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Abstract. This paper demonstrates how the EM algorithm can be used
for learning and matching mixtures of point distribution models. We
make two contributions. First, we show how to shape-classes can be
learned in an unsupervised manner. Second, we show how recognition by
alignment can be realised by fitting a mixture of linear shape deforma-
tions. We evaluate the method on the problem of learning class-structure
and recognising Arabic characters.

1 Introduction

Deformable models have proved to be both powerful and effective tools in the
analysis of objects which present variable shape and appearance. There are many
examples in the literature. These include the point distribution model of Cootes
and Taylor [1], Sclaroff and Pentland’s [2] finite element method, and, Duta and
Jain’s [3] elastic templates. There are two issues to be considered when designing
a deformable model. The first of these is how to represent the modes of variation
of the object under study. The second is how to train the deformable model.
One of the most popular approaches is to allow the object to undergo linear
deformation in the directions of the modal variations of shape. These modes
of variation can be found by either performing principal components [4], or
independent components analysis on the covariance matrix for a set of training
examples [5], or by computing the modes of elastic vibration [6].

Recently, there have been attempts to extend the utility of such methods by
allowing for non-linear deformations of shape [7]. Here there are two contrasting
approaches. The first of these is to use a non-linear deformation model. The
second approach is to use a combination of locally linear models. In this paper
we focus on this latter approach.

In this paper, our aim is to explore how point-distribution models can be
trained and fitted to data when multiple shape classes or modes of shape-
variation are present. The former case arises when unsupervised learning of
multiple object models is attempted. The latter problem occurs when shape
variations can not be captured by a single linear model. Here we show how
both learning and model fitting can be effected using the apparatus of the EM
algorithm.
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In the learning phase, we use the EM algorithm to extract a mixture of
point-distribution models from the set of training data. Here each shape-class
is represented using a Gaussian distribution with its own mean-shape and co-
variance matrix. From the estimated parameters of the Gaussian mixtures, the
point-distribution model can be constructed off-line by performing Principal
Component Analysis (PCA) [8] on the class covariance matrices. In the model
fitting phase, we fit a mixture of Point Distribution Models (PDM’s) [9] using
an architecture reminiscent of the hierarchical mixture of experts algorithm of
Jordan and Jacobs [10]. Here each of the class-dependant PDM’s identified in the
learning step is treated as an expert. The recognition architecture is as follows.
Each point in the test pattern may associated to each of the landmark points in
each of the class-dependant PDM’s with an a posteriori probability. In addition,
we maintain a set of alignment parameters between the test pattern and each of
the PDM’s.

We experiment with the method on Arabic characters. Here we use the new
methodology to learn character classes and perform recognition by alignment.
This is a challenging problem since the data used exhibits a high degree of
variability.

2 Point Distribution Models

The point distribution model of Cootes and Taylor commences from a set train-
ing patterns. Each training pattern is a configuration of labelled point co-ordi-
nates or landmarks. The landmark patterns are collected as the object in question
undergoes representative changes in shape. To be more formal, each landmark
pattern consists of L labelled points whose co-ordinates are represented by the
set of position co-ordinates {X1, X2, ....., Xl} = {(x1, y1), ......(xL, yL)}. Suppose
that there are T landmark patterns. The tth training pattern is represented us-
ing the long-vector of landmark co-ordinates Xt = (x1, y1, x2, y2, · · · , xL, yL)T ,
where the subscripts of the co-ordinates are the landmark labels. For each train-
ing pattern the labelled landmarks are identically ordered. The mean landmark
pattern is represented by the average long-vector of co-ordinates Y = 1

T

∑T
t=1 Xt.

The covariance matrix for the landmark positions is Σ = 1
T

∑T
t=1(Xt −Y )(Xt −

Y )T . The eigenmodes of the landmark covariance matrix are used to construct
the point-distribution model. First, the unit eigenvalues λ of the landmark co-
variance matrix are found by solving the eigenvalue equation |Σ − λI| = 0
where I is the 2L × 2L identity matrix. The eigen-vector φi corresponding to
the eigenvalue λi is found by solving the eigenvector equation Σφi = λiφi. Ac-
cording to Cootes and Taylor [9], the landmark points are allowed to undergo
displacements relative to the mean-shape in directions defined by the eigenvec-
tors of the covariance matrix Σ. To compute the set of possible displacement
directions, the K most significant eigenvectors are ordered according to the mag-
nitudes of their corresponding eigenvalues to form the matrix of column-vectors
Φ = (φ1|φ2|...|φK), where λ1, λ2, ....., λK is the order of the magnitudes of the
eigenvectors. The landmark points are allowed to move in a direction which is
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a linear combination of the eigenvectors. The updated landmark positions are
given by X̂ = Y + Φγ, where γ is a vector of modal co-efficients. This vector
represents the free-parameters of the global shape-model.

