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Abstract. A structural knowledge-based vehicle recognition method is
modified yielding a new probabilistic foundation for the decisions. The
method uses a pre-calculated set of hidden line projected views of
articulated polyhedral models of the vehicles. Model view structures are
set into correspondence with structures composed from edge lines in the
image. The correspondence space is searched utilizing a 4D Hough-
type accumulator. Probabilistic models of the background and the error
in the measurements of the image structures lead to likelihood
estimations that are used for the decision. The likelihood is propagated
along the structure of the articulated model. The system is tested on a
cluttered outdoor scene. To ensure any-time performance the
recognition process is implemented in a data-driven production system.

1 Introduction

Vehicle recognition from oblique high resolution views has been addressed by several
authors [2][7][6]. Hoogs and Mundy [7] propose to use region and contour
segmentation techniques and rely on dark regions of certain size and form, that may
be a vehicle shadow, and on simple features like parallel contours, that some vehicles
display in a variety of perspectives. Shadows can be exploited, if the pictures are
taken in bright sunlight of known direction. Omni-directional ambient lighting causes
a shadowed region directly underneath the vehicle. This is visible in oblique views of
vehicles but may be occluded, e.g. by low vegetation. Parallel contours are a cue to
vehicles, but they are present in many environments around vehicles, too (e.g. in
roads, buildings, ploughed fields).

A possibility to avoid this difficulties is to use the geometrical shape of the
vehicles themselves. Viola and Wells [12] render object models and compare
characteristic properties of the gray value function of the rendered graphic and the
image using mutual information. Hermitson et al. [6] utilize this approach to oblique
vehicle recognition. Rendering requires assumptions about the lighting and surface
properties of the model. If this is not available one has to work with contours on the
more abstract geometric level. Dickinson et al. [3] proposed generalized cylinder
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models with part-of hierarchies for contour based object recognition. Binfort and
Levitt [2] applied this to vehicle recognition tasks. Generalized cylinder models
capture the coarse structure of a vehicle. For details of vehicles such models are not
appropriate.

Grimson [5] proposed polyhedron models and straight line segments. This has a
high potential discriminative power, because many geometric properties and
constraints of the targets are exploited. For the reduction of the computational effort
indexing methods like generalized Hough transform as well as restricting the vehicles
in position and rotation to the ground plane are proposed [10]. Some vehicles can not
be covered by one rigid polyhedron alone, because they are composed of parts, that
are connected by pivots or bearings (e.g. truck and trailer systems or tanks). Such
objects can be captured by articulated models [11]. The appearance of polyhedrons is
affected by self occlusion. This may be treated by aspect graphs [4], or by linear
combination of characteristic views [11]. We use an equidistantly sampled set of
views for each model [8]. In this contribution we incorporate probabilistic
calculations into a structural approach.

Section 2 presents the accumulator method to solve the problem of vehicle
recognition from single oblique views. The probabilistic model is described in Sect. 3.
A result of an experiment on a difficult scene is given in Sect. 4. In Sect. 5 a
discussion of pros and cons of the approach and an outlook on future work are given.

2 View-Based Recognition of Vehicles

View-based object recognition matches the model to the data in the 2D image space.
For this purpose 2D views of the 3D model parts are constructed. It is possible to use
structured models with part-of hierarchies. Then the consistency check for correct
mutual positioning requires back projection.

A set of 2D lines constructed by perspective hidden-line projection from a
polyhedron is called a view. In contrast to this an aspect is a line graph. Changes in
the view that don't change the topology provide the same aspect [11].

2.1 The Space of Views

The space of views is originally continuous and has dimension six (three rotations and
three translations). Vehicle recognition from oblique imagery constraints the distance
to an interval and the spatial rotation to one off-image plane rotation (the azimuth).
Depending on the focal length translations of the model may lead to geometric
distortions at the margins of the image. Due to the long focal lengths used here this
effect can be neglected and the same view model can be used all over the image. The
model is positioned such that it appears centered in the principal point and the
azimuth and distance are varied stepwise in an appropriate step width yielding finite
2D view space containing some hundred views per model. Fig. 1 shows some
example views.
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Fig. 1. Selected set of 2D models projected from a 3D polyhedron model: a) varying azimuth
with ∆α=15o; b) varying distance with ∆dis=8m

2.2 Matching  an Image to the Views

Object contours in the image are extracted using a gradient operator and morphologic
thinning. The contours are approximated by short line segments. A line prolongation
process improves the orientation estimation of the line objects. The set of such line
objects can be matched with the lines in the views. For this task we use a generalized
Hough transformation [1].

