
Design of SAC/PC(C) of Order k Boolean 
Functions and Three Other Cryptographic Criteria 

Kaoru Kurosawa' and  Takashi Satoh * 2  

Dept. of Computer Science, 
Graduate School of Information Science and Engineering, 

Tokyo Institute of Technology 
* Dept. of Physical Electronics, Faculty of Engineering, Tokyo Institute of Technology 

2-12-1 0-okayama, Meguro-ku, Tokyo 152, Japan 

kurosaaa@ss.titech.ac.jp, tsato@ss.titech.ac.jp 

Abstract. A Boolean function f satisfies PC(1)  of order k if f(z) @ 
f(z @ a )  is balanced for any a such that 1 5 W ( a )  5 I even if any IC 
input hits are kept constant, where W ( a )  denotes the Hamming weight 
of a. This paper shows the first design method of such functions which 
provides deg(f) 2 3. More than that, we show how to design "balanced' 
such functions. High nonlinearity and large degree are also obtained. 
Further, we present balanced SAC(/c) functions which achieve the maxi- 
mum degree. Finally, we extend our technique to vector output Boolean 
functions. 

1 Introduction 

T h e  security of block ciphers is often studied by viewing their S-boxes (or F 
functions) as a set of Boolean functions. SAC [15] and PC(1) [ll] are important 
cryptographic criteria of such Boolean functions. Let W ( a )  denote the  Hamming 
weight of a E (0 ,  l}". For a Boolean function f(z) = f(q,. . . , zn), define 

Df 6 f(z) f(. El a )  . D a  

f (x) is said to satisfy 

SAC if D f / D a  is balanced for any  a such that W ( a )  = 1. 
SAC(k)  if any function obtained from f by keeping any  k input bits constant 
satisfies SAC. 
PC(I) if D f / D a  is balanced for any a such tha t  1 5 W ( a )  5 1.  
PC(E) of order k if any  function obtained from f by keeping any k input bits 
constant satisfies PC( 2 ) .  

~ 

This author was supported by the Telecommunications Advancement Foundation, 
Japan. 

W. Fumy (Ed.): Advances in Cryptology - EUROCRYPT '97. LNCS 1233, pp. 434-449, 1997. 
0 Spnnger-Verlag Berlin Heidelberg 1997 



435 

Well known bent functions satisfy both SAC and PC(1) for all 1 5 n, but not 
necessarily SAC(k) nor PC(1) of order k for k 2 1. 

On the other hand, balancedness, algebraic degree and nonlinearity are an- 
other important cryptographic criteria. 

- Let deg( f )  denote the degree of the highest degree term in the algebraic nor- 
mal form of f. Then deg(f) must be large. Actually, Jacobsen and Knudsen 
showed an attack against block ciphers with small deg(f) recently [2]. 

- The nonlinearity of a Boolean function f ,  denoted by N ( f ) ,  is defined as the 
minimum distance of f from the set of affine functions. 

N ( f )  must be large to avoid the linear attack [7]. 
- Preneel et al. showed a balanced SAC(n - 2) function for n =odd [Ill. 

Lloyd [5] showed a condition such that SAC(n - 3 )  functions are balanced. 
Balanced SAC functions with high nonlinearity were constructed by [14]. 
Recently, other halanced SAC functions were given by [16]. 

However, 

(1) No general methods are known which design Boolean functions satisfying 

(2) Balanced SAC(k) functions are not known for 1 5 k 5 n - 4. 
( 3 )  Balanced functions satisfying PC(1) of order k are not known for any 1 2 2 

PC(1) of order k except deg( f )  = 2. (For deg( f )  = 2, see [ll, 121.) 

and any k. 

This paper shows a design method of PC(1) of order k functions. The pro- 
posed method is the first design method which provides deg( f )  2 3. We construct 
f =  

where Q is an s x t binary matrix and g(xl,. . . ,xs) is any function. Then f 
satisfies PC(E) of order k if Q satisfies the following conditions. 