3 Learning Mixtures of PDM’s

In Cootes and Taylor’s method [9], learning involves extracting a single covari-
ance matrix from the sets of landmark points. Hence, the method can only
reproduce variations in shape which can be represented as linear deformations
of the point positions. To reproduce more complex variations in shape either a
non-linear deformation or a series of local piecewise linear deformations must be
employed.

In this paper we adopt an approach based on mixtures of point-distributions.
Our reasons for adopting this approach are twofold. First, we would like to be
able to model more complex deformations by using multiple modes of shape
deformation. The need to do this may arise in a number of situations. The first
of these is when the set of training patterns contains examples from different
classes of shape. In other words, we are confronted with an unsupervised learning
problem and need to estimate both the mean shape and the modes of variation
for each class of object. The second situation is where the shape variations in the
training data can not be captured by a single covariance matrix, and a mixture
is required.

Our approach is based on fitting a Gaussian mixture model to the set of
training examples. We commence by assuming that the individual examples in
the training set are conditionally independent of one-another. We further assume
that the training data can be represented by a set of shape-classesΩ. Each shape-
class ω has its own mean point-pattern Yω and covariance matrix Σω. With these
ingredients, the likelihood function for the set of training patterns is

p(Xt, t = 1, ..., T ) =
T∏

t=1

∑
ω∈Ω

p(Xt|Yω, Σω) (1)

where p(Xt|Yω, Σω) is the probability distribution for drawing the training pat-
tern Xt from the shape-class ω.

According to the EM algorithm, we can maximise the likelihood function
above, by adopting a two-step iterative process. The process revolves around the
expected log-likelihood function

QL(C(n+1)|C(n)) =
T∑

t=1

∑
ω∈Ω

P (t ∈ ω|Xt, Y
(n)
ω , Σ(n)

ω ) ln p(Xt|Y (n+1)
ω , Σ(n+1)

ω ) (2)

where Y
(n)
ω and Σ

(n)
ω are the estimates of the mean pattern-vector and the

covariance matrix for class ω at iteration n of the algorithm. The quantity
P (t ∈ ω|Xt, Y

(n)
ω , Σ

(n)
ω ) is the a posteriori probability that the training pat-

tern Xt belongs to the class ω at iteration n of the algorithm. The probability
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density for the pattern-vectors associated with the shape-class ω, specified by the
estimates of the mean and covariance at iteration n+1 is p(Xt|Y (n+1)

ω , Σ
(n+1)
ω ).

In the M, or maximisation, step of the algorithm the aim is to find revised es-
timates of the mean pattern-vector and covariance matrix which maximise the
expected log-likelihood function. The update equations depend on the adopted
model for the class-conditional probability distributions for the pattern-vectors.

In the E, or expectation, step the a posteriori class membership probabilities
are updated. This is done by applying the Bayes formula to the class-conditional
density. At iteration n+ 1, the revised estimate is

P (t ∈ ω|Xt, Y
(n)
ω , Σ(n)

ω ) =
p(Xt|Y (n)

ω , Σ
(n)
ω )π(n)

ω∑
ω∈Ω p(Xt|Y (n)

ω , Σ
(n)
ω )π(n)

ω

(3)

where

π(n+1)
ω =

1
T

T∑
t=1

P (t ∈ ω|Xt, Y
(n)
ω , Σ(n)

ω ) (4)

3.1 Mixtures of Gaussians

We now consider the case when the class conditional density for the training
patterns is Gaussian. Here we assume that the pattern vectors are distributed
according to the distribution

p(Xt|Y (n)
ω , Σ(n)

ω ) =
1

(2π)L
√
|Σ(n)

ω |
exp

[
−1
2
(Xt−Y (n)

ω )T (Σ(n)
ω )−1(Xt−Y (n)

ω )
]
(5)

