Design of SAC/PC(\boldsymbol{l}) of Order k Boolean Functions and Three Other Cryptographic Criteria

Kaoru Kurosawa ${ }^{1}$ and Takashi Satoh ${ }^{\star 2}$
${ }^{1}$ Dept. of Computer Science, Graduate School of Information Science and Engineering, Tokyo Institute of Technology
${ }^{2}$ Dept. of Physical Electronics, Faculty of Engineering, Tokyo Institute of Technology
2-12-1 O-okayama, Meguro-ku, Tokyo 152, Japan
kurosawa@ss.titech.ac.jp, tsato@ss.titech.ac.jp

Abstract

A Boolean function f satisfies $\mathbf{P C}(l)$ of order k if $f(x) \oplus$ $f(x \oplus \alpha)$ is balanced for any α such that $1 \leq W(\alpha) \leq l$ even if any k input bits are kept constant, where $W(\alpha)$ denotes the Hamming weight of α. This paper shows the first design method of such functions which provides $\operatorname{deg}(f) \geq 3$. More than that, we show how to design "balanced" such functions. High nonlinearity and large degree are also obtained. Further, we present balanced $\operatorname{SAC}(k)$ functions which achieve the maximum degree. Finally, we extend our technique to vector output Boolean functions.

1 Introduction

The security of block ciphers is often studied by viewing their S-boxes (or F functions) as a set of Boolean functions. SAC [15] and $\mathrm{PC}(l)$ [11] are important cryptographic criteria of such Boolean functions. Let $W(\alpha)$ denote the Hamming weight of $\alpha \in\{0,1\}^{n}$. For a Boolean function $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$, define

$$
\frac{D f}{D \alpha} \triangleq f(x) \oplus f(x \oplus \alpha)
$$

$f(x)$ is said to satisfy

- SAC if $D f / D \alpha$ is balanced for any α such that $W(\alpha)=1$.
$-\operatorname{SAC}(k)$ if any function obtained from f by keeping any k input bits constant satisfies SAC.
- $\mathrm{PC}(l)$ if $D f / D \alpha$ is balanced for any α such that $1 \leq W(\alpha) \leq l$.
- $\mathrm{PC}(l)$ of order k if any function obtained from f by keeping any k input bits constant satisfies $\mathrm{PC}(l)$.

[^0]Well known bent functions satisfy both SAC and $\mathrm{PC}(l)$ for all $l \leq n$, but not necessarily $\mathrm{SAC}(k)$ nor $\mathrm{PC}(l)$ of order k for $k \geq 1$.

On the other hand, balancedness, algebraic degree and nonlinearity are another important cryptographic criteria.

- Let $\operatorname{deg}(f)$ denote the degree of the highest degree term in the algebraic normal form of f. Then deg (f) must be large. Actually, Jacobsen and Knudsen showed an attack against block ciphers with small $\operatorname{deg}(f)$ recently [2].
- The nonlinearity of a Boolean function f, denoted by $N(f)$, is defined as the minimum distance of f from the set of affine functions.

$$
N(f) \triangleq \min _{a_{0}, \ldots, a_{n}}\left|\left\{x \mid f(x) \neq a_{0} \oplus a_{1} x_{1} \oplus \cdots \oplus a_{n} x_{n}\right\}\right|
$$

$N(f)$ must be large to avoid the linear attack [7].

- Preneel et al. showed a balanced $\operatorname{SAC}(n-2)$ function for $n=$ odd [11]. Lloyd [5] showed a condition such that $\operatorname{SAC}(n-3)$ functions are balanced. Balanced SAC functions with high nonlinearity were constructed by [14]. Recently, other balanced SAC functions were given by [16].

However,
(1) No general methods are known which design Boolean functions satisfying $\mathrm{PC}(l)$ of order k except $\operatorname{deg}(f)=2$. (For $\operatorname{deg}(f)=2$, see $[11,12]$.)
(2) Balanced $\operatorname{SAC}(k)$ functions are not known for $1 \leq k \leq n-4$.
(3) Balanced functions satisfying $\mathrm{PC}(l)$ of order k are not known for any $l \geq 2$ and any k.

This paper shows a design method of $\mathrm{PC}(l)$ of order k functions. The proposed method is the first design method which provides $\operatorname{deg}(f) \geq 3$. We construct f as

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{t}\right) \triangleq\left[x_{1}, \ldots, x_{s}\right] Q\left[y_{1}, \ldots, y_{t}\right]^{T} \oplus g\left(x_{1}, \ldots, x_{s}\right) \tag{1}
\end{equation*}
$$

where Q is an $s \times t$ binary matrix and $g\left(x_{1}, \ldots, x_{s}\right)$ is any function. Then f satisfies $\mathrm{PC}(l)$ of order k if Q satisfies the following conditions.
$-W\left(Q \gamma_{1}\right) \geq k+1$ for any $t \times 1$ vector γ_{1} such that $1 \leq W\left(\gamma_{1}\right) \leq l$.
$-W\left(\gamma_{2} Q\right) \geq k+1$ for any $1 \times s$ vector γ_{2} such that $1 \leq W\left(\gamma_{2}\right) \leq l$.
Such a matrix Q is obtained by the product of two generator matrices of error correcting codes. Further, it is shown that balanced f can be obtained by choosing g appropriately in (1). We can also obtain large degree and high nonlinearity such that
$-\operatorname{deg}(f)=s / 2$ and $N(f) \geq 2^{t+s-1}-2^{t+s / 2-1}$ for $s=$ even.
$-\operatorname{deg}(f)=(s-1) / 2$ and $N(f) \geq 2^{t+s-1}-2^{t+(s-1) / 2}$ for $s=$ odd.

The above $N(f)$ is almost the maximum if t is small. (The $\operatorname{deg}(f)$ and $N(f)$ for $\mathrm{SAC}(k)$ are obtained by substituting $t=k+1$ and $s=n-k-1$.)

