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Abstract 
The  physical analog of “blind signatures” of Chaum is a document 

and a carbon paper put into an envelope, allowing the signer to  transfer 
his signature onto the document by signing on the envelope, and without 
opening it. Only the receiver can present the signed document while the 
signer cannot “unblind” its signature and get the document signed. 

When an authority signs “access tokens”, “electronic coins”, “creden- 
tials” or “passports”, it  makes sense to assume that  whereas the users can 
typically enjoy the disassociation of the blindly signed token and the token 
itself (i.e. anonymity and privacy), there may be cases which require “un- 
blinding” of a signature by the signing authority itself (to establish what 
is known as “audit trail” and to  “revoke anonymity” in case of criminal 
activity ) . 

This leads us to consider a new notion of signature with the following 
physical parallel: The  signer places a piece of paper with a carbon paper 
on top in an envelope as before (but the document on the paper is not yet 
written). The receiver then writes the document on the envelope using 
magic ink, e.g., ink that  is only visible after being “developed”. Due to  
the carbon copy, this results in the document being written in visible ink 
on the internal paper. Then, the signer signs the envelope (so its signature 
on the document is made available). The  receiver gets the internal paper 
and the signer retains the envelope with the magic ink copy. Should the  
signer need to  unblind the document, he can develop the magic ink and 
get the document copy 0 1 1  the envelope. Note that  the signing is not 
blinded forever t o  the signer. We call this new type of signature a magic 
ink signature. 

We present an efficient method for distributively generating magic ink 
signatures, requiring a quorum of servers to  produce a signature and a 
(possibly different) quorum t o  unblind a signature. T h e  scheme is robust, 
and the unblinding is guaranteed to  work even if a set of up  to a threshold 
of signers refuses to  cooperate, or actively cheats during either the signing 
or the unblinding protocol. We base our specific implementation on the 
DSS algorithm. Our construction demonstrates the extended power of 
distributed signing. 
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1 Introduction 
In recent years, various notions of distribution of cryptographic functions (sig- 
nature and encryption) among independent agents were considered. The typical 
added functionality of such a distribution include increased security of the se- 
cret key, increased availability of service, and increased flexibility of access, the 
latter by requiring a quorum to access information (as in, e.g., [9, 12, 201). All 
these notions are functionality of distributed computing. 

In this work we suggest that the distributed signature setting also provides 
for extended functionality by enabling “a new notion of signature itself” which 
is otherwise impossible (owing to  the added control in this case). The notion 
we specifically suggest is that of “Magic Ink Signatures”. In such a signature 
service, the signer blindly signs a message for a receiver, while retaining the 
capability to “unblind” the signature (analogous to developing “Magic Ink”), at 
any later point. What the distribution enables us is to implement the unblinding 
with separation in time ~ i.e., allowing the development of the “Magic Ink” at 
some point, but not earlier. This is impossible in the centralized case (what the 
signer can do at  some point it can do earlier if there is no limiting factor such 
as the “Quorum Control” in the distributed case). 

Note that requiring various actions of a quorum of distributed agents re- 
garding a specific signature value needs a careful flexible design. For example, 
we cannot require that in each action the same identical quorum of agents be 
present. Requiring this may, paradoxically, reduce the availability of the service 
as the distribution level grows (whereas one of the initial reasons in distributing 
the service was increased availability). For the same reason, and quite counter- 
intuitively, it may also force us to  put more trust in individual servers with a 
higher degree of distribution, unless care is taken. 