To decrease the computational complexity of the correspondence search we use
L-shaped objects constructed from the lines. The L-shaped objects in all the model
views are constructed off-line. As key to establish the correspondence between image
and model structures the two orientations of the sides of the L-shaped objects are
utilized. A structure in the image supports a part of a view if both orientations are
sufficiently similar. The position of the reference point of the view is obtained
subtracting the position of the part in the model view from the position in the image.

2.3 Robustness through Accumulation
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this area results from the maximal expected
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area. While the leftmost cue is missed in the first attempt it will be included in a later
step, because the position of the new search area is determined by the center of mass
indicated by the cross.

2.4 Part-of Hierarchies and Articulated Models

Not all vehicles are adequately described by a single shape fixed polyhedron model.
Parts of a vehicle may be mutually connected and constrained by hinges or pivots
(truck-trailer systems, tanks). Therefore we consider 3D models of vehicles that have
a part-of hierarchy. Such a model is described by a directed graph where each basic
part is a polyhedron. If the parts have mutual degrees of freedom in rotation such a
model is called articulated model [11]. The resulting constraints are used by
recognition process. For the consistency test the parts are projected back to the 3D
scene. If a pivot or hinge is not located at the reference position of a model part, then
auxiliary position attributes are used to define the search areas for partner clusters.
E. g., the 2D position of the trailer hitch of a vehicle view depends on its pose. These
auxiliary position attributes locate the search area for possible partners.

The information on which auxiliary attribute of which part of the model connects
to which attribute of which other part, and which azimuth angle differences are
permitted at this connection is given by the user in a standardized format in addition
to the polyhedron models.

2.5 Production Nets and Implementation

We describe structural relations of the object models by productions. A production
defines how a given configuration of objects is transformed into a single more
complex object (or a configuration of more complex objects). In the condition part of
a production geometrical, topological, and other relation or attributes of objects are
examined. If the condition part of a production holds, an object specific generation
function is executed to generate a new object. Such productions operate on sets of
objects instead of graphs, strings etc. The organization of object concepts and
productions can be depicted by a production net [9] which displays the part-of
hierarchies of object concepts.

Our production nets are implemented in a blackboard architecture. Blackboard-
systems consists of a global data base (blackboard), a set of processing modules
(knowledge sources), and a control unit (selection module). The productions are
implemented in the processing modules, which test the relations between objects and
generate new objects. Starting with primitive objects the searched target objects are
composed step by step by applying the productions. The system works in an
accumulating way, this means a replaced initial configuration will not be deleted in
the database. Thus all generated partial results remain available during the analysis to
pursue different hypotheses. The classical backtracking in search-trees is not
necessary.
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3 Probabilistic Error Models

A critical issue is the choice of the optimal size of the search areas in the accumulator.
With rising distance of a cue from the center of a cluster the likelihood for its
membership decreases. A cue with a large distance from the cluster is probably due to
background or clutter. Wells [14] used Gaussian distributions for the error of features
that are in correct correspondence to the model and equal densities for background
and clutter features. While he uses contour primitives attributed by their location,
orientation and curvature we operate in the 4D accumulator.

3.1 Probabilistic Calculations in the Cluster Formation

Applying Wells theory we first have to estimate a reward term λ as contribution of
each single cue which replaces the entry into the accumulator. From a representative
training-set where the features are labeled either as correctly matched or as
background or prior information λ is set to
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The middle factor in this product is calculated from the ratio between the probability
B that a feature is due to the background, and the probability (1-B)/m that it
corresponds to a certain model feature, where m is the number of features in the
model. The rightmost factor in the product is given by the ratio between the volume
of the whole feature domain W1 ... W4 and the volume of a standard deviation ellipsoid
of the covariance matrix ψ for the correctly matched features. As feature domain we
set βT=(x,y,α,dis). Locally our accumulator domain may be treated as linear,
justifying the application of this theory and its error models. The objective function L
is calculated for each cluster of cues:
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Yi is the position of the i-th cue in the accumulator domain. The pose β is estimated as
mean )isd�,�,y�,x�(� T ααααββββ ====  of the poses of  the member cues of the cluster. The
correspondence ΓΓΓΓ is coded as an attribute of the cues. For each model feature j put
into correspondence in the cluster the closest cue i to the mean is taken as
representative of the set of all cues i corresponding to j. This is done, because we
regard multiple cues to the same model feature as not being mutual independent.

