters (NC) ob-
tained. As shown, all ranges for k, except the ones completely below the minimum
number of mixture components, 10, (first two columns), lead to the correct iden-
tification of the natural clusters, demonstrating the robustness of the method.

The spiral data set (fig. 3(a)) is another example of complex shaped clusters.
Using the method of [7], the two natural clusters are identified for values of k
in the interval [25;70] for ¢ = 0.5 or t = 0.6. In all the tests with the proposed
method, the true clusters were identified for all the intervals considered (values of
k > 90 were not tested as the number of training patterns is only 200), except for
ranges totally in the interval [2;20], as this is lower than the minimum number
of components required to decompose the data (the method in [5] identifies 24
gaussian components).

We also performed tests on uni-modal random data (gaussian and uniform
distributions) in order to assess if the proposed clustering technique imposes
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Table 4. Evidence accumulation clustering with varying k for the half-rings data
set
k-range

[2; 5] [2; 10] [2;20] [5;20] [10;30] [30;60] [60;90] [2;80]
NC[ T 1 2 2 2 2 2 2

Fig. 3. Artificial data sets. (a)- Spiral data set (100 samples per class). (b)- 2-D
projection of 300 patterns uniformly distributed in a 5-dimensional hypercube

some structure on data. In all the tests performed (an example of uniform data
set is illustrated in figure 3(b)), a single cluster was identified, no matter what
interval for k was considered.

4.2 String Patterns: Clustering of Contour Images

We have applied the proposed technique to the classification of string descrip-
tions of contour images of 2D shapes. The data set consists of 126 images from
three types of tools (42 patterns per class); sample images are shown in fig-
ures 4(a) to 4(c). Each image was segmented to separate the object from the
background and the object boundary was sampled at 50 equally spaced points;
object shapes were encoded using an 8-directional differential chain code [9,11].
In order to apply the cluster combination technique, similarity between all pat-
tern pairs was calculated using the Levensthein distance normalized by the length
of the editing path [17,22]. The K-means algorithm was adapted in order to han-
dle string patterns: cluster centroids are selected as the training pattern with the
minimum average distance to the remaining patterns within a cluster; therefore,
the algorithm simply needs a similarity/dissimilarity matrix between pattern
pairs as input.

As shown in figure 4(d), a direct application of the SL method to the string
patterns using the normalized string edit distance does not produce a correct
partitioning of the data. With the proposed method, a good separation of the
three clusters is obtained, for instance with k € [2;30] and N=200.
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(a) T1. (b) T2. (c) T3. (d) SL dendrogram.

Fig. 4. Hardware tools data set

5 Conclusions

We have proposed a novel algorithm for evidence accumulation clustering. The
method introduced in [7] was extended/modified by: (1) using cluster lifetime
as a criterion for determining the final number of clusters; (2) proposing the
formation of clustering ensembles by using the K-means algorithm with random
initialization and arbitrary k values within a large interval. Furthermore, the
adaptation of the K-means algorithm by using cluster median patterns, and
thus simply requiring as input a similarity or dissimilarity matrix, extended the
potential use of this technique to a wider range of applications, namely those
based on string descriptions. The new method enhances the previous approach
in terms of robustness and simplicity of evaluations, with fewer parameters being
defined. The ability of the clustering method to correctly identify well separated
clusters with complex shapes has been demonstrated on a set of artificial and real
data, using both vector and string descriptions of patterns. Moreover, tests on
unimodal /uniform data showed that the method does not impose any structure
on data, a single cluster being identified for this data. Further tests are needed
for touching clusters.
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