Next, $\operatorname{SAC}(k)$ functions with the maximum $\operatorname{deg}(f)$ are obtained for $k \leq$ $n / 2-1$. This shows that an upper bound on $\operatorname{deg}(f)$ of $\operatorname{SAC}(k)$ functions given by Prencel et al. [11] is tight. Further, balanced $\operatorname{SAC}(k)$ functions with the same maximum degree are presented for $n-k-1=$ odd. This means that the bound of [11] is tight even for balanced $\operatorname{SAC}(k)$ functions if $k \leq n / 2-1$ and $n-k-1=$ odd. It will be a further work to find a tight upper bound on $\operatorname{deg}(f)$ of balanced $\mathrm{SAC}(k)$ functions for $n-k-1=$ even.

Finally, we extend our technique to vector output Boolean functions. Vector output $\mathrm{PC}(2)$ of order $2^{r-1}-1$ functions and vector output $\mathrm{SAC}(k)$ functions are obtained which also possess high nonlinearity and large degree.

2 Preliminaries

$f\left(x_{1}, \ldots, x_{n}\right)$ denotes a mapping from $\{0,1\}^{n}$ to $\{0,1\}$. For a binary string α, $W(\alpha)$ denotes the Hamming weight of α. We use square brackets to denote vectors like $\left[a_{1}, \ldots, a_{n}\right]$ and round brackets to denote functions like $f\left(x_{1}, \ldots, x_{n}\right)$.

2.1 Balance and Algebraic Degree

We say that $f(x)$ is balanced if

$$
|\{x \mid f(x)=0\}|=|\{x \mid f(x)=1\}|=2^{n-1},
$$

where $x=\left[x_{1}, \ldots, x_{n}\right]$.
Definition 1. We call $f(x)=c \oplus a_{1} x_{1} \oplus \cdots \oplus a_{n} x_{n}$ an affine function.
Proposition 2. A non-constant affine function is balanced.
Proposition 3. [14] $f\left(x_{1}, \ldots, x_{s}\right) \oplus g\left(y_{1}, \ldots, y_{t}\right)$ is balanced if f is balanced or g is balanced.

The following form is called the algebraic normal form of f.

$$
f\left(x_{1}, \ldots, x_{n}\right)=a_{0} \oplus \bigoplus_{i=1}^{n} a_{i} x_{i} \oplus \bigoplus_{1 \leq i<j \leq n} a_{i j} x_{i} x_{j} \oplus \cdots \oplus a_{12 \ldots n} x_{1} x_{2} \ldots x_{n}
$$

$\operatorname{deg}(f)$ denotes the degree of the highest degree term in the algebraic normal form of f.

2.2 Bent Function and Nonlinearity

Bent functions are defined as follows.
Definition 4. [13] $f\left(x_{1}, \ldots, x_{n}\right)$ is a bent function if

$$
\begin{equation*}
\left|\sum_{x}(-1)^{f(x)}(-1)^{\omega_{1} x_{1}+\cdots+\omega_{n} x_{n}}\right|=2^{n / 2} \tag{2}
\end{equation*}
$$

for any $\left[\omega_{1}, \ldots, \omega_{n}\right] \in\{0,1\}^{n}$.
Define a distance between two Boolean functions $f(x)$ and $g(x)$ as

$$
d(f, g) \triangleq|\{x \mid f(x) \neq g(x)\}|
$$

Definition 5. [10] The nonlinearity of a Boolean function f, denoted by $N(f)$, is defined as

$$
N(f) \triangleq \min _{a_{0}, \ldots, a_{n}} d\left(f(x), a_{0} \oplus a_{1} x_{1} \oplus \cdots \oplus a_{n} x_{n}\right)
$$

$N(f)$ is the distance of f from the set of affine functions and it should be large to avoid the linear attack. It is known that each bent function has the maximum $N(f)$.
Proposition 6. $[8,13] N(f) \leq 2^{n-1}-2^{n / 2 \cdots 1}$.
Proposition 7. [8, 13] The equality of Proposition 6 is satisfied if and only if f is a bent function.

2.3 SAC and $\operatorname{SAC}(k)$

f satisfies SAC if complementing any single input bit changes the output bit with probability a half.

Definition 8. [1, 15]
(1) $f\left(x_{1}, \ldots, x_{n}\right)$ satisfies SAC (the strict avalanche criterion) if $f(x) \oplus f(x \oplus \alpha)$ is balanced for any $\alpha \in\{0,1\}^{n}$ such that $W(\alpha)=1$.
(2) $f(x)$ satisfies $\operatorname{SAC}(k)$ if any function obtained from $f(x)$ by keeping any k input bits constant satisfies SAC. We say that f is an $\operatorname{SAC}(k)$ function if $f(x)$ satisfies $\operatorname{SAC}(k)$.
Proposition 9. [1] There exist no $S A C(n-1)$ functions.
Proposition 10. [11]
(1) If $f\left(x_{1}, \ldots, x_{n}\right)$ satisfies $S A C(n-2)$, then $\operatorname{deg}(f)=2$.
(2) If $f\left(x_{1}, \ldots, x_{n}\right)$ satisfies $S A C(k)$ for $0 \leq k \leq n-3$, then

$$
\begin{equation*}
\operatorname{deg}(f) \leq n-k-1 \tag{3}
\end{equation*}
$$

Preneel et al. showed a design method of $\operatorname{SAC}(k)$ functions for $\operatorname{deg}(f)=2$.
Proposition 11. [11] Suppose that $\operatorname{deg}(f)=2$ and $n>2$. Then, f satisfies $S A C(k)$ if and only if every variable x_{i} occurs in at least $k+1$ second order terms of the algebraic normal form, where $0 \leq k \leq n-2$.

2.4 $\mathbf{P C}(l)$ and $P C(l)$ of Order k

f satisfies $\mathrm{PC}(l)$ if complementing any l or less input bits changes the output bit with probability a half.

Definition 12. [11]
(1) $f\left(x_{1}, \ldots, x_{n}\right)$ satisfies $\mathrm{PC}(l)$ if $f(x) \oplus f(x \oplus \alpha)$ is balanced for any $\alpha \in\{0,1\}^{n}$ such that $1 \leq W(\alpha) \leq l$.
(2) $f(x)$ satisfies $\mathrm{PC}(l)$ of order k if any function obtained from $f(x)$ by keeping any k input bits constant satisfies $\mathrm{PC}(l)$. We say that f is a $\mathrm{PC}(l)$ of order k function if $f(x)$ satisfies $\mathrm{PC}(l)$ of order k.