The magic ink signature enables the generation of blind signatures which 
can later be unblinded by the signer (following the physical analogue given in 
the abstract). This is in sharp contrast with traditional blind signatures, which 
are information theoretically blinded to the signer [5]. The typical application 
where the need for unblinding arises is for cases where “privacy of individu- 
als” is assured until some criminal or otherwise unusual activity is detected. 
Upon detection, identification of the origin of a signature becomes important 
in identifying the source of the unwanted activity. This is applied to private 
access tokens, authorized anonymous accounts, and electronic-money. Regard- 
ing the later setting, Chaum, Fiat and Naor’s [7] original off-line scheme (and 
its follow-ups) offered perfect anonymity. However, the absolute privacy feature 
of all these schemes is not only beneficial to honest users, but also to criminal 
offenders, as it makes perfect crimes possible [2, 4, 8, 11, 18, 23, 251: Various 
methods for anonymity revocation are suggested in some of these works men- 
tioned. In “fair blind signatures” [3, 8, 11, 251, a signature receiver puts a 
pseudonym into the signature, allowing a third party (a judge) to later unblind 
the signature by calculating a pseudonym from a signature or vice versa. Magic 
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ink signatures are the “distributed cousins” of fair blind signatures, increasing 
the availability and lowering the amount of trust required (no need to employ 
a third party beyond the distributed signing agents and using quorum control 
to  assure separation of duties). Magic ink signatures is a generic tool for blind 
signature generation, enabling the possibility of unblinding selected blind signa- 
tures by the signer - but only under quorum agreement to do so. The method 
is applied to a payment scheme with revocable privacy in [17, 191. We note 
that it is easy to apply proactive methods [14, 151 to our suggested solution, for 
maximum security and availability. 

Organization: We present a magic ink signature scheme that is robust, ensur- 
ing that as long as a quorum of (a plurality of honest) servers cooperate, they 
will always be able to unblind a given signature. Thus, we ensure availability 
and a high degree of distribution and reduced degree of trust required from an 
individual server. We first specify the notion of magic ink signatures, and the 
format of DSS signatures. Then, in section 3, we present the intuitive approach 
of magic ink DSS signatures. In section 4, we explain the model, our assump- 
tions, and the tools we utilize. Among these is a new construction of robustness 
applicable to certain distributed protocols. This is followed by a protocol for 
magic ink generation of DSS signatures in section 5 .  In section 6, we elaborate 
on the robustness of the scheme and we claim its properties in section 7 and the 
Appendix. 

2 Requirements and Background 
Specifications: We wish to  obtain a signature scheme where blind signatures 
can be distributively produced by a quorum of trustees, and these signatures 
can always be unblinded by a (possibly different) quorum (assuming a certain 
linear-fraction majority of honest trustees). We specify the following properties: 

Signatures are generated using a ( t , n )  threshold scheme by any 2 out of 
the n trustees. Less than t trustees cannot generate a valid signature. 

The signatures are computationally blinded to any set of less than t 
trustees (i.e., the signature cannot be correlated to the blinded signature 
or the signing session by a set of less than t trustees.) 

Valid signatures can be unblinded, i.e., signatures matched to  signing ses- 
sion or vice versa, by any t out of the n trustees, regardless of the behavior 
of the other n - t trustees and the signature receiver. 

Furthermore, we want signatures generated by an attacker who compro- 
mises the secret key of less t,han t signers (or forces these signers to sign 
using a protocol different than the specified) to be identifiable by any t of 
the signers (i.e., having an audit trail of legal signatures). 
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2.1 
We use the DSS (described herein) as the underlying signature algorithm [21]. 

Note: Since we use different moduli at different times, we use [op], to denote 
the operation op modulo z ,  where this is not clear from the context. 

Key Generation. A DSS key is composed of public informationp, q ,  g, a public 
key y and a secret key 2, where: 
1. p is a prime number of length 1 where 1 is a multiple of 64 and 512 5 1 5 1024. 
2. y is a 160-bit prime divisor of p - 1. 
3.  g is an element of order p in 2;. The triple ( p ,  q ,  g) is public. 
4. 2 is the secret key of the signer, a random number 1 5 2 < q .  
5. y = [gsIp is the public verification key. 

Signature Algorithm. Let m E 2, be a hash of the message to  be signed. 
The signer picks a random number k such that 1 5 k < y ,  calculates k - l  mod 
(w.1.o.g. k and k-’ values compared to DSA description are interchanged), and 
sets 

The Digital Signature Standard (DSS) 

r = “gk-llp1* 

s = [k(m +zr) Iq  

The pair ( r ,  s) is a signature of m. 

Verification Algorithm. A signature ( r ,  s) of a message m can be publicly 
verified by checking that r = [[grn8-lyr3 

- 1  

3 Single-Server (Pseudo) Magic Ink Signatures 
In order to communicate the intuition of our scheme, we present a method for 
producing Magic Ink DSS Signatures using only one signing server (which will 
be able to unblind the signature at will at any time). However, when we later 
distribute the signature server, signing and unblinding both will require quorum 
agreement. 

