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Abstract. We compare two diverse classification strategies on real-life
biomedical data. One is based on a genetic algorithm-driven feature
extraction method, combined with data fusion and the use of a simple,
single classifier, such as linear discriminant analysis. The other exploits
a single layer perceptron-based, data-driven evolution of the optimal
classifier, and data fusion. We discuss the intricate interplay between
dataset size, the number of features, and classifier complexity, and
suggest different techniques to handle such problems.

1 Introduction

Many modern pattern classification and data mining problems are characterized by
hundreds or thousands of attributes and huge amounts of data records. However, for
most spectroscopy-based biomedical classification problems, although the number of
attributes is large, data scarcity is the rule rather than the exception. Hence, relations
between classifier complexity, feature space dimensionality and sample set size
continue to be among the major research topics in pattern classification and data
analysis.

Traditionally, complexity/ feature space dimensionality/sample size interrelations
are tackled by first reducing the number of features, using some feature
extraction/selection method [12]. An alternative approach is to adjust the
classification rule to the number of training samples and feature space dimensionality.

A third way employs multiple classification systems (MCSs). In using MCS, the
designer divides the attributes into non-intersecting or intersecting subsets and uses
each subset of attributes to design a corresponding simple classifier (�expert�). Then
the individual decisions of the experts are combined to arrive at the final decision. In
each separate procedure, considerably fewer features may be required. In a
modification of this approach, the designer divides the training records into separate
non-intersecting or intersecting subsets and uses each subset to design a simple expert
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classification rule instead of a complex one. This latter approach does need large
sample sizes. In the last decade, the MCS approach has received considerable
attention in the pattern recognition literature [1].

The existence of many similar approaches to solve the complexity/sample size/
dimensionality problem necessitates reviewing �the fundamental problems arising
from this challenge� [2]. Notwithstanding theoretical attempts and advances, truly
decisive tests of practical relevance can only be arrived at by experimental
comparisons of the successes of different approaches on real-world problems. In the
present paper, we conduct such comparisons of two strategies: MCS/classifier
complexity regularization with a 3-stage feature-extraction-based statistical
classification strategy (SCS) [9,10]. SCS was devised specifically for the
classification of biomedical spectra. (The SCS�s third stage is closely related
conceptually to MCS.) The particular real-world example we use is a two-class
biomedical data classification problem of typical difficulty. The observation vectors
to be classified are magnetic resonance (MR) spectra of biofluids obtained from
normal subjects and cancer patients. The dataset consists of 140 samples with 300
spectral features (the intensities at 300 frequencies). There are 71 spectra (31 healthy,
40 cancerous) in the training set and 69 (30 healthy, 39 cancerous) in the validation
set. MR spectra of the 140 samples were acquired on a Bruker 360 MHz
spectrometer. The MR magnitude spectra were preprocessed by normalizing each
spectrum to unit spectral area. These are the data analyzed by both strategies.

2 A Feature-Selection-Based 3-Stage Statistical Classification
Strategy (SCS)

The first stage of the SCS is feature selection.  For MR magnitude spectra, the
original N features are the intensity values at the different spectral frequencies. The
feature selector algorithm we have used is an optimal region selector (ORS) [8]. ORS
searches for spectral regions (frequency intervals) that are maximally discriminatory.
ORS is guided by a genetic algorithm (GA), explicitly optimized for preprocessing
spectra. GA is particularly appropriate for spectra, since the latter are naturally
representable as �chromosomes�, vectors of length N, with 1s indicating the presence,
0s the absence of features. The GA�s input is M, the maximum number of features
i.e., distinct spectral subregions required, the type of feature space-reducing
operation/transformation (typically averaging) to be carried out, the population size,
the number of generations and a random seed. The operations comprise the standard
GA options: mutation and crossover. To ensure robust classification, the number of
features M is typically kept much smaller than the sample size,. ORS begins searching
the entire feature space, i.e. the complete spectrum. The output is the set of (averaged)
spectral regions that optimally separate the classes.