It is well known that f satisfies $\operatorname{PC}(n)$ if and only if f is a bent function [11]. Bent functions, however, do not necessarily satisfy $\mathrm{PC}(l)$ of order k.
$\mathrm{PC}(n)$ functions, therefore bent functions, exist only for $n=$ even from (2). Preneel et al. [12] showed the following functions which have $\operatorname{deg}(f)=2$.

Proposition 13. There exists a $P C(n-1)$ of order 1 function for $n=o d d$.
Proposition 14. [11] Let

$$
s_{n}\left(x_{1}, \ldots, x_{n}\right) \triangleq \bigoplus_{1 \leq i<j \leq n} x_{i} x_{j}
$$

Then s_{n} satisfies $P C(l)$ of order k if $l+k \leq n-1$ or if $l+k=n$ and l is even. Further,
(1) s_{n} is the only function which satisfies $P C(1)$ of order $n-2$ (or $S A C(n-2)$).
(2) s_{n} is the only function which satisfies $P C(2)$ of order $n-2$.
(3) s_{n} is balanced if $n=o d d$.

Proposition 15.

(1) There exists a balanced $S A C(n-2)$ function if $n=o d d$.
(2) There exist no balanced $S A C(n-2)$ functions if $n=$ even

Proof.

(1) From (1) and (3) of Proposition 14.
(2) From line 4 of p. 171 of [11] and (1) of Proposition 14, a $\operatorname{SAC}(n-2)$ function is a bent function if $n=$ even. Further, bent functions cannot be balanced [13].

3 How to Design PC(l) of Order \boldsymbol{k} Functions

This section shows the first design method of $\mathrm{PC}(l)$ of order k functions which provides $\operatorname{deg}(f) \geq 3$. (For $\operatorname{deg}(f)=2$, see Sect. 2.4.) The proposed method is also a design method of $\operatorname{SAC}(k)$ functions since $\operatorname{SAC}(k)$ is equivalent to $\mathrm{PC}(1)$ of order k.

3.1 Basic Theorem

Theorem 16. For positive integers l and k, suppose that there exists an $s \times t$ binary matrix Q such as follows.
(1) $s \geq \max \{l, k+1\}$ and $t \geq \max \{l, k+1\}$.
(2) $W\left(Q \gamma_{1}\right) \geq k+1$ for any $t \times 1$ vector γ_{1} such that $1 \leq W\left(\gamma_{1}\right) \leq l$.
(3) $W\left(\gamma_{2} Q\right) \geq k+1$ for any $1 \times s$ vector γ_{2} such that $1 \leq W\left(\gamma_{2}\right) \leq l$.

Now define

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{t}\right) \triangleq\left[x_{1}, \ldots, x_{s}\right] Q\left[y_{1}, \ldots, y_{t}\right]^{T} \oplus g\left(x_{1}, \ldots, x_{s}\right) \tag{4}
\end{equation*}
$$

where $g\left(x_{1}, \ldots, x_{s}\right)$ is any function and $n=s+t$. Then f satisfies $P C(l)$ of order k.

Proof. Keep any k input bits constant. Without loss of generality, we can assume that

$$
x_{1}=b_{1}, \ldots, x_{u}=b_{u}, \quad y_{1}=c_{1}, \ldots, y_{v}=c_{v}
$$

where $u+v=k, u<s$ and $v<t$. Substitute these bits into f and let
$\hat{f}\left(x_{u+1}, \ldots, x_{s}, y_{v+1}, \ldots, y_{t}\right) \triangleq f\left(b_{1}, \ldots, b_{u}, x_{u+1}, \ldots, x_{s}, c_{1}, \ldots, c_{v}, y_{v+1}, \ldots, y_{t}\right)$
We have to prove that $\hat{f}(x) \oplus \hat{f}(x \oplus \alpha)$ is balanced for any α such that $1 \leq$ $W(\alpha) \leq l$. For simplicity, we show a proof for $l=2$. The proof for $l \geq 3$ is similar.

For $W(\alpha)=2$, define

$$
\begin{aligned}
\frac{D \hat{f}}{D x_{u+i} x_{u+j}} & \triangleq \hat{f}\left(x_{u+1}, \ldots, x_{s}, y_{v+1}, \ldots, y_{t}\right) \oplus \hat{f}\left(\ldots, x_{u+i} \oplus 1, \ldots, x_{u+j} \oplus 1, \ldots\right) \\
\frac{D \hat{f}}{D y_{v+i} y_{v+j}} & \triangleq \hat{f}\left(x_{u+1}, \ldots, x_{s}, y_{v+1}, \ldots, y_{t}\right) \oplus \hat{f}\left(\ldots, y_{v+i} \oplus 1, \ldots, y_{v+j} \oplus 1, \ldots\right) \\
\frac{D \hat{f}}{D x_{u+i} y_{v+j}} & \triangleq \hat{f}\left(x_{u+1}, \ldots, x_{s}, y_{v+1}, \ldots, y_{t}\right) \oplus \hat{f}\left(\ldots, x_{u+i} \oplus 1, \ldots, y_{v+j} \oplus 1, \ldots\right) .
\end{aligned}
$$

Let q_{i} be the i-th column vector of Q and p_{i} be the i-th row vector of Q. First, we obtain

$$
\begin{equation*}
\frac{D \hat{f}}{D y_{v+i} y_{v+j}}=\left[b_{1}, \ldots, b_{u}, x_{u+1}, \ldots, x_{s}\right]\left(q_{v+i} \oplus q_{v+j}\right) \tag{5}
\end{equation*}
$$

From condition (2) of this theorem, $W\left(q_{v+i} \oplus q_{v+j}\right) \geq k+1$. On the other hand, $u \leq k$. Therefore, the right hand side of (5) is a non-constant affine function. Hence, $D \hat{f} / D y_{v+i} y_{v+j}$ is balanced from Proposition 2.