3.1 (Pseudo) magic ink generation of DSS signatures 
1. The signature receiver R has a hashed message rn E 2, that  he wants 

signed. He generates two blinding factors, a ,  b E, Z,, and computes a 
blinding of rn, ,u = [rnuIq. R sends ,u to the signature generating server s. 

E, Z,, and computes F = 2. S generates a random secret session key, 
-- 1 

[gk I p l  which is sent to  the signature receiver R. 

3.  The signature receiver R computes T = [[?],],, and computes a blinding 
p of r :  p = [ru],. R sends p to the signature generating server. 
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4. S generates a tag tag and the DSS signature u on the message p ,  using 
the public session key p .  Here, tag is calculated first (which we describe 
how to do below), after which u is calculated as follows: u = [x(p + zp)],. 
The server sends u to  R. 

5. The signature receiver R unblinds the signature: s = [aa-'b-'],. The 
triple (m,  r ,  s) is a valid DSS signature on m. 

Theorem 1: The protocol produces correct DSS signatures. 

Proof of Theorem 1: 
Recall that u E, k(p + zp) ,  s E, uu-'b-' ,  m zq p u - l ,  and y G~ g". We 
can describe T either as P = [[g"lb]l ,] ,  (from the point of view of information 
going from the signer(s) to  the receiver) or as T = [pa- l ] ,  (from the point of 
view of information going back from the receiver to the signer(s)). We have that 

- 
- 

l P  = [ g ( p a - ' + z p a - l ) s - ' ~  = [ g ( ~ a - l + + p a - ' ) ( a a - ' b - ' ) - l  

- - [g"-1('f+p)((6(~t+p))a-L6-L)-1], = [g"-l(~t"pi(%(~tlp))-lab], = [g k '6 3, f g  r 
Thus, the protocol generates valid DSS signatures. 0 

I P  
[grn s - y r a -  Ip = [g(m+"f)s-l 

-_ P 

3.2 Generation of tags 
Let us start by making the following observation: 

Signature-View Invariant: Let [mr-'Iq identify a valid signature (m ,  r ,  s), 
and { p , p }  part of the the view of the signer during a signature generation 
session. We have: mr-' E, pp-', since p = [ma], and p = [TU] ,  for a valid 
signature. 

Justification: We have u = [ x ( p + + p ) ] ,  for (p, p )  generated by R. Linear com- 
binations of more than one such signature are not known to give a signature of 
the valid form (due to the use of different values of of different signatures; and 
implied by our assumption of existential unforgeability of this type of signatures) 
so we will only consider operations on one signature. Multiplying the value u by 
a coefficient can maintain a valid signature; two such manipulations are known: 
First, for s = [uu],, and ( m , ~ )  = ( [pa] , ,  [pa],)  we have that ( m , r , s )  is still a 

valid signature. Second, for s = [ab],, and ( m ,  r )  = ( p ,  p )  = ( p ,  [[gk * ] J q ) ,  we 
have that (m, P ,  s) is also a valid signature. For both of these manipulations, the 
invariant holds, and no other applicable blinding methods are known. There- 
fore, any way of obtaining a valid signature (m, r ,  s) for which mlr gg p / p ,  
would give a new method for blinding of signatures of this type. 

-1 
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Use for tagging: We will use the signature-view invariant for the produc- 
tion of tags, which will be (possibly distributedly stored results of) a function of 
[pp-’1, . Consider the following tagging method: The signature servers distribu- 
tively generate and keep a marker (session tag) specific to the signing session, 
and a distributed tag (unknown to any subset of less than t servers). Together, 
these can be used to distributively calculate the invariant [rnlr], of the related 
session, which can be output and compared to  a signature invariant (based on 
m and r )  or distributively (secretly) compared to  a given invariant. 

3.3 Tracing 
There are three types of tracing we can perform: 

1. From known signing session to signed message: The signature in- 
variant is calculated from the tag and the marker of a given session. 

2. From known signed message to signing session: The given signa- 
ture invariant is distributively compared to  the signature invariant of each 
potential session, which is distributively calculated from the tag and the 
marker of a given session. 