- W(Qy1) 2 k + 1 for any t x 1 vector y1 such that 1 5 W(yl) 5 1.  
- W(7zQ) 2 k + 1 for any 1 x s vector such that 1 5 W(y2) 5 1.  

Such a matrix Q is obtained by the product of two generator matrices of error 
correcting codes. Further, it is shown that balanced f can be obtained by choos- 
ing g appropriately in (1). We can also obtain large degree and high nonlinearity 
such that 
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The above N ( f )  is almost the maximum if t is small. (The deg(f) and N ( f )  for 
SAC(k) are obtained by substituting t = k + 1 and s = n - k - 1.) 

Next, SAC(lc) functions with the maximum deg(f) x e  obtained for k 5 
n/2 - 1. This shows that an upper bound on deg(f) of SAC(k) functions given 
by Preneel et d. 1111 is tight. Further, balanced SAC(lc) functions with the same 
maximum degree are presented for n - k - 1 = odd. This means that the bound 
of (111 is tight even for balanced SAC( k )  functions if k 5 n/2 - 1 and n - k - 1 = 
odd. It will be a further work to find a tight upper bound on deg(f) of balanced 
SAC(k) functions for n - k - 1 = even. 

Finally, we extend our technique to vector output Boolean functions. Vector 
output PC(2) of order 2'-l - 1 functions and vector output SAC(k) functions 
are obtained which also possess high nonlinearity and large degree. 

2 Preliminaries 

f ( z l , .  . . , z,) denotes a mapping from (0,l)" to (0 , l ) .  For a binary string a,  
W ( a )  denotes the Hamming weight of a. We use square brackets to denote 
vectors like [al, . . . , a,] and round brackets to denote functions like f(z1, . . . ,x,). 

2.1 Balance and Algebraic Degree 

We say that f(x) is balanced if 

where 2 = [xl, . . . , z,]. 

Definition 1. We call f(z) = c @ ulzl CB . . . CB u,x, an affine function. 

Proposition 2. A nan-constant a f i n e  function is balanced. 

Proposition 3. [ I d ]  f (z l , .  . . ,xs) @ g(yl,. . . , yt) is balanced i f  f is balanced OT 

g is balanced. 

The following form is called the algebraic normal form of f. 

deg(f) denotes the degree of the highest degree term in the algebraic normal 
form o f f .  
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2.2 Bent Function and Nonlinearity 

Bent functions are defined as follows. 

Definition 4. [13] f(z1,. . . ,zn) is a bent function if 

for any [q,. . . , wn] E (0, 

Define a distance between two Boolean functions f(z) and g(z) as 

W , g )  2 (b I f(z) f d4}/ ' 
Definition 5. [lo] The nonlinearity of a Boolean function f, denoted by N ( f ) ,  
is defined as 

A 
N ( f )  = min d ( f ( z ) ,  uo @ u1z1 @ .  . . @ unzn) . 

a0 ,...,a,. 

N(f) is the distance of f from the set of affine functions and it should be 
large to avoid the linear attack. It is known that each bent function has the 
maximum N ( f ) .  

Proposition6. [8,13] N ( f )  5 2"-l - 2n/2-1. 

Proposition 7. [8, 1.71 The equality of Proposition 6 is satisfied if and ondy iff  
is a bent function. 

2.3 SAC and SAC(L) 

f satisfies SAC if complementing any single input bit changes the output bit 
with probability a half. 

Definition 8. [l, 151 

(1) f(x1 , . . . , 2,) satisfies SAC (the strict avalanche criterion) if f(z) Q f(z Q a )  
is balanced for any a E {0,1}" such that W(cx) = 1. 

(2) f(z) satisfies SAC(k) if any function obtained from f(z) by keeping any k 
input bits constant satisfies SAC. We say that f is an SAC(k) function if 
f (x) satisfies SAC(k) .  

Proposition 9. [l] There exist no S A C ( n  - 1) functions. 