Next, for g, define

$$
\hat{g}\left(x_{u+1}, \ldots, x_{s}\right) \triangleq g\left(b_{1}, \ldots, b_{u}, x_{u+1}, \ldots, x_{s}\right)
$$

Further, define $\frac{D \hat{g}}{D x_{u+i}}$ and $\frac{D \hat{g}}{D x_{u+i} x_{u+j}}$ similarly to \hat{f}. Then we obtain

$$
\frac{D \hat{f}}{D x_{u+i} x_{u+j}}=\left(p_{u+i} \oplus p_{u+j}\right)\left[c_{1}, \ldots, c_{v}, y_{v+i}, \ldots, y_{t}\right]^{T} \oplus \frac{D \hat{g}}{D x_{u+i} x_{u+j}}
$$

From condition (3) of this theorem, $W\left(p_{u+i} \oplus p_{u+j}\right) \geq k+1$. On the other hand, $v \leq k$. Therefore, $\left(p_{u+i} \oplus p_{u+j}\right)\left[c_{1}, \ldots, c_{v}, y_{v+i}, \ldots, y_{t}\right]^{T}$ is a non-constant affine function. Hence, $D \hat{f} / D x_{u+i} x_{u+j}$ is balanced from Proposition 3.

Finally, we have

$$
\begin{aligned}
\frac{D \hat{f}}{D x_{u+i} y_{v+j}}= & p_{u+i}\left[c_{1}, \ldots, c_{v}, y_{v+i}, \ldots, y_{t}\right]^{T} \\
& \oplus\left[b_{1}, \ldots, b_{u}, x_{u+1}, \ldots, x_{s}\right] q_{v+j} \oplus \frac{D \hat{g}}{D x_{u+i}}
\end{aligned}
$$

Here, $p_{u+i}\left[c_{1}, \ldots, c_{v}, y_{v+i}, \ldots, y_{t}\right]^{T}$ is a non-constant affine function since $v \leq k$ and $W\left(p_{u+i}\right) \geq k+1$. Hence, $D \hat{f} / D x_{u+i} y_{v+j}$ is balanced from Proposition 3.

Thus, we have proved that $\hat{f}(x) \oplus \hat{f}(x \oplus \alpha)$ is balanced for any α such that $W(\alpha)=2$. Similarly, we can show that it is balanced for $W(\alpha)=1$. Consequently, f satisfies $\mathrm{PC}(2)$ of order k.

3.2 How to Find Q

This subsection shows that the matrix Q of Theorem 16 can be obtained by using generator matrices of error correcting codes.

Definition 17. A linear $[N, h, d]$ code is a binary linear code of length N, dimension h and the minimum Hamming distance at least d.

Definition 18. The dual code C^{\perp} of a linear code C is defined as

$$
C^{\perp} \triangleq\{u \mid u \cdot v=0 \text { for all } v \in C\}
$$

The dual minimum Hamming distance of C is defined as the minimum Hamming distance of C^{\perp}.

Theorem 19. Let G_{1} be a generator matrix of a linear $\left[t, h, d_{1}\right]$ code C_{1} with the dual minimum Hamming distance d_{1}^{\prime}. Let G_{2} be a generator matrix of a linear $\left[s, h, d_{2}\right]$ code C_{2} with the dual minimum Hamming distance d_{2}^{\prime}. Let

$$
Q \triangleq G_{2}^{T} G_{1}
$$

Then Q satisfies the conditions of Theorem 16 for

$$
\begin{aligned}
l & =\min \left(d_{1}^{\prime}, d_{2}^{\prime}\right)-1 \\
k & =\min \left(d_{1}, d_{2}\right)-1 .
\end{aligned}
$$

Proof. We first show that Q satisfies condition (2) of Theorem 16. Let γ_{1} be a $t \times 1$ vector such that $1 \leq W\left(\gamma_{1}\right) \leq l . \gamma_{1}$ is not a codeword of C_{1}^{\perp} because $W\left(\gamma_{1}\right) \leq l<d_{1}^{\prime}$. Then,

$$
G_{1} \gamma_{1} \neq 0
$$

because G_{1} is a parity check matrix of C_{1}^{\perp}. Therefore,

$$
Q \gamma_{1}=G_{2}^{T}\left(G_{1} \gamma_{1}\right)
$$

is a nonzero codeword of C_{2} because G_{2} is a generator matrix of C_{2}. Hence,

$$
W\left(Q \gamma_{1}\right) \geq d_{2} \geq k+1
$$

Similarly, Q satisfies condition (3) of Theorem 16.
By using Theorem 19, we can obtain the following results, for example.
Proposition 20. [6, p. 30$]$ Let C be $a\left[2^{r}-1,2^{r}-1-r, 3\right]$ Hamming code. Then C^{\perp} is a $\left[2^{r}-1, r, 2^{r-1}\right]$ simplex code.

Corollary 21. For $r \geq 2$, there exists
(1) a $P C\left(2^{r-1}-1\right)$ of order 2 function such that $n=2^{r+1}-2$ and
(2) a $P C(2)$ of order $2^{r-1}-1$ function such that $n=2^{r+1}-2$.

Proposition 22. [6, p.31] Let C be a $\left[2^{r}, 2^{r}-1-r, 4\right]$ extended Hamming code. Then C^{\perp} is a $\left[2^{r}, r+1,2^{r-1}\right]$ first order Reed-Muller code.

Corollary 23. For $r \geq 2$, there exists
(1) a $P C\left(2^{r-1}-1\right)$ of order 3 function such that $n=2^{r+1}$ and
(2) a $P C(3)$ of order $2^{r-1}-1$ function such that $n=2^{r+1}$.

4 Balance, Large Degree and High Nonlinearity

We can obtain "balanced" $\mathrm{PC}(l)$ of order k functions by choosing g appropriately in Theorem 16. Large degree and high nonlinearity can also be obtained.

4.1 Balanced PC (l) of Order k

Definition 24. We say that g is balanced for a matrix Q if

$$
\begin{equation*}
|\{x \mid g(x)=0, x Q=0\}|=|\{x \mid g(x)=1, x Q=0\}| \tag{6}
\end{equation*}
$$

Theorem 25. In (4), f is balanced if g is balanced for Q.

