
String Edit Distance, Random Walks

and Graph Matching

Antonio Robles-Kelly � and Edwin R. Hancock

Department of Computer Science, University of York
York, Y01 5DD, UK

{arobkell,erh}@cs.york.ac.uk

Abstract. This paper shows how the eigenstructure of the adjacency
matrix can be used for the purposes of robust graph-matching. We com-
mence from the observation that the leading eigenvector of a transition
probability matrix is the steady state of the associated Markov chain.
When the transition matrix is the normalised adjacency matrix of a
graph, then the leading eigenvector gives the sequence of nodes of the
steady state random walk on the graph. We use this property to con-
vert the nodes in a graph into a string where the node-order is given
by the sequence of nodes visited in the random walk. We match graphs
represented in this way, by finding the sequence of string edit operations
which minimise edit distance.

1 Introduction

Graph-matching is a task of pivotal importance in high-level vision since it pro-
vides a means by which abstract pictorial descriptions can be matched to one-
another. Unfortunately, since the process of eliciting graph structures from raw
image data is a task of some fragility due to noise and the limited effectiveness of
the available segmentation algorithms, graph-matching is invariably approached
by inexact means [15,13]. The search for a robust means of inexact graph-
matching has been the focus of sustained activity over the last two decades.
Early work drew heavily on ideas from structural pattern recognition and re-
volved around extending the concept of string edit distance to graphs [13,6,4].
More recent progress has centred around the use of powerful optimisation and
probabilistic methods, with the aim of rendering the graph matching process
robust to structural error.

Despite proving effective, these methods lack the elegance of the matrix rep-
resentation first used by Ullman in his work on subgraph isomorphism [17].
The task of posing the inexact graph matching problem in a matrix setting has
proved to be an elusive one. This is disappointing since a rich set of potential
tools are available from the field of mathematics referred to as spectral graph
theory. This is the term given to a family of techniques that aim to characterise
the global structural properties of graphs using the eigenvalues and eigenvectors
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of the adjacency matrix [5]. In the computer vision literature there have been a
number of attempts to use spectral properties for graph-matching, object recog-
nition and image segmentation. Umeyama has an eigendecomposition method
that matches graphs of the same size [18]. Borrowing ideas from structural chem-
istry, Scott and Longuet-Higgins were among the first to use spectral methods
for correspondence analysis [14]. They showed how to recover correspondences
via singular value decomposition on the point association matrix between differ-
ent images. In keeping more closely with the spirit of spectral graph theory, yet
seemingly unaware of the related literature, Shapiro and Brady [16] developed
an extension of the Scott and Longuet-Higgins method, in which point sets are
matched by comparing the eigenvectors of the point proximity matrix. Here the
proximity matrix is constructed by computing the Gaussian weighted distance
between points. The eigen-vectors of the proximity matrices can be viewed as the
basis vectors of an orthogonal transformation on the original point identities. In
other words, the components of the eigenvectors represent mixing angles for the
transformed points. Matching between different point-sets is effected by compar-
ing the pattern of eigenvectors in different images. Shapiro and Brady’s method
can be viewed as operating in the attribute domain rather than the structural
domain. Horaud and Sossa[8] have adopted a purely structural approach to the
recognition of line-drawings. Their representation is based on the immanental
polynomials for the Laplacian matrix of the line-connectivity graph. By com-
paring the coefficients of the polynomials, they are able to index into a large
data-base of line-drawings. Shokoufandeh, Dickinson and Siddiqi [2] have shown
how graphs can be encoded using local topological spectra for shape recognition
from large data-bases.

In a recent paper Luo and Hancock [11] have returned to the method of
Umeyama and have shown how it can be rendered robust to differences and
graph-size and structural errors. Commencing from a Bernoulli distribution
for the correspondence errors, they develop an expectation maximisation algo-
rithm for graph-matching. Correspondences are recovered in the M or maximi-
sation step of the algorithm by performing singular value decomposition on the
weighted product of the adjacency matrices for the graphs being matched. The
correspondence weight matrix is updates in the E or expectation step. However,
since it is iterative the method is relatively slow and is sensitive to initialisation.