At iteration n+1 of the EM algorithm the revised estimate of the mean pattern
vector for class ω is

Y (n+1)
ω =

T∑
t=1

P (t ∈ ω|Xt, Y
(n)
ω , Σ(n)

ω )Xt (6)

while the revised estimate of the covariance matrix is

Σ(n+1)
ω =

T∑
t=1

P (t ∈ ω|Xt, Y
(n)
ω , Σ(n)

ω )(Xt − Y (n)
ω )(Xt − Y (n)

ω )T (7)

When the algorithm has converged, then the point-distribution models for the
different classes may be constructed off-line using the procedure outlined in
Section 2. For the class ω, we denote the eigenvector matrix by Φω .

4 Recognition by Alignment

Once the set of shape-classes and their associated point-distribution models has
been learnt, then they can be used for the purposes of alignment or classifica-
tion. The simplest recognition strategy would be to align each point-distribution
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model in turn and compute the associated residuals. This may be done by find-
ing the least-squares estimate of the modal co-efficient vector for each class in
turn. The test pattern may then be assigned to the class of whose vector gives
the smallest alignment error. However, this simple alignment and recognition
strategy can be criticised on a number of grounds. First, it is difficult to apply if
the training patterns and the test pattern contain different numbers of landmark
points. Second, certain shapes may actually represent genuine mixtures of the
patterns encountered in training.

To overcome these two problems, in this Section we detail how the mixture
of PDM’s can be fitted to data using a variant of the hierarchical mixture of
experts (HME) algorithm of Jordan and Jacobs [10]. We view the mixture of
point-distribution models learnt in the training phase as a set of experts which
can preside over the interpretation of test patterns. Basic to our philosophy of
exploiting the HME algorithm is the idea that every data-point can in principle
associate to each of the landmark points in each of stored class shape-models with
some a posteriori probability. This modelling ingredient is naturally incorporated
into the fitting process by developing a mixture model over the space of potential
matching assignments.

The approach we adopt is as follows. Each point in the test pattern is al-
lowed to associate with each of the landmark points in the mean shapes for each
class. The degree of association is measured using an a posteriori correspondence
probability. This probability is computed by using the EM algorithm to align the
test-pattern to each mean-shape in turn. This alignment process is effected using
the point-distribution model to each class in turn. The resulting point alignment
errors are used to compute correspondence probabilities under the assumption
of Gaussian errors. Once the probabilities of individual correspondences between
points in the test pattern and each landmark point in each mean shape are to
hand, then the probability of match to each shape-class may be computed.

4.1 Landmark Displacements

Suppose that the test-pattern is represented by the vector W =
(w1,w2, .....,wD)T which is constructed by concatenating D individual co-
ordinate vectors w1,.....wD. However, here we assume that the labels associated
with the co-ordinate vectors is unreliable, i.e. we can not use the order of the
components of the test-pattern to establish correspondences. We hence wish to
align the point distribution model for each class in turn to the unlabelled set
of D point position vectors W = {w1,w2, .....,wD}. The size of this point set
may be different to the number of landmark points L used in the training. The
free parameters that must be adjusted to align the landmark points with W
are the vectors modal co-efficients γω for each component of the shape-mixture
learnt in training.

The matrix formulation of the point-distribution model adopted by Cootes
and Taylor allows the global shape-deformation to be computed. However, in
order to develop our correspondence method we will be interested in individ-
ual point displacements. We will focus our attention on the displacement vector
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for the landmark point indexed j produced by the eigenmode indexed λ of the
covariance matrix of the shape-mixture indexed ω. The two components of dis-
placement are the elements eigenvectors indexed 2j−1 and 2j. For each landmark
point the set of displacement vectors associated with the individual eigenmodes
are concatenated to form a displacement matrix. For the jth landmark of the
mixing component indexed ω the displacement matrix is

∆ω
j =

(
Φω(2j − 1, 1) Φω(2j − 1, 2) .... Φω(2j − 1,K)

Φω(2j, 1) Φω(2j, 2) .... Φω(2j,K)

)
(8)

The point-distribution model allows the landmark points to be displaced by
a vector amount which is equal to a linear superposition of the displacement-
vectors associated with the individual eigenmodes. To this end let γω represent
a vector of modal superposition co-efficients for the different eigenmodes. With
the modal superposition co-efficients to hand, the position of the landmark j is
displaced by an amount ∆ω

j γ from the mean-position yω
j .