For a limited number N of original features, exhaustive search (ES) for the best
subset(s) is feasible. For larger N, we developed a dynamic programming (DP) based
algorithm [8] that often produces near-optimal solutions, in feasible computer times.

Once M << N good features have been found, the second stage, a crossvalidated
classifier development follows, with appropriately selected training, test and
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validation sets.  We have developed an approach (RBS, Robust �BootStrap�) that was
inspired by the conventional nonparametric bootstrap [15]. RBS proceeds by
randomly selecting approximately half the spectra from each class and using these to
train a classifier, usually linear discriminant analysis (LDA).  The resulting classifier
is then used to validate the remaining half of the spectra.  This process is repeated B
times (with replacement), and every time the optimized LDA coefficients are saved.
(B is typically 500-1000.)  The weighted average of these B sets of coefficients
produces the final, single W-weighted classifier.  The weight for the mth set is Wm =
κmCm

1/2, m = 1,�,B, where 0 ≤ Cm ≤ 1 is the crispness (for two classes, the fraction of
samples with class probability ≥ 0.75), and ~0 ≤ κm ≤ 1 is Cohen�s [16] chance-
corrected measure of agreement, κm = 1 signifying perfect classification.  The B
weight values Wm are those obtained for the less optimistic bootstrap test sets.
Classifier outcome is reported as a class probability.

For difficult classification problems the third stage is activated. At this stage, the
outcomes of several classifiers are combined into an overall classifier via classifier
fusion methods [13,14]. We use Wolpert�s Stacked Generalizer [17] (WSG) for
classifier combination. For the ultimate classifier to be developed, the input features
for WSG are the output class probabilities obtained by the individual classifiers.  For
2-class problems (since the two class probabilities are not independent, p1 + p2 = 1),
the number of such features is one probability per sample (spectrum).  The overall
classification quality of the fused classifier is generally higher than that of the
individual classifiers.  In particular, the crispness of this final classifier is invariably
greater. This is important in a clinical setting, because greater class assignment
certainty means that fewer patients will have to be re-examined.

3 Controlling Classifier Complexity by Training a Single Layer
Perceptron

There are many pattern classification strategies. They may differ conceptually, in the
assumptions used to establish the design procedure, in the way the parameters of the
classifier are estimated, and in the complexity of the decision boundary. When the
design set is small, one promising approach is to use a linear classifier obtained while
training a single layer perceptron (SLP). An important characteristic of an SLP-based
classifier is that while training the perceptron, a number of standard pattern
classification algorithms of differing complexity can be obtained by simply changing
certain conditions  [3,4]. Moreover, prior to training the perceptron, one can use
sample estimates of statistical parameters of the training data to perform data
transformations (rotation and scaling) such that various statistical models (i.e., prior
information about the problem) may be incorporated into the perceptron design [4].

We followed the procedure described in [4] and prior to training the perceptron:

- The data centre !M = ½ ( !M1
 + !M2 ) was zeroed, and all single features were

scaled to unit variance by their sample standard deviations si;
- An estimate Se of the pooled covariance matrix (CM) of the training data was

constructed, followed by a singular-value-decomposition of Se, to linearly
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transform the data to Y = F(X - !M ), where F= ΛΛΛΛ-1/2 ΦΦΦΦT, and ΛΛΛΛ, ΦΦΦΦT are
eigenvalues and eigenvectors of the Se;

- Training started from zero initial weights;
- The standard sum of squares cost function and total gradient training (batch

mode) was used.

To be able to work in the original 300-dimensional spectral feature space, given the
very small training sets, it was necessary to use some prior information about the data.
We assumed that all mutual correlations among all features are equal, and depend
only on the noise variance. Hence, the correlation matrix Se will be characterized by a
single parameter, the correlation coefficient ρ.