Proof. Substitute $x_{1}=b_{1}, \ldots, x_{s}=b_{s}$ into (4), where b_{1}, \ldots, b_{s} are constant bits. Then we have

$$
\begin{equation*}
f\left(b_{1}, \ldots, b_{s}, y_{1}, \ldots, y_{t}\right)=\left[b_{1}, \ldots, b_{s}\right] Q\left[y_{1}, \ldots, y_{t}\right]^{T} \oplus g\left(b_{1}, \ldots, b_{s}\right) \tag{7}
\end{equation*}
$$

If $\left[b_{1}, \ldots, b_{s}\right] Q \neq 0$, the right hand side of (7) is a non-constant affine function. Therefore, $f\left(b_{1}, \ldots, b_{s}, y_{1}, \ldots, y_{t}\right)$ is balanced from Proposition 2. For $\left[b_{1}, \ldots, b_{s}\right]$ such that $\left[b_{1}, \ldots, b_{s}\right] Q=0$, we have

$$
f\left(b_{1}, \ldots, b_{s}, y_{1}, \ldots, y_{t}\right)=g\left(b_{1}, \ldots, b_{s}\right)
$$

Then because g is balanced for Q, we see that $f\left(x_{1}, \ldots, x_{s}, \hat{y}_{1}, \ldots, \hat{y}_{t}\right)$ is balanced for Q for any fixed ($\hat{y}_{1}, \ldots, \hat{y}_{t}$).

Consequently, $f\left(x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{t}\right)$ is balanced.
We can find such g in the following way.
Lemma 26. Suppose that $g\left(x_{1}, \ldots, x_{n}\right)$ is written as

$$
\begin{equation*}
g\left(x_{1}, \ldots, x_{s}\right)=a_{1} x_{1} \oplus \cdots \oplus a_{s} x_{s} \tag{8}
\end{equation*}
$$

if $\left[x_{1}, \ldots, x_{n}\right] Q=0$. Then g is balanced for Q if and only if $\left[a_{1}, \ldots, a_{s}\right]^{T}$ is linearly independent of the columns of Q.

Proof. First, it is easy to see that g of (8) is balanced for Q if and only if there is an x such that

$$
\begin{equation*}
x Q=0 \text { but } g(x)=1 \tag{9}
\end{equation*}
$$

This condition is equivalent to say that the kernel (zero space) of Q^{T} is not contained in the zero space of the linear mapping

$$
g(x)=\left[a_{1}, \ldots, a_{s}\right] x^{T}
$$

This holds if and only if $\left[a_{1}, \ldots, a_{s}\right]$ is linearly independent of the rows of Q^{T}.
Corollary 27. Let $x Q=\left[h_{1}(x), \ldots, h_{t}(x)\right]$. Define

$$
g\left(x_{1}, \ldots, x_{s}\right) \triangleq a_{1} x_{1} \oplus \cdots \oplus a_{s} x_{s} \oplus h_{1}(x) h_{2}(x) \ldots h_{t}(x) H(x)
$$

where $H(x)$ is any function. Then g is balanced for Q if and only if $\left[a_{1}, \ldots, a_{s}\right]^{T}$ is linearly independent of the columns of Q.

Another way of finding a balanced g for Q is to write its truth table.

4.2 Large Degree and High Nonlinearity

In (4), we can obtain $\operatorname{deg}(f)=s$ by letting

$$
g\left(x_{1}, \ldots, x_{s}\right)=x_{1} \ldots x_{s}
$$

Further, $\mathrm{PC}(l)$ of order k functions which possess high nonlinearity and large degree at the same time can be obtained as follows.

Theorem 28. There exists a $P C(l)$ of order k function f such that
$-\operatorname{deg}(f)=s / 2$ and $N(f) \geq 2^{t+s-1}-2^{t+s / 2-1}$ for $s=$ even.
$-\operatorname{deg}(f)=(s-1) / 2$ and $N(f) \geq 2^{t+s-1}-2^{t+(s-1) / 2}$ for $s=o d d$,
where s and t are defined in Theorem 16.
Proof. For $s=$ even, there exists a bent function $g\left(x_{1}, \ldots, x_{s}\right)$ such that $\operatorname{deg}(g)=$ $s / 2$. By choosing this g in (4), we obtain $\operatorname{deg}(f)=s / 2$. Next, we compute the distance between this f and an affine function $A\left(x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{t}\right)$. Substitute $y_{1}=c_{1}, \ldots y_{t}=c_{t}$ into f and A, where c_{1}, \ldots, c_{t} are constant bits. Let

$$
\begin{aligned}
& f_{0}\left(x_{1}, \ldots, x_{s}\right) \triangleq f\left(x_{1}, \ldots, x_{s}, c_{1}, \ldots c_{t}\right)=g\left(x_{1}, \ldots, x_{s}\right) \oplus B\left(x_{1}, \ldots, x_{s}\right) \\
& A_{0}\left(x_{1}, \ldots, x_{s}\right) \triangleq A\left(x_{1}, \ldots, x_{s}, c_{1}, \ldots c_{t}\right)
\end{aligned}
$$

where

$$
B\left(x_{1}, \ldots, x_{s}\right) \triangleq\left[x_{1}, \ldots, x_{s}\right] Q\left[c_{1}, \ldots c_{t}\right]^{T}
$$

Then

$$
\begin{aligned}
d(f, A) & =\sum_{c_{1}, \ldots c_{t}} d\left(f_{0}, A_{0}\right)=\sum_{c_{1}, \ldots c_{t}} d\left(g \oplus B, A_{0}\right) \\
& =\sum_{c_{1}, \ldots c_{t}} d\left(g, A_{0} \oplus B\right) \geq \sum_{c_{1}, \ldots c_{t}} N(g)=2^{t}\left(2^{s-1}-2^{s / 2-1}\right)
\end{aligned}
$$

from Proposition 7. The above inequality holds for any affine function A. Therefore, $N(f) \geq 2^{t}\left(2^{s-1}-2^{s / 2-1}\right)$.

For $s=$ odd, let $\hat{g}\left(x_{1}, \ldots, x_{s-1}\right)$ be a bent function with degree $(s-1) / 2$ and let $g\left(x_{1}, \ldots, x_{s}\right)=\hat{g}\left(x_{1}, \ldots, x_{s-1}\right)$. (Bent functions exist only for $s=$ even.)