The aim in this paper is to investigate whether the eigenstructure of the
adjacency matrix can be used to match graphs using a search method rather
than by iteration. To do this we draw on the theory of Markov chains. We
consider a Markov chain whose transition probability matrix is the normalised
edge-weight matrix for a graph. The steady random walk for the Markov chain
on the graph is given by the leading eigenvector of the transition probability, i.e.
edge weight, matrix. Hence, by considering the order of the nodes defined by the
leading eigenvector, we are able to convert the graph into a string. This opens
up the possibility of performing graph matching by performing string alignment
by minimising the Levenshtein or edit distance [10,20]. We can follow Wagner
and use dynamic programming to evaluate the edit distance between strings
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and hence recover correspondences [20]. It is worth stressing that although there
been attempts to extend the string edit idea to trees and graphs [21,12,13,15],
there is considerable current effort aimed at putting the underlying methodol-
ogy on a rigourous footing. For instance, Bunke and his co-workers who have
demonstrated the relationship between graph edit distance and the size of the
maximum common subgraph.

2 Random Walks on Graphs

The relationship between the leading eigenvector of the adjacency matrix and
the steady state random walk has been exploited in a number areas including
routing theory and information retrieval. We are interested in the weighted graph
G = (V,E, P ) with node index-set V and edge-set E ⊆ V × V . The off-diagonal
elements of the transition probability matrix P are the weights associated with
the edges. In this paper, we exploit a graph-spectral property of the transition
matrix P to develop a surface height recovery method. This requires that we
have the eigenvalues and eigenvectors of the matrix P to hand. To find the
eigenvectors of the transition probability matrix, P , we first solve polynomial
equation

|P − λI| = 0 (1)

The unit eigenvector φi associated with the eigenvalue λi is found by solving the
system of linear equations

Pφi = λiφi (2)

and satisfies the condition φT
i φ = 1.

Consider a random walk on the graph G. The walk commences at the node j1
and proceeds via the sequence of edge-connected nodes Γ = {j1, j2, j3, ...} where
(ji, ji−1) ∈ E. Suppose that the transition probability associated with the move
between the nodes jl and jm is Pl,m. If the random walk can be represented by
a Markov chain, then the probability of visiting the nodes in the sequence above
is PΓ = P (j1)

∏|V |
l=1 Pjl+1,jl

. This Markov chain can be represented using the
transition probability matrix P whose element with row l and column m is Pl,m.
Further, let Qt(i) be the probability of visiting the node indexed i after t-steps of
the random walk and let Qt = (Qt(1), Qt(2), ...)T be the vector of probabilities.
After t time steps Qt = (PT )tQ0. If λi are the eigenvalues of P and φi are the
corresponding eigenvectors of unit length, then

P =
|V |∑
i=1

λiφiφ
T
i

As a result, after t applications of the Markov transition probability matrix

P t =
|V |∑
i=1

λt
iφiφ

T
i
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If the row and columns of the matrix P sum to unity, then λ1 = 1. Furthermore,
from spectral graph theory [5] provided that the graph G is not a bipartite
graph, then the smallest eigenvalue λ|V | > −1. As a result, when the Markov
chain approaches its steady state, i.e. t → ∞, then all but the first term in the
above series become negligible. Hence,

lim
t→∞P t = φ1φ

T
1

This establishes that the leading eigenvector of the transition probability matrix
is the steady state of the Markov chain. For a more complete proof of this result
see the book by Varga [19] or the review of Lovasz [9]. As a result, if we visit the
nodes of the graph in the order defined by the magnitudes of the co-efficients
of the leading eigenvector of the transition probability matrix, then the path is
the steady state Markov chain. In this paper we aim to exploit this property to
impose a string ordering on the nodes of a graph, and to use this string ordering
property for matching the nodes in different graphs by minimising string edit
distance.