This model, describing the dependence among the data features, is called the
additive noise model Accordingly, after subtracting the mean vector !M  and scaling
to unity the variances of all features, we calculated the correlation matrix and used the
average value of the correlation coefficient to obtain Se. Then we used this matrix to
perform the singular value decomposition and to rotate the input feature vectors. In
the new, transformed feature space, the main dependency between the components of
the feature vector is already taken into account and the training process is faster.
Optimal stopping of the iterative training process, control of target values, and the
addition of an antiregularization term to the cost function can help balancing the
complexity of the classification rule and the training set size.

4 Multiple Classifier Systems

In order to design an MCS, we partitioned the MR magnitude spectral features into 12
non-overlapping subsets. Then on each of these subsets, we constructed a simple
classification rule by training a single-layer perceptron with the exponential threshold
function f(x) = 1/(1 + e-x). The outputs (i.e., the values of f(x)) of these single expert
classifiers actually served as new input features for the �governor� SLP training.

For a small design set, it is very difficult to determine the optimal number of SLP
training iterations. In such cases, one must use the same training set both to validate
classifier performance and to define a stopping point for SLP training. This method of
classification performance estimate is called the resubstitution error estimate.

Another approach is to create the independent validation data from random noise
vectors, by augmenting the training set with them. One usually injects �white� noise
vectors from a Gaussian distribution N(0, λI), where I is the identity matrix and λ is
some scalar. However, further improvement is obtainable for high-dimensional
problems, by adding instead k-NN-directed �colored� noise [6]. We used this
technique to produce the validation dataset for training the expert classifiers. The
outputs of these expert classifiers for the validation data provided the validation
dataset for governor-SLP training.

We performed several experiments with different expert-SLP training techniques
in order to compare the resulting classification performances. In our first attempt to
design expert-SLP classifiers, we simply followed the recommendations in [4]. We
scaled and rotated the original training data vectors and then trained the SLP
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classifier, starting from zero weights. No other assumption about the data was used.
We will refer to this set of expert classifiers as the �simple� SLP experts.

During training, the single-layer perceptron tends to adapt to the specific training
dataset (often called overtraining). When we use the resubstitution error to estimate
classifier performance, each expert classifier �boasts� to the fusion rule, i.e.,
overestimates its own accuracy. Thus, if the same data are used to train both the
classifiers and the combiner, the outcomes of the classifiers to the training data
vectors create an optimistically biased training data for the fusion rule. We call this
�boasting bias�. Therefore, our next attempt was to improve the classification
performance of our MCS by correcting the boasting bias of the simple SLP experts.

Assuming that the simple SLP experts are similar to Fisher discriminant functions
(FDF), we have applied FDF-type theoretical corrections to the outputs of the SLP
experts. Using the mean and variance values of the outputs of FDF classifiers given in
[7], we define the following boasting-bias-correcting (BBC) transformation of the
outputs of expert classifiers:

Õι =   N/(N-pi) Oi + (-1)jNpi(δi
2+4)/2(N-pi)2 (1)

where Oi is the original output of the i-th classifier, N is the total number of training
vectors, pi is the dimensionality of the training data for the i-th classifier, δi

2 is the
squared Mahalonobis distance between the two classes for the i-th classifier, and j is
the class number. These corrections change the experts� means and variances. Thus,
we produced a new, corrected training dataset for the governor-SLP, anticipating that
it will help us obtain a better classifier fusion rule.

However, the simple SLP experts are obviously not FDF classifiers and such FDF-
oriented BBC may not be appropriate. A more suitable BBC rule is the one that most
affects the common distribution parameters of the expert classifier outputs. Hence, we
tried a simpler BBC technique that affects only the means of the expert outputs, as
shown in [7]:

Õι = Oi + (-1)j 2pi /(N-pi), (2)

This was the second corrected training dataset for the governor-SLP training.
The second group of SLP experts was designed using the additive noise model. We

used the previous splitting of data features into 12 subsets, and then we trained the
individual SLP classifiers using the complexity control techniques described in
Section 3. We assumed equal mutual correlations among data features, hence
introduced into the expert SLP training additional information about the data
structure.