3. By comparison: The given signature invariant is distributively com- 
pared to the signature invariant of the given session. 

4 Model and Tools 

4.1 Communication and Threat Model 
We assume the standard computational model of polynomial-time randomized 
Turing machines. Players are connected by an insecure broadcast medium, and 
an (also polynomial time limited) adversary can inject messages and eavesdrop, 
but not disconnect any other player from the network. Furthermore, the adver- 
sary can corrupt up to t - 1 of the n players in the network, and by doing so, 
force the corrupted players to divert from the specified protocol arbitrarily. See 
[12] for more details about the model. 

4.2 Assumptions 
We will rely on the following assumptions: 

1. The Undeniable Signature Assumption [6] holds (i.e., given an input quadru- 
ple (m, s ,  g ,  y),  it is hard to decide whether log,s = log,?/, unless 2 = log,y 
is known.) This implies that the Discrete Log problem is not in BPP, and 
that Pedersen’s secret sharing scheme [22] is secure on random secrets. 
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2. The DSS signature scheme where the signature receiver is allowed to  spec- 
ify the message rn to  be signed after seeing the value [g”-’], is secure 
against a chosen message attack. 

4.3 Tools 
Let us briefly describe the existing tools we employ: 

0 Polynomial Interpolation Secret Sharing[24]: This is the well-known 
result in which a secret u is shared by choosing at random a polynomial 
f(x) of degree t ,  such that f (0)  = u. 

0 Joint Random Secret Sharing[lO, 221: In a Joint Random Secret Shar- 
ing scheme the players collectively choose shares corresponding to a ( t ,  n)-  
secret sharing of a random value. 

0 Joint Zero Secret Sharing[l]: This protocol generates a collective shar- 
ing of a “secret” whose value is zero. Such a protocol is similar to the above 
joint random secret sharing protocol but instead of local random secrets 
each player deals a sharing of the value zero. 

0 Computing Reciprocals[l2]: Given a secret k mod q which is shared 
among players P I ,  ... Pn, generate a sharing of the value k-l mod q ,  with- 
out revealing information on k and k-l. 

0 Multiplication of Secrets[l2]: Given two secrets u and v, which are 
both shared among the players, compute the product uv, while maintain- 
ing both of the original values secret (aside from the obvious information 
which is revealed from the result). 

The multiplication of two secrets easily extends to linear combinations and 
products of three secrets, e.g., &(pi  + x i p i )  for secrets xi, p i ,  xi, and p i .  This 
is achieved without altering the method given in [12]. We also use three new 
tools: 

0 Comparison of Secrets: Given two secrets u and v, which are both 
shared among the players (or one is shared one is known), using the above 
tools we can compare their equality without learning the secret values. 

0 Undeniable Signature Based Robustness: We introduce the use of 
the verification protocol of undeniable signatures to  prove correct expo- 
nentiations. 

0 Destructive Robustness: We introduce a new method for making dis- 
tributed protocols robust: Instead of verifying that each individual share 
of the calculation is correct, we first combine the shares and then verify 
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that  the combined result is correct. If it is not, then each share of the re- 
sult is verified. A minor efficiency improvement is obtained from doing so. 
But more importantly, this approach allows simpler and clearer protocol 
design. This is because we can allow the individual correctness verifica- 
tion to destruct important properties of tmhe produced transcript, which, 
if the combined result is not correct, is a worthless transcript anyway. 
Therefore, we call this type of robustness destructive robustness. 

5 Magic Ink Signature Generation 

5.1 
Let us now consider a distributed version of the protocols previously presented. 
Here, let Q be a quorum of t servers in SI . . . S,: 

Distributed magic ink generation of DSS signatures 

1. The signature receiver R has a message rn E 2, that he wants signed. He 
generates two blinding factors, a ,  b E ,  2,. He then computes a blinding 
of m, p = [ma],, and a ( t , n )  secret sharing ( P I , .  . .pn) of p ,  with public 
information (gp1 . . . gpn). He sends pi to signature generating server Si. 