Proposition 10. [ I l l  
(1) I f f ( z 1 , .  . . ,z,) satisfies SAC(n - 2), then deg(f)=2. 
(2) If f(z1,. . . ,z,) satisfies SAC(k) for 0 5 k 5 7~ - 3, then 

deg(f) 5 n - k - 1 . (3) 
Preneel et al. showed a design method of SAC(k) functions for deg(f) = 2. 

Propositionll. [ll] Suppose that deg(f) = 2 and n > 2. Then, f satisfies 
SAC(k)  if and only if every variable xi occurs in at least k + 1 second order 
t e n s  of the algebraic normal form,  where 0 5 k 5 n - 2. 
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2.4 

f satisfies PC(1) if complementing any 1 or less input bits changes the output 
bit with probability a half. 

Definition 12. [ll] 

(1)  f ( x 1 , .  . . ,x,) satisfies PC(1) if f ( z ) @ f ( z @ a )  is balanced for any a E (0 , l )”  
such that 15 W ( a )  5 1. 

(2) f ( x )  satisfies PC(1) of order k if any function obtained from f ( x )  by keeping 
any k input bits constant satisfies PC(1). We say that f is a PC(1) of order 
k function if f ( x )  satisfies PC(1) of order k. 

It is well known that f satisfies PC(n)  if and only i f f  is a bent function [ll]. 

P C ( n )  functions, therefore bent functions, exist only for n =even from (2). 

PC(2) and PC(1) of Order k 

Bent functions, however, do not necessarily satisfy PC(1) of order k. 

Preneel et al. [12] showed the following functions which have deg(f) = 2. 

Proposition 13. There exists a P C ( n  - 1) of order 1 function for n =odd. 

Proposition 14. [ I I ]  Let 
A 

s,(q ,..., 2,) = @ X i ” j  . 
1 <%<3 < n  

Then s, satisfies PC(1) of order k if 1 + k 5 n - 1 or if 1 + k = n and 1 is even. 
Further, 

(1)  s, is the only function which satisfies PC( 1) of order n - 2 (or SAC(n  - 2)). 
(2) s, is the only function which satisfies PC(2)  of order n - 2. 
(3) s, is balanced if n =odd. 

Proposition 15. 

(1) There exists a balanced SAC(n - 2) function if n =odd. 
(2) There exist no balanced S A C ( n  - 2 )  functions i f  n =euen 

Proof. 

(1) From (1)  and (3) of Proposition 14. 
(2) From line 4 of p.171 of [ll] and ( 1 )  of Proposition 14, a S A C ( n  - 2) function 

is a bent function if n =even. Further, bent functions cannot be balanced 

0 
1131. 

3 

This section shows the first design method of PC(Z) of order k functions which 
provides deg(f) 2 3. (For deg(f) = 2, see Sect. 2.4.) The proposed method is 
also a design method of S A C ( k )  functions since SAC(L) is equivalent to PC(1)  
of order k. 

How to Design PC(I) of Order k Functions 
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3.1 Basic Theorem 

Theorem 16. For positive integers 1 and k, suppose that there exists an s x t 
binary matrix Q such as follows. 

(1) s 2 max{l, k + 1) and t 2 rnax{l, k + 1). 
(2) W(Qy1) 2 k + 1 f o r  any t x 1 vector y1 such that 1 5 W(yl) 5 1. 
(3) W(y2Q) 2 k + 1 for any 1 x s vector 7 2  such that 1 5 W(y2) 5 1 .  

Now define 

A ?' 
f(z1, ... 2 8 ,  ~ 1 , .  . ., ~ t )  = [xi , .  . . ,xS]Q[YI l . .  . , ~ t ]  @ g(xi, ... , z s )  , (4) 

where g(x1,. . . ,x,) is any function and n = s + t .  Then  f satisfies PC(1) of 
order k .  