Compare Theorem 28 with Proposition 6. Then we see that the above $N(f)$ is almost the maximum if t is small. (From condition (1) of Theorem $16, t \geq$ $\max \{l, k+1\}$, though.)

5 Balanced SAC (\boldsymbol{k}) with the Maximum Degree

Proposition 10 gives an upper bound on the degree of $\operatorname{SAC}(k)$ functions. In Sect. 5.2, we will show that this bound is tight for $k \leq n / 2-1$. Further, Sect. 5.3 will show that this bound is tight even for balanced $\operatorname{SAC}(k)$ functions for $k \leq$ $n / 2-1$ and $n-k-1=$ odd.

5.1 How to Design SAC(k) Functions

First, we can obtain $\operatorname{SAC}(k)$ functions as a special case of Theorem 16.
Corollary 29. Let

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1} \oplus \cdots \oplus x_{n-k-1}\right)\left(x_{n-k} \oplus \cdots \oplus x_{n}\right) \oplus g\left(x_{1}, \ldots, x_{n-k-1}\right),(10)
$$

where $g\left(x_{1}, \ldots, x_{n-k-1}\right)$ is any function. Then f satisfies $S A C(k)$ if $k \leq \frac{n}{2}-1$.
Proof. In Theorem 16, let

$$
\begin{equation*}
Q=\text { the }(n-k-1) \times(k+1) \text { matrix whose elements are all one. } \tag{11}
\end{equation*}
$$

If $n-k-1 \geq k+1, Q$ satisfies conditions (2) and (3) of Theorem 16 for $l=1$.

5.2 SAC(k) with the Maximum Degree

Theorem 30. There exists an $S A C(k)$ function $f\left(x_{1}, \ldots, x_{n}\right)$ which meets the equality of (3) for $k \leq \frac{n}{2}-1$.

Proof. In Corollary 29, let $g\left(x_{1}, \ldots, x_{n-k-1}\right)=x_{1} \ldots x_{n-k-1}$. Then we obtain $\operatorname{deg}(f)=n-k-1$ and the equality of (3) is satisfied.

Remark. Proposition 11 shows that Proposition 10 is tight for $k=n-2$ and $n-3$.

5.3 Balanced SAC(k) with the Maximum Degree

Theorem 31. There exists a balanced $S A C(k)$ function $f\left(x_{1}, \ldots, x_{n}\right)$ which meets the equality of (3) if $k \leq \frac{n}{2}-1$ and $k-n-1=$ odd.

Proof. In (10), let

$$
g\left(x_{1}, \ldots, x_{n-k-1}\right)=a_{1} x_{1} \oplus \cdots \oplus a_{n-k-1} x_{n-k-1} \oplus x_{1} \ldots x_{n-k-1}
$$

where

$$
\begin{equation*}
\left[a_{1}, \ldots, a_{n-k-1}\right] \neq[0, \ldots, 0],[1, \ldots, 1] . \tag{12}
\end{equation*}
$$

We show that this g is balanced for Q, where Q is given by (11). Let $x=$ $\left[x_{1}, \ldots, x_{n-k-1}\right]$. Note that $x_{1} \ldots x_{n-k-1}=0$ if $W(x)<n-k-1=$ (odd). Also, $W(x)=$ even if $x Q=0$. Therefore, $x_{1} \ldots x_{n-k-1}=0$ if $W(x)=$ even and hence if $x Q=0$. Hence,

$$
g\left(x_{1}, \ldots, x_{n-k-1}\right)=a_{1} x_{1} \oplus \cdots \oplus a_{n-k-1} x_{n-k-1}
$$

if $x Q=0$. Further, $\left[a_{1}, \ldots, a_{s}\right]$ satisfying (12) is linearly independent of the columns of Q. Then g is balanced for Q from Lemma 26.

Consequently, f of (10) is balanced from Theorem 25.

Theorem 32. For $k-n-1=$ even, there exists a balanced $S A C(k)$ function such that $\operatorname{deg}(f)=n-k-2$.

Proof. Let
$g\left(x_{1}, \ldots, x_{n-k-1}\right)=a_{1} x_{1} \oplus \cdots \oplus a_{n-k-1} x_{n-k-1} \oplus x_{1} \ldots x_{n-k-2} \oplus x_{2} \ldots x_{n-k-1}$,
where

$$
\left[a_{1}, \ldots, a_{n-k-1}\right] \neq[0, \ldots, 0],[1, \ldots, 1]
$$

We can show that g is balanced for Q, where Q is given by (11).
It will be a further work to find a tight upper bound on $\operatorname{deg}(f)$ of balanced $\operatorname{SAC}(k)$ functions for $n-k-1=$ even.

Remark.

(1) For balanced $\operatorname{SAC}(n-2)$ functions, see Proposition 15.
(2) Lloyd [5] showed a condition such that $\operatorname{SAC}(n-3)$ functions are balanced.
(3) Balanced SAC functions with high nonlinearity were constructed by [14]. Recently, other balanced SAC functions were given by [16].

6 Extension to Vector Output Boolean Functions

In this section, we extend our technique to vector output Boolean functions.

6.1 General Results

Let F denote a mapping from $\{0,1\}^{n}$ to $\{0,1\}^{m}$. We say that F is uniformly distributed if

$$
|\{x \mid F(x)=\beta\}|=2^{n-m}
$$

for any $\beta \in\{0,1\}^{m}$.
Definition 33. We say that $F\left(x_{1}, \ldots, x_{n}\right)=\left[f_{1}, \ldots, f_{m}\right]$ is an (n, m)-SAC (k) function if any nonzero linear combination of f_{1}, \ldots, f_{m} satisfies $\operatorname{SAC}(k)$.

Definition 34. We say that $F\left(x_{1}, \ldots, x_{n}\right)=\left[f_{1}, \ldots, f_{m}\right]$ is an $(n, m)-\mathrm{PC}(l)$ of order k function if any nonzero linear combination of f_{1}, \ldots, f_{m} satisfies $\mathrm{PC}(l)$ of order k.