2. The set of servers Si ( i  E Q distributively generate a random secret - session 
key, % E, Z,, where server Si has a sha.re xi. Server Si publishes [ g k t ] ,  , and 
using the methods for computing reciprocals in [la], the servers compute 

r = [g‘ I,, which is sent exclusively to the signature receiver R. 

3.  The signature receiver R computes T = [[F’] I q ,  and blinds this: p = [YO,],. 
R computes a ( t ,  n )  secret sharing ( P I , .  . . p,? of p ,  with public information 
(gpl . . . g p n ) .  R sends pa to Si. 

-- 1 - 

4. The set of servers Sili E Q distributively generate the tag tag and the 
DSS signature a on the message p ,  using the (shared) public session key p .  
Here, tag is calculated first (for which we present a robust protocol below), 
after which u is calculated as follows: Si generates ai = pi (p i  + ~ i p i ) ] ~ .  
Then, = F ( p  + zp)], is interpolated from the ui’s using the method for 
multiplication of secrets in [12]. The servers send u to R. 

5 .  The signature receiver R unblinds the signature: s = [ ~ r a - l b - ~ ] , , .  The 
triple (m,  r, s) is a valid DSS signature on m. 

We note that the proofof correctness is identical to that of the non-distributed 
protocol version, given robust primitives for secret sharing (e.g., [lo, as]) ,  for 
computing reciprocals (e.g., [la]) and for multiplication of secrets (e.g., [la]). 
Also note that we can use standard zero-knowledge techniques to force the re- 
ceiver to  prove that the blinding of steps 1 and 3 are consistent. 
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5.2 Distributed tag generation and tracing 
Let us review the steps of tagging method previously outlined: At the time of 
signing, p and p are available distributedly. The servers distributively compute 
[p/pIq (without revealing this value to each other). Also, they select a dis- 
tributed random value [ . I q .  The servers distributively store this value, and its 
inverse [c - l Iq .  They compute and publish the tag [ c ( p / p ) ] ,  (given that the com- 
ponents of the multiplication are distributed and secret, this value is random). 
We can now trace from a session to a signature by distributed multiplication of 
the tag by [ c - ' ] ~ ,  and comparing the result to  the public signature invariant. 
Given a signature invariant [ m / ~ ] ~ ,  we can distributedly multiply by a value 
[cIq; if the (distributively held) result equals the the published tag, the session 
and the signature indeed match. For comparison of a session to a signature, on 
the other hand, we do not reveal the result of the last multiplication. Rather 
we check distributedly and secretly for equality of the computed multiplication 
and the session tag. Note that the probability of collision of tags is negligible. 

6 Robustness of Signature Generation 
So far, we have not considered the robustness of the signature generation. We 
will employ destructzve robustness in order to obtain high efficiency without 
sacrificing anonymity. 

Destructive robustness involves two steps: (1) combination of shares of the 
result, and error detection, by verifying the correctness of the combined result. 
This check can be done either internally (i.e., by the same entities that produced 
the shares) or externally. Then, if the combined result is not correct, the second 
step is invoked: (2) error tracing, in which it is determined which server(s) have 
deviated from the protocol. This kind of robustness is possible in protocols 
where partial incorrect results can be discarded and when we can withstand 
delays of malicious servers revealing themselves in a slow pace. 

We demonstrate an external method of destructive robustness for the gen- 
eration of the blind signature u on p ,  using p as public session key: 

1. Share Combination and (External) Error Detection: 
The signature servers send u to R, who unblinds the result, obtaining a 
triple (m, r,  s). If this signature is not valid, then R sends a complaint to 
the signature servers, invoking the next step: 

Si li E Q reveals p i .  If ui was computed correctly, then go' q, gki@l+"lp*) 

zP ((gps)gz*pl) * Zp ( ( g ~ ~ ) ~ i P ' ) " ' .  Using a verification protocol for un- 
deniable signatures, Si proves that for some I = (g"b)yiP* it is true that 
logig"* = logg(gkz). He then proves that i o g y , ( 1 ( g p * > - ' )  = logg(gPa). A 
server Si is declared a cheater if he refuses to reveal the information, if the 

2. Error Tracing: - 

- - 
k -  

- 
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information is not consistent with the public shares of the secret sharing 
schemes, or if the share si sent out earlier was incorrectly computed. 