Proof. Keep any k input bits constant. Without loss of generality, we can assume 
that 

51 = b l ,  . . . , X, = b,, y1 = ~ 1 , .  . . ,yv  = c,, 

where u + w = k, u < s and w < t .  Substitute these bits into f and let 

f ^ ( ~ + i  , . . . , 2 s  , yV+i, . . . , yt) = j( bi , . . . , b,, x,+i, . . . , x,, ci , . . . , C, , ~ v + i  , . . ., ~ t )  

We have to prove that f(x) @ f(x @ a )  is balanced for any a such that 1 5 
W ( a )  5 1. For simplicity, we show a proof for 1 = 2. The proof for 1 2 3 is 
similar. 

A 

For W ( a )  = 2, define 

Of^ A A 

= f(XU+l,. . . , z s ,  Y v + l , .  . . ,Yt) CE f( .  . . ,xu+, CB 1, ' , x,+j @ 1,.  . -) 
Dxu+zxu+j 

Let qE be the i-th column vector of Q and p ,  be the 2-th row vector of Q. First, 
we obtain 

= [bi,. . . , b u l ~ u + i , .  + .  ,xs](q,+z Q q v + j )  . ( 5 )  
Of^ 

DYv+zYlJ+, 

From condition (2) of this theorem, W(q,+, Qql ,+3)  2 k + 1. On the other hand, 
u 5 k. Therefore, the right hand side of ( 5 )  is a non-constant affine function. 
Hence, Df^/Dyv+zyv+J is balanced from Proposition 2. 

Next, for g, define 

n 
i?(xu+1, . ' * 1 xs) = d b l , .  . . 1  b,, xu+1,. . .lXS) ' 
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Further, define - DG and D g  similarly to  f. Then we obtain 
DXU+i D X U + i X U + J  

From condition (3) of this theorem, W(p ,+ ,  @ p , + , )  2 k + 1. On the other hand, 
v 5 k .  Therefore, (pu+,  @ p,+j ) [c l  , . . . , c,, y,+%, . . . , ytIT is a non-constant affine 
function. Hence, D ~ / D X , + , X , + ~  is balanced from Proposition 3. 

Finally, we have 

T 
=~,L+L[~l,...ic,,~v+a,...i~t] 

Df 
DXU+2YV t3 

Dij 
Dxu+a 

@[h,  ' . ' I h', X , + l , .  . . , xs]q,+J CB - . 

Here, P , + ~ [ C ~ ,  . . . , c,, yufa,. . . , ytIAT is a non-constant affine function since v 5 k 
and W(pu+l)  2 k + 1. Hence, D f /Dz ,+ ,~ ,+~  is balanced from Proposition 3. 

Thus, we have proved that j(x) @ f(x @ a )  is balanced for any ct such that  
W ( a )  = 2. Similarly, we can show that it is balanced for W ( a )  = 1. Conse- 

0 quently, f satisfies PC(2) of order k .  

3.2 How to Find Q 

This subsection shows that the matrix Q of Theorem 16 can be obtained by 
using generator matrices of error correcting codes. 

Definition 17. A linear [ N ,  h, d] code is a binary linear code of length N ,  di- 
mension h and the minimum Hamming distance a t  least d .  

Definition 18. The dual code CL of a linear code C is defined as 

C' 2 {u 1 u' v = o for all w E C )  . 
The dual minimum Hamming distance of C is defined as the minimum Hamming 
distance of CL. 

Theorem 19. Let GI be a generator matrix of a linear [t,  h, dl] code Cl with the 
dual minamum Hamming distance d i .  Let G2 be a generator matrix of a linear 
[s, h, dz] code C2 with the dual minimum Hamming distance d&.  Let 

Then Q satisfies the conditions of Theorem 16 for 

Z = min(di, d; )  - 1 

k = min(d1,dz) - 1 . 
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Proof. We first show that Q satisfies condition ( 2 )  of Theorem 16. Let 71 be 
a t x 1 vector such that 1 5 W(yl) 5 1. y1 is not a codeword of Cf because 
W(y1) 5 1 < d i .  Then, 

GlYl # 0 

because G1 is a parity check matrix of C t .  Therefore, 

is a nonzero codeword of Cz because G2 is a generator matrix of C,. Hence, 

W(Q7i) 2 dz 2 k + 1 . 