To develop a useful alignment algorithm we require a model for the measure-
ment process. Here we assume that the observed position vectors, i.e. wi are
derived from the model points through a Gaussian error process. According to
our Gaussian model of the alignment errors,

p(wi|yω
j , γω) =

1
2πσ

exp
[
− 1
2σ2

(wi − yω
j − ∆ω

j γω)T (wi − yω
j − ∆ω

j γω)
]

(9)

where σ2 is the variance of the point-position errors which for simplicity are
assumed to be isotropic.

4.2 Mixture Model for Alignment

We make a second application of the EM algorithm, with the aim of estimating
the matrix of alignment parameters Γ (n) = (γ(n)

1 |γ(n)
2 |....|γ(n)

|Ω|) is the matrix of
vectors of modal alignment parameters for each of the point-distribution models
residing in memory. Under the assumption that the measurements of the indi-
vidual points in the test-patterns are conditionally independent of one-another,
the matrix maximises the expected log-likelihood function

QA(Γ (n+1)|Γ (n)) =
∑
ω∈Ω

D∑
i=1

L∑
j=1

P (yω
j |wi, γ

(n)
ω ) ln p(wi|yω

j , γ(n+1)
ω ) (10)

With the displacement model developed in the previous section, maximisation
of the expected log-likelihood function QA reduces to minimising the weighted
square error measure

EA =
D∑

i=1

L∑
j=1

ζ
(n)
ijω(wi − yω

j − ∆w
j γ(n+1)

ω )T (wi − yω
j − ∆w

j γ(n+1)
ω ) (11)

where we have used the shorthand notation ζ
(n)
ijω to denote the a posteriori cor-

respondence probability P (yω
j |wi, γ

(n)
ω ).
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4.3 Maximisation

Our aim is to recover the vector of modal co-efficients which minimize this
weighted squared error. To do this we solve the system of saddle-point equa-
tions which results by setting ∂EA

∂γ
(n+1)
ω

= 0. After applying the rules of matrix
differentiation and simplifying the resulting saddle-point equations, the solution
vector is

γ(n+1)
ω = (

L∑
j=1

∆ω
j

T ∆ω
j )

−1{
D∑

i=1

L∑
j=1

ζ
(n)
ijωwT

i ∆ω
j −

L∑
j=1

yω
j

T ∆ω
j } (12)

4.4 Expectation

In the expectation step of the algorithm, we use the estimated alignment param-
eters to update the a posteriori matching probabilities. The a posteriori prob-
abilities P (yω

j |wi, γ
(n)
ω ) represent the probability of match between the point

indexed i and the landmark indexed j from the shape-mixture indexed ω. In
other words, they represent model-datum affinities. Using the Bayes rule, we
re-write the a posteriori matching probabilities in terms of the conditional mea-
surement densities

P (yω
j |wi, γ

(n)
ω ) =

β
(n)
ω α

(n)
j,ωp(wi|yω

j , γ
(n)
ω )∑

ω′∈Ω

∑L
j′=1 β

(n)
ω′ α

(n)
j′,ω′p(wi|yω′

j′ , γ
(n)
ω′ )

(13)

The landmark mixing proportions for each model in turn are computed by av-
eraging the a posteriori probabilities over the set of points in the pattern being

matched, i.e. α
(n+1)
j,ω = 1

D

D∑
i=1

P (yω
j |wi, γ

(n)
ω ). The a posteriori probabilities for

the components of the shape mixture are found by summing the relevant set of

point mixing proportions, i.e. β
(n+1)
ω =

L∑
j=1

α
(n+1)
j,ω . In this way the a posteriori

model probabilities sum to unity over the complete set of models. The proba-
bility assignment scheme allows for both model overlap and the assessment of
ambiguous hypotheses. Above we use the shorthand notation α

(n)
j,ω to represent

the mixing proportion for the landmark point j from the model ω. The overall
proportion of the model ω at iteration n is β

(n)
ω . These quantities provide a nat-

ural mechanism for assessing the significance of the individual landmark points
within each mixing component in explaining the current data-likelihood. For
instance if α

(n)
j,ω approaches zero, then this indicates that there is no landmark

point in the data that matches the landmark point j in the model ω.