Recall that the maximization must not take those ΓΓΓΓ into account, that include
negative terms into the sum. Fig. 4 displays the 1D case: Full reward λ is only given
for a precise match. With rising error the reward is diminished by a negative parabola.
Finally it reaches zero level. At this point Γ is changed, setting the feature in
correspondence to the background. This condition gives a new way to infer the
threshold parameters for the search region in the cluster process. In 1D the covariance
matrix reduces to a single variance σ and the single threshold parameter d is given by
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the root of λ/σ. For higher dimensional
cases (e.g. 4D) the bounding box of the
ellipsoid is used, that is determined by
the covariance Σ and λ.

Wells rejects scenes as non
recognizable, if λ turns out to be
negative according to Eq. 1. This gives
a profound criterion for the applicability
of the approach to a task for which a test
data set is provided.
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function integrates the piecewise densities using the error parabola of the new
position estimate Yn yielding a sum of three integrals:
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In the 2D case the upper and lower border of the integral in the middle are replaced by
circular sections in the attribute domain and the parabola is replaced by a paraboloid.
In the case of rigid connections the hyper ellipsoid on which the reward paraboloid is
constructed is 4D, namely (x,y,α,dis). In the case of an articulated connection the
azimuth α is free contributing no error. Therefore the domain is 3D containing only
(x,y,dis).

4 An Experiment

Fig. 5a shows a section of a gray level image containing a vehicle with a small trailer.
Input to the experiments are the lines extracted in a preprocessing stage (Fig. 5b).
Both decision criteria, the maximum accumulator value as well as the maximum
likelihood (ML) work. In the cluttered image region on the left (branches of a tree)
and in the fairly homogenous region in the center accumulator and likelihood field are
empty.

The pose estimation of the maximal elements is roughly correct. Fig. 5c shows the
ML result. The interesting section of the likelihood field is enlarged in Fig 5d. The
white blobs on the left correspond to correct localization. Some less significant false
evidence is found on the right. Both the discrimination and the pose estimation are
slightly better for the likelihood criterion.

5 Discussion

In this contribution we demonstrated the inclusion of probabilistic calculations into a
structural method. Compared to previous experiments [8] the discriminative power of
the accumulator on cluttered regions, e.g. in the left part of the image, has much
improved due to a better parameter setting. The new settings were obtained from the
probabilistic considerations. We occasionally experienced better performance of the
accumulator compared to the likelihood. This occurred when the model did not fit
exactly to the vehicle. The likelihood approach is more sensitive to errors in the
model. Fig. 5c shows that the pose is not optimal (see nose of the vehicle). EM type
optimizations including a top down search in the correspondence space can improve
the result [13].

The probabilistic calculations of Wells rest on certain assumptions on the
distribution of the data. Background features are assumed to be equally distributed all
over the picture. Such assumption is valid only in special situations or if nothing else
is known about the background [9]. If additional information is given, e.g. on certain
preferences on the orientations of the lines (e.g. vertical or horizontal), this can be
included in the probabilistic model. The features in correspondence to the target are
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modeled with a Gaussian distributed additive error. If knowledge about the error
sources is available, other error models may be considered.

Fig. 5. Localization of an aggregate consisting of a vehicle and a small trailer. a) Image section
(1000x200 pixel), b) extracted line objects; c) overlaid articulated model of ML-result,
d) section of the likelihood field corresponding to the dashed box in a)

As shown in Fig 5 the evidence for the two partners of an aggregate is estimated as
being equally distributed over the search volume. The evidence for the new aggregate
has a stepwise constant density (lower, high and then lower again). If we include such
an aggregate as a part of a higher aggregate using the same calculations, we permit a
systematic estimation error. For shallow hierarchies like the one presented here this is
not important. For deep hierarchies such effect has to be estimated.
In our approach all possible model views are approximated by views valid for the
principal point only. This is justified for long focal lengths but will pose severe
problems for views near the image margin of wide angle pictures. These are distorted
by systematic errors.

Still the preliminary experiments presented in Chapter 4 yielded promising results,
so that we are confident in combining statistical and structural methods.
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