Similarly, Q satisfies condition (3) of Theorem 16. 0 

By using Theorem 19, we can obtain the following results, for example. 

Proposition 20. [6, p.301 Let C be a [2' - 1,2' - 1 - r ,  31 Hamming code. Then 
cL as a [2' - 1, T ,  2'-'] simplex code. 

Corollary 21. For T 2 2 ,  there exists 

(1) a PC(2'-l  - 1) of order 2 function such that n = 2'f' - 2 and 
(2) a P C ( 2 )  of order 2'-' - 1 function such that n = 2'+l - 2 .  

Proposition 2 2 .  [S, p.311 Let C be a [2', 2' - 1 - r,  41 extended Hamming code. 
Then C' is a [2', r + 1, 2'-'] first order Reed-MuEler code. 

Corollary 23. For T 2 2 ,  there exists 

(1 )  a PC(2'-' - 1) of order 3 function such that n = 2'+l and 
(2) a PC(3) of order 2'-' - 1 function such that n = 2'+'. 

4 Balance, Large Degree and High Nonlinearity 

We can obtain "balanced" PC(I) of order k functions by choosing g appropriately 
in Theorem 16. Large degree and high nonlinearity can also be obtained. 

4.1 Balanced PC(Z) of Order k 

Definition 24. We say that g is balanced for a matrix Q if 

Theorem25. In (d), f is balanced if g as balanced for Q. 
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Proof. Substitute x1 = b l , .  . .,x, = b, into (4), where b l , .  . . , b ,  are constant 
bits. Then we have 

f (b i ,  - . . , b,, 91, - - - I ~ t )  = [b11. . . ,  b s ] Q [ ~ i ,  .. ytIT CB g ( h ,  .. ., b s )  . (7) 

If [ b l ,  . . . , b,]Q # 0,  the right hand side of (7) is a non-constant affine function. 
Therefore, f ( b l ,  . . . , b,,  y1,. . . , yt )  is balanced from Proposition 2. For [bl, . . . , b,] 
such that [bl , . . . , b,]Q = 0 ,  we have 

f (bl ,  . * . , bs, Y1, . . . , Y t )  = g ( h ,  . . . , bs) + 

Then because g is balanced for Q ,  we see that f ( x 1 , .  . . , x,, ijl, 
for Q for any fixed ( il . . . , i t ) .  

Consequently, f(z1,. . . , x,, y1, .  . . , yt) is balanced. 

We can find such g in the following way. 

Lemma 26. Suppose that g(s l ,  . . . , x,) is written as 

g(x1,. . . ,z,) = a1x1 &, .. . @ a,x, 

... , ijL) is balanced 

if [zl,. . . , x n ] Q  = 0.  Then g is balanced for Q if and only zf [al,. . . , 
linearly independent of the columns of Q- 

2s 

Proof. First, it is easy to see that g of (8) is balanced for Q if and only if there 
is an x such that 

xQ = 0 but g(z) = 1 . (9) 

This condition is equivalent to say that the kernel (zero space) of QT is not 
contained in the zero space of the linear mapping 

This holds if and only if [al,. . . , a,] is linearly independent of the rows of Q T .  0 

Corollary 27. Let x Q  = [h , (z) ,  . . . , h,(z)].  Define 

where H ( x )  is a n y  function. Then g is balanced for Q if and only if [al, . . . , a,IT 
is linearly independent of the columns of Q .  

Another way of finding a balanced g for Q is to write its truth table. 



443 

4.2 

In (4), we can obtain deg(f) = s by letting 

Large Degree and High Nonlinearity 

g(x1,.  . . , x s )  = 2 1  . . .2, . 

Further, PC(1) of order k functions which possess high nonlinearity and large 
degree a t  the same time can be obtained as follows. 