Our goal is to match the nodes in a “data” graph GD = (VD, ED, PD) to
their counterparts in a “model” graph GM = (VM , EM , PM ). Suppose that the
leading eigenvector for the data-graph transition probability matrix PD matrix
is denoted by φ∗

D = (φ∗
D(1), ....., φ∗

D(|VD|))T while that for the model graph
transition probability matrix PM is denoted by φ∗

M = (φ∗
M (1), .....φ∗

M (|VM |))T .
The associated eigenvalues are λ∗

D and λ∗
M . The designation of the two graphs

as “data” and “model” is a matter of convention. Here we take the data graph
to be the graph which possesses the largest leading eigenvalue, i.e. λ∗

D > λ∗
M .

Our aim is to use the sequence of nodes defined by the rank order of the
magnitudes of the components of the leading eigenvector as a means of locating
correspondences. The rank order of the nodes in the data graph is given by the
string of sorted node-indices X = (j1, j2, j3, ...., j|VD |) where φ∗

D(j1) > φ∗
D(j2) >

φ∗
D(j3) > ... > φ∗

D(j|VD |). The subscript n of the node-index jn ∈ VD is hence the
rank-order of the eigenvector component φ∗

D(jn). The rank-ordered list of model-
graph nodes is Y = (k1, k2, k3, ...., k|VM |) where φ∗

M (k1) > φ∗
M (k2) > φ∗

M (k3) >
... > φ∗

M (k|VM |).
We augment, the information provided by the leading eigenvectors, with

morphological information conveyed by the degree of the nodes in the two graphs.
Suppose that deg(i) is the degree of node i. We establish the morphological
affinity βi,j of nodes i ∈ VD and j ∈ VM using their degree ratio. Specifically,
the morphological affinity of the nodes is taken to be

βi,j = exp
(
−max(deg(i), deg(j)) − min(deg(i), deg(j))

max(deg(i), deg(j))

)
(3)

If the degree ratio is one then the affinity measure is maximum. If the ratio is
small (i.e. βi,j << 1) then the affinity is zero.
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3 Edit Distance

By taking the leading eigenvectors of the model-graph and data-graph adjacency
matrices, we have converted the two graphs into strings. Our aim in this paper
is to explore whether we can use string edit distance to robustly match the
graphs when they are represented in this way. Let X and Y be two strings
of symbols drawn from an alphabet Σ. We wish to convert X to Y via an
ordered sequence of operations such that the cost associated with the sequence
is minimal. The original string to string correction algorithm defined elementary
edit operations, (a, b) 
= (ε, ε) where a and b are symbols from the two strings or
the NULL symbol, ε. Thus, changing symbol x to y is denoted (x, y), inserting y
is denoted (ε, y), and deleting x is denoted (x, ε). A sequence of such operations
which transforms X into Y is known as an edit transformation and denoted
∆ =< δ1, ..., δ|∆| >. Elementary costs are assigned by an elementary weighting
function γ : Σ∪{ε}×Σ∪{ε} �→ 
; the cost of an edit transformation, W (∆), is
the sum of its elementary costs. The edit distance between X and Y is defined
as

d(X,Y ) = min{W (∆)|∆ transforms X to Y } (4)

We aim to to locate correspondence matches by seeking the edit-path that
minimises the edit distance between the strings representing the steady state
random walks on the two graphs. To this end, suppose that δl = (a, b) and
δl+1 = (c, d) represent adjacent states in the edit path between the stready state
random walks X and Y . The cost of the edit path is given by

W (∆) =
∑
δl∈∆

γδl→δl+1 (5)

where γδl→δl+1 is the cost of the transition between the states δl = (a, b) and
δl+1 = (c, d). Since, we commenced with a probabilistic characterisation of the
matching problem using Markov chains, we define the elementary edit cost to
be the negative logarithm of the transition probability for the edit operation.
Hence,

γ(a,b)→(c,d) = − lnP ((a, b) → (c, d)) (6)

We adopt a simple model of the transition probability. The probability is a
product of the node similarity weight, and the edge probabilities. Hence we
write

P ((a, b) → (c, d)) = βa,bβc,dRD(a, c)RM (b, d) (7)

where RD and RM are matrices of compatibility weights. The elements of the
matrices are assigned according to the following distribution rule

RD(a, c) =



PD if(a, c) ∈ ED

Pε if a = ε or c = ε

0 otherwise
(8)
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where ED is the edge set of the data-graph, PD is the associated normalised
transition probability matrix and Pε is the probability associated with a match
to the null symbol ε. The compatibility weight is hence zero if either the symbol
pair (a, c) is unconnected by an edge of the data-graph, or the symbol pair (b, d)
is unconnected by a model graph edge. As a result, edit operations which violate
edge consistency on adjacent nodes in the strings are discouraged.