5 Experiments

We have evaluated our learning and recognition method on sets of Arabic char-
acters. Here the landmarks used to construct the point-distribution models have
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Table 1. Recognition Rate for shape-classes 1-7

Single PDM Mixture of PDM’s
Model No. No. of Samples Correct Wrong Correct Wrong

Shape-Class 1 50 45 5 49 1

Shape-Class 2 50 48 2 50 0

Shape-Class 3 50 48 2 50 0

Shape-Class 4 50 45 5 49 1

Shape-Class 5 50 47 3 50 0

Shape-Class 6 50 48 2 50 0

Shape-Class 7 50 41 9 48 2

Recognition Rate 350 92.0% 8.0% 98.7% 1.3%

been positioned by distributing points uniformly along the length of the charac-
ters. In practice we use 20 landmarks per character in 2D space. In total there
are 16 different classes of character. We use 45 samples of each character for the
purposes of training. In Figure 1, we show the mean-shapes learnt in training. In
the left column of the figure, we show the ground-truth mean shapes. The right
column shows the learnt shapes. The two are in good agreement.

We now turn our attention to the results obtained when the shape-mixture
is used for the purposes of recognition by alignment. In Figures 2 and 3 we
compare the fitting of a mixture of PDM’s and a single PDM to a character
retained from the training-set. The different images in the sequence show the
fitted PDM’s as a function of iteration number. The shape shown is the one
with the largest a posteriori probability. Figure 2 shows the results obtained
when a single PDM is trained on the relevant set of example patterns and then
fitted to the data. Figure 3 shows result obtained when training is performed
using a mixture of Gaussians. The best fit is obtained when the training is
performed using a mixture of Gaussians. In Figure 4 we show the alignments of
the subdominant shape-components of the mixture. These are all very poor and
fail to account for the data.

In Figure 5 we show the a posteriori probabilities βω for each of the mixing
components on convergence. The different curves are for different shape-classes.
A single dominant shape hypothesis emerges after a few iterations. The proba-
bilities for the remaining shape-classes falls towards zero. Note that initially the
different classes are equiprobable, i.e. we have not biased the initial probabilities
towards a particular shape-class.

Finally, we measure the recognition rates achievable using our alignment
method. Here we count the number of times the maximum a posteriori probabil-
ity shape, i.e. the one for which ω = argmaxβω, corresponds to the hand-labelled
class of the character. This study is performed using 350 hand-labelled charac-
ters. Table 1 lists the recognition rates obtained in our experiments. The table
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(a) (b) (c) (d)

Fig. 1. (a) Actual mean shapes, (b) EM Initialization, (c) diagonal covariance
matrices, (d) non-diagonal covariance matrices

(a) (b) (c) (d) (e)

Fig. 2. Model alignment to data using Single PDM: (a) iteration 1, (b) iteration
2, (c) iteration 3, (d) iteration 5, (e) iteration 7

lists the numbers of characters recognised correctly and incorrectly for each of
the shape-classes; the results a given for both single PDM’s and a mixture of
PDM’s. The main conclusions to be drawn from the table are as follows. First, the
mixture of PDM’s gives a better recognition rate than using separately trained
single PDM’s for each class. Hence, recognition can be improved using a more
complex model of the shape-space.



214 Abdullah A. Al-Shaher and Edwin R. Hancock

(a) (b) (c) (d) (e)

Fig. 3.Model alignment to data using mixtures of Gaussian PDM’s: (a) iteration
1, (b) iteration 2, (c) iteration 3, (d) iteration 5, (e) iteration 7

Fig. 4. Sub dominant model alignment to data using mixture of PDM’s
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Fig. 5. Model fitting with a mixture of PDM’s

6 Conclusion

In this paper, we have shown how mixtures of point-distribution models can be
learned and then subsequently used for the purposes of recognition by alignment.
In the training phase, we show how to use the method to learn the class-structure
of complex and varied sets of shapes. In the recognition phase, we show how a
variant of the hierarchical mixture of experts architecture can be used to perform
detailed model alignment.

We present results on sets of Arabic characters. Here we show that the mix-
ture of PDM’s gives better performance than a single PDM. In particular we are
able to capture more complex shape variations.

Our future plans revolve around developing a hierarchical approach to the
shape-learning and recognition problem. Here we aim to decompose shapes into
strokes and to learn both the variations in stroke shape, and the variation in
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stroke arrangement. The study is in hand, and results will be reported in due
course.
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