Theorem28. There exasts a PC(1) of order k function f such that 

~ deg(f) = s / 2  and N ( f )  2 PSp1 - 2t+s/2-1 for s =even. 
- deg(f) = (s - 1)/2 and N ( f )  2 2 t f s - 1  - Zt+("-')/' for s =odd, 

where s and t are defined an Theorem 16. 

Proof. For s =even, there exists a bent function g(z1,. . . , x , )  such that deg(g) = 
s/2. By choosing this g in (4), we obtain deg(f) = s / 2 .  Next, we compute the dis- 
tance between this f and an affine function A(z1,.  . . , z , , y l , . .  . ,yt). Substitute 
y1 = c l , .  . .yt = ct into f and A, where c1,. . . ,q are constant bits. Let 

a 
fO(X1, .  . . , z s )  = f(z1,. . . , z s , c 1 , .  . . C t )  = g(z1,.  . . ,zs) @ B(z1,. . . , x s )  

AO(21,. . . ,.%) = A(z1, .  . . , 2 S l  c1,. . . C t )  , A 

where 
A B(z1,.  . . ,x , )  = [XI,. . . , ~ , ] Q [ c 1 ,  . . . ctIT . 

Then 

CI, ... c t  C , ,  ... C* 

from Proposition 7. The above inequality holds for any affine function A.  There- 

For s = odd, let i j (xl , .  . . , x ~ - ~ )  be a bent function with degree (s - 1 ) / 2  and 
0 

fore, ~ ( f )  2 2t(2s-' - ~ 1 2 - 1  ). 

let g(x1,. . . ,xs )  = i j (xl , .  . . ,x,-~). (Bent functions exist only for s = even.) 

Compare Theorem 28 with Proposition 6. Then we see that the above N ( f )  
is almost the maximum if t is small. (From condition (1) of Theorem 16, t 2 
max(1, k + l}, though.) 

5 

Proposition 10 gives an upper bound on the degree of SAC(k)  functions. In 
Sect. 5.2, we will show that this bound is tight fork 5 n / 2 - 1 .  Further, Sect. 5.3 
will show that this bound is tight even for balanced SAC(L) functions for k 5 
n / 2  - 1 and n - k - l=odd. 

Balanced SAC(k) with the Maximum Degree 
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5.1 

First, we can obtain S A C ( k )  functions as a special case of Theorem 16. 

How to Design SAC(lc) Functions 

Corollary 29. Let 

f ( x l , . * . , G J  = ( 2 1 @ . . . ~ 2  ,--k- 1)(5 , - - k ~ . ’ .  $ 5 , ) ~ g ( 5 1 ,  . . . ,  5,-k-1) , (10) 

where g(z1,. . . , x n - k - l )  is any function. Then  f satisfies SAC(lc) if k 5 5 - 1. 

Proof. In Theorem 16, let 

Q = the (n  - k - 1) x ( k  + 1) matrix whose elements are all one. 

If n - k -  1 2 k + l ,  Q satisfies conditions (2) and (3) of Theorem 16 for 1 = 1. 

(11) 

5.2 

Theorem 30. There exists an SAC(k)  function f (z l ,  . . . , x,) which meets the 
equality of (3) f o r  k 5 t - 1. 

Proof. In Corollary 29, let g(xl , .  . . , z , - ~ - ~ )  = z1 . . . xn-k-l. Then we obtain 
0 

Remark. Proposition 11 shows that Proposition 10 is tight for k = n - 2 and 
n - 3. 

SAC(L) with the Maximum Degree 

deg(f) = R. - k - 1 and the equality of (3) is satisfied. 

5.3 

Theorem 31. There exists a balanced SAC(k)  function f ( z l , .  . . ,z,) which meets 
the equality of (3) if k 5 5 - 1 and k - n - 1 = odd. 