The optimal set of correspondences between the two sequences of nodes is
found by minimising the stringf edit distance. The optimal sequence of corre-
spondence ∆∗ satisfies the condition

∆∗ = arg max
∆

W (∆) (9)

In practice, we find the optimal edit sequence using Dijkstra’s algorithm. Since
both the data-graph random walk X and the model-graph random walk are
edge-connected, the edit path coils around neighbourhoods in the graphs, while
“zippering” the strings together.

4 Experiments

We have conducted some experiments with the CMU house sequence. This se-
quence consists of a series of images of a model house which have been captured
from different viewpoints. To construct graphs for the purposes of matching,
we have first extracted corners from the images using the corner detector of
Luo, Cross and Hancock [3]. The graphs used in our experiments are the Delau-
nay triangulations of these points. The Delaunay triangulations of the example
images are shown in Figure 1a. We have matched pairs of graphs representing
increasingly different views of the model house. To do this, we have matched
the first image in the sequence, with each of the subsequent images. In Figure 1
b, c and d we show the sequence of correspondence matches. In each case the
left-hand graph contains 34 nodes, while the right-hand graphs contain 30, 32
and 34 nodes. From the Delaunay graphs it is clear that there are significant
structural differences in the graphs. The numbers of correctly matched nodes
in the sequence are respectively 29, 24 and 20 nodes. By comparison, the more
complicated iterative EM algorithm of Luo and Hancock [11] gives 29, 23 and
11 correct correspondences. As the difference in viewing direction increases, the
fraction of correct correspondences decreases from 80% for the closest pair of
images to 60% for the most distant pair of images.

We have conducted some comparison with a number of alternative algo-
rithms. The first of these share with our method the feature of using matrix fac-
torisation to locate correspondences and have been reported by Umeyama [18]
and Shapiro and Brady [16]. Since these two algorithms can not operate with
graphs of different size, we have taken pairs of graphs with identical numbers of
nodes from the CMU sequence; these are the second and fourth images which
both contain 32 nodes. Here the Umeyama method and the Shapiro and Brady
method both give 6 correct correspondences, while both the Luo and Han-
cock [11] method and our own give 22 correct correspondences.
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(a)

(b)

(c)

(d)

Fig. 1. Delaunay triangulations and sequence of correspondences
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Fig. 2. Sensitivity study results

Finally, we have conducted some experiments with synthetic data to measure
the sensitivity of our matching method to structural differences in the graphs
and to provide comparison with alternatives. Here we have generated random
point-sets and have constructed their Delaunay graphs. We have simulated the
effects of structural errors by randomly deleting nodes and re-triangulating the
remaining point-set. In Figure 2 we show the fraction of correct correspondences
as a function of the fraction of nodes. The performance curve for our new method
(marked as “Evidence combining” on the plot) is shown as the lightest of the
curves. Also shown on the plot are performance curves for the Wilson and Han-
cock discrete relaxation scheme, [22], the Gold and Rangarajan [7] quadartic
assignment method and the Finch, Wilson and Hancock [1] non-quadratic as-
signment method. In the case of random node deletion, our method gives perfor-
mance that is significantly better than the Gold and Rangarajan method, and
intermediate in perfomance between the discrete relaxation and non-quadratic
assignment methods.

5 Conclusions

The work reported in this paper provides a synthesis of ideas from spectral graph-
theory and structural pattern recognition. We use the result from spectral graph
theory that the steady state random walk on a graph is given by the leading
eigenvector of the adjacency matrix. This allows us to provide a string ordering
of the nodes in different graphs. We match the resulting string representations
by minimising edit distance. The edit costs needed are computed using a simple
probailistic model of the edit transitions which is designed to preserve the edge
order on the correspondences.
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