We also trained the governor-SLP using the additive noise model. The outputs (or
corrected outputs) of the SLP experts for the training data were used as input features
for governor-SLP training, and the outputs for the noise data were used to stop the
governor-SLP training. However, the role of colored noise vectors in the training of
expert classifiers can also be changed. If we assume that we can create as many noise
vectors as we need, and that the k-NN-directed colored noise retains information about
the data configuration, we can use it as the training data for the governor-SLP.
Furthermore, we can use the real training data for a more reliable determination of the
number of governor-SLP training iterations than is possible by the random noise
vectors.
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5 Comparison Experiments

For the experiments with both the SCS and the CCR & MCS, we partitioned the data
into two subsets. There are 71 spectra (31 healthy, 40 cancerous) in Set 1, and 69 (30
healthy, 39 cancerous) in Set 2. We then performed two runs of experiments:

Run 1: Train on Set 1, validate on Set 2
Run 2: Train on Set 2, validate on Set 1.

5.1 Experiments with the SCS: Dynamic Programming (DP) & Exhaustive
Search (ES) on the Original Attributes

Because the number of attributes is relatively small (300), we did not need to use the
more sophisticated, genetic algorithm-driven optimal region selector preprocessor;
instead, we applied the DP-based feature selection algorithm.

Run 1: We first applied DP to Set 1. Because this is a 2-class problem, we could use
a classifier that is a robust equivalent of LDA (we employed least-trimmed-squares
regression, 10% trimming), with leave-one-out (LOO) crossvalidation. For the
attribute selection, we used an objective function F that simultaneously minimizes the
squared classification error and maximizes the crispness. In the range 2-13 of
requested number of attributes, the minimum F for Set 2, the validation set, was
obtained by the 8 attributes 8, 15, 18, 29, 115, 124, 151, 265. Because DP is a
suboptimal feature selector, and to avoid overfitting, we used ES to select the best 2-7
subsets of these 8 attributes. The best of these, comprising only 3 attributes (8, 124,
151) gave a misclassified percentage of 13.0% for Set 2. The crisp result was 5.3%
(38 of 69, 55.1% of total). A total of (12+6) = 18 models were tested.

Run 2: From the original 300 attributes DP selected 30 (using 6 tries, i.e., models).
From these 30, the best 5 chosen by ES were 26, 151, 164, 165 and 248 (8 models).
The misclassification percentage for the switched validation set (Set 1) was 14.1%,
the crisp result 14.3% (70 of 71, 98.6%). (6+8) = 14 models were tested.

Averaging the two runs yielded 13.6%; based only on the crisp assignments, the
average was 9.8% (108 of 140, 77.1% of total).

5.2 Experiments with CCR & MCS

For each run, we designed two sets of SLP-experts: 12 simple SLP classifiers and 12
SLP classifiers with the additive noise model. We used 3-NN-directed colored noise
vectors as the independent validation data set. For each training vector we added 300
colored noise vectors with variance λ = 0.5.

The governor-SLP was trained both on the training data and on the noise data. The
optimal number of training iterations was determined by using the real validation data
vectors. When the noise data (or the real training data, when we used noise data for
training) was used to stop the governor-SLP training, we have the non-optimally
stopped governor-SLP.

In the table below, we present the percentages of misclassified validation data
vectors. To produce the results, 6 different feature distributions were tested for the
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SLP experts (3 using the information measure, 3 the correlation matrix). For each of
these, 3 different values of the correlation coefficient were tried in the additive noise
model. From this total, (3+3)*3 = 18 different versions, the best results are listed in
the table.