Proof. In (lo),  let 

Balanced SAC(k) with the Maximum Degree 

g(S1,. . . , X n - k - l )  = a l z l  @ ... @ an-k-]xn--k-l @ X I . .  .xn-k-1 , 

where 
[a l , - . . , an-k- l ]  # [O,...,o], [1,..-,1] . (12) 

We show that this g is balanced for Q, where Q is given by (11). Let x = 
[XI ,..., x,--k-l].Notethatxl . . .zn-k- l  = O i f W ( z ) < n - k - l = ( o d d ) . A l s o ,  
w(z) = even if z& = 0. Therefore, z1 . . . s,-k-1 = 0 if W(x) =even and hence 
if x Q  = 0. Hence, 

g(x1,.  . . ,xn-k-l) = alzl @ @ a n - k - l Z n - k - 1  

if zQ = 0. Further, [al,. . . ,a,] satisfying (12) is linearly independent of the 
columns of Q. Then g is balanced for Q from Lemma 26. 

0 Consequently, f of (10) is balanced from Theorem 25. 
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Theorem 32. For k - n - 1 = even, there exists a balanced SAC(k) function 
such that deg(f) = n - k - 2. 

Proof. Let 

g(x1, * * .  Zn-k-1) = alxl @ ' ' .@an--k-lxn-k-l . . . zn-k-2 $z2 . . . xn-k-1 

where 
[al,. . . 1 an-k-11 # [o,. . . ,017 [I, 11 

We can show that g is balanced for Q, where Q is given by (11). 0 

It will be a further work to find a tight upper bound on deg(f) of balanced 
SAC(k) functions for n - k - 1 = even. 

Remark. 

(1) For balanced SAC(n - 2) functions, see Proposition 15. 
(2) Lloyd [5] showed a condition such that SAC(n - 3) functions arc balanced. 
(3) Balanced SAC functions with high nonlinearity were constructed by [14]. 

Recently, other balanced SAC functions were given by [16]. 

6 Extension to Vector Output Boolean Functions 

In this section, we extend our technique to vector output Boolean functions. 

6.1 General Results 

Let F denote a mapping from {0, l}n to {O, 
distributed if 

We say that F is uniformly 

I{x 1 F ( s )  = p}I = 2n--m 

for any p E (0, I}m. 

Definition33. We say that F(x l , .  . . ,z,) = [ f l , .  . . ,fm] is an (n,m)-SAC(k) 
function if any nonzero linear combination of f l ,  . . . , fm satisfies SAC(k). 

Definition 34. We say that F ( z l , .  . . , xn) = [ f l , .  . . , fm]  is an (n,rn)-PC(1) of 
order k function if any nonzero linear combination of f 1 , .  . . , f m  satisfies PC(E) 
of order k. 

From Theorem 16, we obtain the following corollary. 

Corollary 35. Suppose that there exist s x t binary matrices Q1,. . . , Qm such 
that any nonzero linear combination of Ql, . . . , Q, satisfies the conditions of 
Theorem 16. Fur 1 5 i 5 m, let 

A T fz(x17.. ., 2 9 ,  YI 7 . .  . , ~ t >  = [ X I , .  . . , xs]Qz[~lr . .  ., ~ t ]  CB gz(x1,. - - 7 2s) , 
where g, is any function. Then F = [fi, .  . . , fm] is an (s + t ,m) -PC(1)  of order 
k function. 
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Definition 36. For &'(XI,. . . ,x,) = [fi,. . . , f m ] ,  define 

a 
deg(F) = min deg(a1 f l  @ . . -  @ a,  f m ) ,  

N ( F )  =minN(al f i  ~ ~ - . . @ a ~ f m ) ,  
a 

where min is taken over all nonzero binary vectors [al, . . . , a,]. 

Corollary 37. In Corollary 35, 

(1) let g; = XI.. .x,/x,. Then deg(F) = s - 1 if m 5 s. 
(2) For s = even and m 5 s/2, let [gl, . . . , gm] be a vector output bent function 

(3) I f s  = odd and m 5 (s - 1)/2, we can obtain N ( f )  2 2t+S-1 - 2t+(s--1)/2. 
given by [9]. Then N (  f )  2 2t+S-1 - 2t+s/2-1. 

The following corollary is obtained from Theorem 19. 