We see that the above method assures that cheating servers are caught, and 
that no transcript properties are lost when no complaint is filed. Also note that 
if R files a unjustified complaint, then this will be established, since it will be 
found that no server cheated. Finally, note that no secret information of honest 
servers will be leaked to R if R receives an invalid signature transcript. iF1 has no 
motivation to  complain about a good signature; this results in early “unblind- 
ing”. Each time a threshold is used and opened, the misbehaving processors are 
eliminated and the process start afresh (to avoid leaking information) based on 
new random choices. This may result in a delay of at  most t times, but enables 
t to  be a maximal minority n = t / 2  + 1. Note that the method is applicable due 
to  the probabilistic nature of the computation and the care in opening erroneous 
results. 

7 Correctness Claims 
We claim that the scheme satisfies the specification of Magic Ink Signature 
schemes. More specifically, we claim that 

0 We generate correct DSS signatures in a robust way, using a ( t ,  71) thresh- 
old scheme (t  from [12]). 

0 It is not possible for less than t out of n signature servers to correlate a 
signed message to  its blinded withdrawal session. 

I t  is always possible for t out of n signature servers to correlate a signed 
message to  its blinded withdrawal session. 

0 It is always possible for t out of n signature servers to distinguish mes- 
sages they signed from messages signed by an attacker who compromised 
their secret key (or forced them to produce a signature in a fully blinded 
manner.) 

The claims are shown to hold in the appendix. 
Finally, we note that key exchange can be reduced to magic-ink signatures 

(one party playing the receiver and the other party plays all signers, and the 
message being the key). Due to blinding, the message (key) is hidden from 
eavesdroppers, but not from the party playing the signers (since it can perform 
“unblinding” internally). This implies the difficulty of designing magic-ink sig- 
nature merely based on the existence of a general one-way permutations [16]. 
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9 Appendix: Correctness and Security 
The magic ink signature generation is correct, as shown in the proof of the 
single-server version (which generates the signature the same way) in section 3, 
and its simulation in the distributed setting (based on [12]). The robustness 
of the signature generation depends on our destructive robustness method for 
random signatures (on top of the non-robust threshold DSS), and the soundness 
of the composed undeniable signature verification. 

Let us next sketch the proof of the additional required properties: that the 
original signature is blinded and t3hat it can be unblinded as well. 

Theorem 2: A coalition of less than t cheating servers cannot, with a non- 
negligible advantage over guessing, correlate a signature to a signing session. 

Proof of Theorem 2: (Sketch) 
Let Vl and V2 be the view of a coalition of less than t signing servers for two 
different signing sessions. Let (m, T ,  s) be a signed message, created in either 
one of these signing sessions, and assume, in order to reach a contradiction, that 
t,he signed message can be correctly matched to either Vl or Vz with probability 

We will show that this is not possible by demonstrating that, unless the undeni- 
able signatures assumption is invalid, a polynomial time limited adversary will 
not be able to  tell the transcript parts given frorn random strings. 
We will therefore perform the following thought experiment: We assume that 
we have a random string of the size of the signers’ view during a signalure 
generation phase, where each individual part of the string (corresponding to 
a transcript part (communication step) of the generation) is selected from the 
same distribution as its corresponding actual transcript part. Then, we will 
replace the individual parts of the random string with part of a real transcript 
one by one. For each step, we will show that it is not possible for a non-quorum 
of sigriers to distinguish which of the strings corresponds to  a string before or 
after the last replacement. (This is the walking argument on a random variable 
[13]). This shows that given a generated signature, its generation view and a 
random string of the same size and same public distribution, a non-quorum of 
signers will not be able to match the signature to the the generation view with 
more than a negligible probability. 
We divide t,he information into two sets, (a) the view of less than a threshold 
of signer servers, and (b) the signed message. The view of server Sa consists of 
the public information {&’I} ,  { g k l } ,  P = [gk 1, { s f ’ * }  {ri}, u. We also have the 
value t ag ,  and intermediary results in the generation; we will consider this later. 
We have private information xi, p i ,  pi and xi. Since the private information 
are random shares o f f ,  p ,  p and 2; and ui is just a combination of the random 
shares and public information, these (or less than t of these sets) cannot help 
us to correlate the view to the signed message. Therefore, we focus only on 

+ E ,  where 6 is polynomial in the size of the security parameters. 