Real training data
(Noise training data)Average %

performance of
expert classifiers Optimally stopped

governor-SLP

Non-optimally
stopped

governor-SLP
Expert classifiers

1st

run
2nd

run
Avg 1st

run
2nd

run Avg 1st

run
2nd

run Avg

Simple SLP 39.6 36.6 38.1 18.8
(27.5)

26.8
(22.5)

22.8
(25.0)

26.1
(29.0)

28.2
(26.8)

27.1
(27.9)

Correction Eq. (1) - - - 20.3
(26.1)

28.2
(25.4)

24.2
(25.7)

27.5
(29.0)

28.2
(26.8)

27.9
(27.9)

Correction
Eq. (2) - - - 17.4

(21.7)
26.8

(22.5)
22.1

(22.1)
29.0

(31.9)
26.8

(26.8)
27.9

(29.3)
Additive noise
model 34.3 0.4 37.3 14.5

(13.0)
22.5

(21.1)
18.5

(17.1)
18.8

(21.7)
28.2

(22.5)
23.5

(22.1)

6 Discussion and Concluding Remarks

For the first time, two comprehensive classification strategies, developed
independently by the Vilnius and Winnipeg groups, were compared on a real-world
dataset not commonly accessible to the machine intelligence community.

The differences between the results obtained by the two strategies are not
significant statistically. Nevertheless, the two strategies arrived at these results by
quite different routes, using somewhat different philosophies. Comparing individually
the misclassified test samples produced by the two best classifiers (13.0% both for the
SCS-based approach and for the MCS method, the latter for the additive noise model
with noise training data and optimally stopped governor-SLP) shows that the two
approaches misclassified the same number of, but not the same individual samples.

The focus of the SCS is selecting maximally discriminatory features, by various
preprocessing approaches. Extensive experience with biomedical spectra (see
references in [10]) indicates that when the number of appropriate features extracted
from the spectra is ~1/5th � 1/10th of the number of spectra per class, even a simple
linear classifier, such as LDA will be reliable, once properly crossvalidated. The third
stage, classifier fusion, is invoked only if the outcome probabilities are low. This was
not done for this study.

In contrast, the MCS approach starts with a combination of implicit feature
selection and classifier fusion (governor-SLP). (Unlike in the SCS, where classifier
fusion is via the output class probabilities that serve as input features for the ultimate
classifier, MCS uses the outputs Oi of the SLP experts as inputs to the governor-SLP.)
However, the overall strategy�s most distinguishing aspect is the use of a data-driven
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selection of the optimal classifier (CCR), which may range from the simplest
(Euclidean distance classifier) to the most complex (support vector machines).

For the MSC approach, we tested several versions of the strategy (different subsets
of experts, optimal stopping, etc). For the SCS, we selected the best attributes, based
on the validation set�s classification accuracy. Therefore, in both cases we adapted to
the validation data, leading to optimistically biased results. Ideally, one would need a
sufficiently large (hence statistically significant), completely independent validation
set that was never used in the actual classifier development. This, at least for
biomedical or genomics (microarray) applications, is unrealistic, and reliable methods
for augmenting an originally sparse dataset (e.g., by noise injection) become
particularly relevant.

Clearly, there is no best universal strategy or classifier! Hence, one cannot decide
in advance what classification strategy and/or classifier to use. For each particular
situation and dataset, comparative experimentation will be necessary. For real-life
data, the designer will have to test several different models to decide which is best.
This is an important consideration for the final assessment of the classifier(s).  An
essential requirement of success is that the classification strategy be comprehensive
and sufficiently flexible to adapt to the peculiarities of the data. This is highlighted in
this study: although the emphasis may be different, both strategies rely, explicitly or
implicitly, both on feature selection and on classifier fusion. (Note that the explicit
feature selection stage of the SCS, designed to create features that retain spectral
identity, is driven by the biomedical imperative to understand the biochemical origin
of the diseases.)  However, the SCS and MCS place different emphasis on the
components of the strategies, and carry them out in a different order. The major
differences are SCS�s reliance on feature selection vs. MCS�s data-tuned classifier
development.

We recommend having a toolbox of different classification strategies, and that the
user experiment to select the most appropriate for the task. In the present context, a
fusion of the best components of the two strategies used above seems promising. We
shall report on these experiments in a future communication.

In general, to understand better the intricate interplay between dataset size, the
number of features, and classifier complexity, it is highly desirable that several
different classification experiments be performed on many different types of real-life
datasets (beyond those archived in a few machine intelligence-oriented databases).
Furthermore, both details of positive and negative results should be reported.
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