From Theorem 16, we obtain the following corollary.
Corollary 35. Suppose that there exist $s \times t$ binary matrices Q_{1}, \ldots, Q_{m} such that any nonzero linear combination of Q_{1}, \ldots, Q_{m} satisfies the conditions of Theorem 16. For $1 \leq i \leq m$, let

$$
f_{i}\left(x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{t}\right) \triangleq\left[x_{1}, \ldots, x_{s}\right] Q_{i}\left[y_{1}, \ldots, y_{t}\right]^{T} \oplus g_{i}\left(x_{1}, \ldots, x_{s}\right)
$$

where g_{i} is any function. Then $F=\left[f_{1}, \ldots, f_{m}\right]$ is an $(s+t, m)-P C(l)$ of order k function.

Definition 36. For $F\left(x_{1}, \ldots, x_{n}\right)=\left[f_{1}, \ldots, f_{m}\right]$, define

$$
\begin{aligned}
\operatorname{deg}(F) & \triangleq \min \operatorname{deg}\left(a_{1} f_{1} \oplus \cdots \oplus a_{m} f_{m}\right) \\
N(F) & \triangleq \min N\left(a_{1} f_{1} \oplus \cdots \oplus a_{m} f_{m}\right)
\end{aligned}
$$

where min is taken over all nonzero binary vectors $\left[a_{1}, \ldots, a_{m}\right]$.
Corollary 37. In Corollary 35,
(1) let $g_{i}=x_{1} \ldots x_{s} / x_{i}$. Then $\operatorname{deg}(F)=s-1$ if $m \leq s$.
(2) For $s=$ even and $m \leq s / 2$, let $\left[g_{1}, \ldots, g_{m}\right]$ be a vector output bent function given by [9]. Then $N(f) \geq 2^{t+s-1}-2^{t+s / 2-1}$.
(3) If $s=$ odd and $m \leq(s-1) / 2$, we can obtain $N(f) \geq 2^{t+s-1}-2^{t+(s-1) / 2}$.

The following corollary is obtained from Theorem 19.
Corollary 38. Suppose that there exist
(1) a linear $[t, h, k+1]$ code with the dual minimum Hamming distance at least $l+1$ and
(2) m matrices $G_{2,1}, \ldots G_{2, m}$ such that any nonzero linear combination of them is a generator matrix of a linear $[s, h, k+1]$ code with the dual minimum Hamming distance at least $l+1$.

Let $Q_{i} \triangleq G_{2, i}^{T} G_{1}$ for $1 \leq i \leq m$. Then Q_{1}, \ldots, Q_{m} satisfy the condition of Corollary 35.

6.2 Vector Output $\operatorname{PC}(2)$ of Order k

Proposition 39. [9] Consider a linear feedback shift register of length r and with a primitive feedback polynomial. Let D be the state transition function of such a shift register. Then D is a permutation of the space Z_{2}^{r} as well as the powers D^{i} of D, where

$$
D^{i} \triangleq D \circ \cdots \circ D, i=1,2, \ldots
$$

Moreover, any nonzero linear combination of $I, D, D^{2}, \ldots, D^{r-1}$ is also a permutation.

Lemma 40. For any $r \geq 2$, there exist matrices $G_{2,1}, \ldots, G_{2, r}$ such that any nonzero linear combination of them is a generator matrix of the $\left[2^{r}-1, r, 2^{r-1}\right]$ simplex code.

Proof. Let $\left[i_{1}, \ldots, i_{r}\right]$ be the binary representation of i.
(1) Let $G_{2,1}$ be a $r \times\left(2^{r}-1\right)$ matrix such that the i-th column vector is $\left[i_{1}, \ldots, i_{r}\right]^{T}$.
(2) For $2 \leq j \leq r$, let $G_{2, j}$ be a $r \times\left(2^{r}-1\right)$ matrix such that the i-th column vector is $D^{j-1}\left(i_{1}, \ldots, i_{r}\right)$.

Then any nonzero linear combination of $G_{2,1}, \ldots, G_{2, r}$ is a parity check matrix of a [$\left.2^{r}-1,2^{r}-1-r, 3\right]$ Hamming code by Proposition 39. Equivalently, any nonzero linear combination of $G_{2,1}, \ldots, G_{2, r}$ is a generator matrix of a $\left[2^{r}-1, r, 2^{r-1}\right]$ simplex code.

Theorem 41. For $r \geq 2$,
(1) there exists $a\left(2^{r+1}-2, r\right)-P C(2)$ of order $2^{r-1}-1$ function F with

$$
\operatorname{deg}(F)=2^{r}-2
$$

(2) there exists $a\left(2^{r+1}-2, r\right)-P C(2)$ of order $2^{r-1}-1$ function F with

$$
N(F) \geq 2^{2^{r+1}-3}-2^{3 \cdot 2^{r-1}-2}
$$

Proof. First, there exists a $\left[2^{r}-1, r, 2^{r-1}\right]$ simplex code (see Proposition 20). Next, there exist matrices $G_{2,1}, \ldots, G_{2, r}$ such that any nonzero linear combination of them is a generator matrix of a $\left[2^{r}-1, r, 2^{r-1}\right]$ simplex code from Lemma 40. Finally, the dual Hamming distance of a $\left[2^{r}-1, r, 2^{r-1}\right]$ simplex code is 3 . Hence, the conditions of Corollary 38 are satisfied.

Finally, apply Corollary 37 with $s=t=2^{r}-1$.