- -_ 
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the public information and the signed message, and prove that these cannot be 
correlated by a non-threshold of signature servers. 
Let us consider what meaningful information can be calculated from the pub- 
lic view and the signed message: The signed message is of the form (m,r , s ) ,  
where r = g k  ' and s is such that r E~ gma-' y r s - ' .  Given the structure of the 
tag, we need to  learn something about [p/pIq in order to trace (which we will 
show to be hard). Without loss of generality, let us consider real transcripts 
parts of Vl, and the following order of substituting correct transcript parts with 
random transcript parts in the list of random transcript parts and a potential 
triple (m, T ,  s).  The following are ideas regarding the implications of possible 
distinguishability at each substitution stage: 

-_ 

1.  Substitute in g p :  It is not possible to distinguish this step, since (m,  r ,  s) is 
statistically uncorrelated to p (given that a is chosen uniformly at random, 
p = [maIg, T is not related to p ,  and s is uncorrelated from p by 6, which 
is chosen uniformly at random.) 

-- 1 - 
2. Substitute in g" 7 = g k  : It is not possible to distinguish this step either, 

since (m, r ,  s, p )  is statistically uncorrelated to z. It cannot be correlated 
to  m or p since these are not related, and not to  T since b is chosen uni- 
formly at random and T = [[gk It cannot be correlated to  s, which 
is a linear combination of %, 2 (both unknown) and p ,  r (both in the set of 
potential transcript parts), or: given the linear combination, and known 
p,F,a,p we would be able to decide the undeniable signature (9, g", 7, F ) ,  
where F = (g'F-p)l'p. The same argument holds for substituting in 

-- 

gz-l. 
- 

3. Substitute in gp: We see that p is unrelated to  m, and gk. If we can 
correlate it to r or F, this gives us an algorithm for deciding the undeniable 
signature ( g ,  g b ,  T ,  T ~ )  (assuming a is known); s is just a linear combination 
of the above, and the previous argument for linear combinations holds. It 
is not possible to produce a known function [p /p Iq from g* and g p ,  or the 
Diffie-Hellman assumption breaks. 

4. Substitute in ai (or with the same argument: a): Follows the linear com- 
bination argument above. 

Next, based on the above ideas, since none of the substitutions can be distin- 
guished from a random string, it is not possible to match with related non- 
negligible probability one signed message to one out of two signing views (by 
the triangle inequality). Let us consider tag now: The tag generation protocol 
outlined is specified so that it hides the participants inputs (guaranteed by the 
properties of the protocol for multiplication of secrets and inverting a secret .) 
In fact the public tag is a random element mod q (for each tag and signature 
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invariant there is an element that matches it with the signature). It is therefore 
not possible to match a signed message to one out of two possible signing views. 

It i s  also true, then, that it is not possible to match a signed message to  
one out of n signing views. Otherwise we simply would get a contradiction by 
constructing n - 2 additional signing views, none of which matches the signed 
message, and then match this to  one of the remaining two views. 0 

Theorem 3: A quorum of i servers will always succeed in unblinding a signature 
in either of the three directions given. 

Proof of Theorem 3: (Sketch) 
Given that [m/rlP zq [ p / p ]  is always true for a signature generation session 
in which a valid signature (m,  T ,  s) is generated (this can be guaranteed using 
zero-knowledge proofs if a new blinding methods is suspected to  exist), we have 
that the tag will always be retrievable given robust protocols for tag generation 
and tracing. The robustness of these follows from the robustness of methods for 
multiplication and inversion of secrets. 0 

An audit trail of legal signatures: 
In addition to correct checking and tracing of existing signatures, we have a 
built-in fraud detection mechanism. Since only signatures that were generated 
in the proper manner by the signature servers will have a tag, it will be possible 
to  distinguish such signatures from signatures generated by an attacker who 
compromised the secret key of the signer but has no access to the tags. The 
signature servers can compare tag by tag to the sigiiature (using the third tracing 
option,) and if no tag matches, then it is invalid. This feature may provide an 
“audit trail” for sensitive services. 
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