6.3 Vector Output SAC(k)

Theorem 42. For any $s>0$,
(1) there exists a $(2 s, s-1)-S A C(1)$ function F with $\operatorname{deg}(F)=s-1$.
(2) there exists $a(2 s, s-1)-S A C(1)$ function F with

$$
N(F) \geq \begin{cases}2^{2 s-1}-2^{3 s / 2-1} & \text { if } s=\text { even } \\ 2^{2 s-1}-2^{(3 s-1) / 2} & \text { if } s=\text { odd }\end{cases}
$$

Proof. Let $I=\left(e_{1}, \ldots, e_{s}\right)$ be the $s \times s$ identity matrix and let P be a permutation matrix such that $P=\left(e_{s}, e_{1}, e_{2}, \ldots, e_{s-1}\right)$. Define

$$
\begin{equation*}
Q_{i}=P^{(i-1)}(I+P) \tag{13}
\end{equation*}
$$

for $1 \leq i \leq s-1$. We show that Q_{1}, \ldots, Q_{s-1} satisfy the condition of Corollary 35 , that is the conditions of Theorem 16 with $s=t$. Let

$$
Q=a_{1} Q_{1}+\cdots+a_{s-1} Q_{s-1},
$$

where $\left[a_{1}, \ldots, a_{s-1}\right] \neq[0, \ldots, 0]$. Let q_{i} be the i-th column vector of Q and p_{i} be the i-th row vector of Q. Without loss of generality, we can assume that
(1) $a_{1}=\cdots=a_{s-1}=1$ or
(2) $a_{1}=\cdots=a_{j}=1$ and $a_{j+1}=0$ for some $1 \leq j \leq s-2$.

In case 1,

$$
Q=I+P^{s-1}
$$

In case 2,

$$
Q=I+P^{j}+X
$$

where X cancels no elements of $I+P^{j}$. In any case, $W\left(q_{i}\right) \geq 2$ for any i and $W\left(p_{i}\right) \geq 2$ for any i. Thus, the conditions of Theorem 16 are satisfied for $l=1$.

Finally, apply Corollary 37.
Theorem 42 can be generalized as follows.

Theorem 43. For any $k \geq 0$ and any $s \geq k+1$, let

$$
\gamma \triangleq\lceil(k+1) / 2\rceil, m \triangleq\lfloor(s-k-1) / \gamma+1\rfloor .
$$

Then
(1) there exists a $(2 s, m)-S A C(k)$ function F with $\operatorname{deg}(F)=s-1$.
(2) there exists a $(2 s, m)-S A C(k)$ function F with

$$
N(F) \geq \begin{cases}2^{2 s-1}-2^{3 s / 2-1} & \text { if } s=\text { even } \\ 2^{2 s-1}-2^{(3 s-1) / 2} & \text { if } s=\text { odd }\end{cases}
$$

Remark. In [3], we showed that there exists an (n, m)-SAC (k) function F if there exists a linear $[N, m, k+1]$ code such that

$$
N= \begin{cases}n-1 & \text { if } n \text { is even } \tag{14}\\ n-2 & \text { if } n \text { is odd }\end{cases}
$$

In this construction,
(1) $\operatorname{deg}(F)$ and $N(F)$ are small. Actually, $\operatorname{deg}(F)=2$.
(2) However, m can be larger than that of Theorem 42 and Theorem 43.

In other words, there is a tradeoff between the construction of [3] and Theorem 42 and Theorem 43 of this paper.

Acknowledgments

We would like to thank the anonymous referees for helpful comments. Especially, lemma 4.1 was improved.

References

1. R. Forré. The strict avalanche criterion : spectral properties of Boolean functions and an extend definition. In Advances in Cryptology - CRYPTO '88 Proceedings, Lecture Notes in Computer Science 403, pages 450-468. Springer-Verlag, 1990.
2. T. Jakobsen and L.R. Knudsen. The interpolation attack on block ciphers. In Preproc. of Fast Software Encryption, pages 28-40. January, 1997.
3. K. Kurosawa and T. Satoh. Generalization of higher order SAC to vector output Boolean functions. In Advances in Cryptology - ASIACRYPT '96 Proceedings, Lecture Notes in Computer Science 1163, pages 218-231. Springer-Verlag, 1996.
4. S. Lidl and Niederreiter. Finite Fields, Encyclopedia of Mathematics and Its Applications 20. Cambridge University Press, 1983.
5. S. Lloyd. Counting binary functions with certain cryptographic properties. Journal of Cryptology, 5:107-131, 1992.
6. F. J. MacWilliams and N. J. A. Sloane. The theary of error-correcting codes. NorthHolland Publishing Company, 1977.
7. M. Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryptology - EUROCRYPT'93 Proceedings, Lecture Notes in Computer Science 765, pages 386-397. Springer-Verlag, 1994.
8. W. Meier and O. Staffelbach. Nonlinearity criteria for cryptographic functions. In Advances in Cryptology - EUROCRYPT'89 Proceedings, Lecture Notes in Computer Science 434, pages 549-562. Springer-Verlag, 1990.
9. K. Nyberg. Perfect nonlinear S-boxes. In Advances in Cryptology - EUROCRYPT '91 Proceedings, Lecture Notes in Computer Science 547, pages 378-386. SpringerVerlag, 1991.
10. J. Pieprzyk and G. Finkelstein. Towards effective nonlinear cryptosystem design. IEE Proceedings Part E, 35(6):325-335, November 1988.
11. B. Preneel, W. Van Leekwijck, L. Van Linden, R. Govaerts, and J. Vandewalle. Propagation characteristics of Boolean functions. In Advances in Cryptology EUROCRYPT '90 Proceedings, Lecture Notes in Computer Science 473, pages 161173. Springer-Verlag, 1991.
12. B. Preneel, R. Govaerts, and J. Vandewalle. Boolean functions satisfying higher order propagation criteria. In Advances in Cryptology - EUROCRYPT '91 Proceedings, Lecture Notes in Computer Science 547, pages 141-152. Springer-Verlag, 1991.
13. O. S. Rothaus. On bent functions. Journal of Combinatorial Theory (A), 20:300305, 1976.
14. J. Seberry and X.M. Zhang. Highly nonlinear 0-1 balanced Boolean functions satisfying strict avalanche criterion. In Advances in Cryptology - AUSCRYPT '92 Proceedings, Lecture Notes in Computer Science 718. Springer-Verlag, 1993.
15. A. F. Webster and S. E. Tavares. On the design of S-boxes. In Advances in Cryptology - CRYPTO '85 Proceedings, Lecture Notes in Computer Science 218, pages 523-534. Springer-Verlag, 1986.
16. A. M. Youssef, T. W. Cusick, P. Stănică, and S. E. Tavares. New bounds on the number of functions satisfying the strict avalanche criterion. In Third Annual Workshop on Selected Areas in Cryptography, 1996.

[^0]: - This author was supported by the Telecommunications Advancement Foundation, Japan.