Corollary 38. Suppose that there exist 

(1) a linear [t,  h, k + 11 code with the dual minimum Hamming distance at least 
1 + 1 and 

(2) m matrices G z , ~ , .  . . Gz,,  such that any nonzero linear combination of them 
is a generator matrix of a linear [s, h, k + 11 code with the dual minimum 
Hamming distance at least 1 + 1. 

A 
Let Q;  = G:,,G1 f o r  1 5 a 5 m. Then Q1,. . . , Q ,  satisfy the condition of 
Corollary 35. 

6.2 

Proposition39. 191 Consider a linear feedback shift register of length r and 
with a primitive feedback polynomial. Let D be the state transition function vf 
such a shift register. Then D is  a permutation of the space 2; as well as the 
powers Da of D ,  where 

Vector Output PC(2) of Order k 

. A  D ' = D o . - - o D ,  i = l , 2 ,  

Moreover, any nonzero linear combination of I ,  D ,  D 2 , .  . , , D'-' is also a per- 
mutation. 

Lemma40. For any r 2 2, there exist matrices Gz,l,.  . . , GZ7T such that any 
nonzero linear combination of them is a generator matrix of the [2T - 1, T ,  2r-1] 
simplex code. 

Proof. Let [il, . . . , i T ]  be the binary representation of i. 

(1) Let Gz.1 be a r x (2' - 1) matrix such that the i-th column vector is 
[ i l , .  . . , i T ] T .  
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(2) For 2 5 j 2 r ,  let G2,J be a r x (2' - 1 )  matrix such that the i-th column 
vector is OJ-l(a1,. . . ,z,.). 

Then any nonzero linear combination of G2,1, . . . , G2,' is a parity check matrix of 
a [2' - 1,2' - 1 -r, 31 Hamming code by Proposition 39. Equivalently, any nonzero 
linear combination of G2,1r . .  . , G2,' is a generator matrix of a [2' - 1,  T, 2?-l] 
simplex code. 0 

Theorem41. For r 2 2, 

( 1 )  there exists a (2'+' - 2 , r ) - P C ( 2 )  of order 2'-l - 1 function F with 

deg(F) = 2' - 2 . 

(2) there exists a (2'+l - 2, v ) -PC(2)  of order 2'-' - 1 function F with 

Proof. First, there exists a [2' - 1 , ~ , 2 ' - ~ ]  simplex code (see Proposition 20). 
Next, there exist matrices G2,1 , .  . . , Gz,' such that any nonzero linear combina- 
tion of them is a generator matrix of a [2' - 1,  T ,  2'-'] simplex code from Lemma 
40. Finally, the dual Hamming distance of a [2' - 1 , ~ , 2 ' - ~ ]  simplex code is 3. 
Hence, the conditions of Corollary 38 are satisfied. 

0 Finally, apply Corollary 37 with s = t = 2' - 1. 

6.3 Vector Output SAC(L) 

Theorem42. For any s > 0 ,  

(1) there exists a (2s, s - l ) - S A C ( 1 )  function F wEth deg(F) = s - 1 .  
(2) there exists a (2s, s - l ) - S A C ( l )  function F with 

229-1 - 23812-1 if 3 = even  
N ( F )  { 22s-1 - 2(3"-1)/2 if = odd . 

Proof. Let I = ( e l , .  . . , e , )  be the s x s identity matrix and let P be a permu- 
tation matrix such that P = ( e , , e l , e ~ ,  . . . , e s - l ) .  Define 

Q1 = P(a- l ) ( I  + P )  (13)  

for 1 5 z 5 s - 1. We show that Q l  , . .  . , Q3-1 satisfy the condition of Corollary 
35, that is the conditions of Theorem 16 with s = t .  Let 

Q = alQ1 + ' '  + as-1Qs-1 ) 

where (ul, . . . , u,-1] # [0, . . . , 01. Let q1 be the i-th column vector of Q and pi be 
the i-th row vector of Q. Without loss of generality, we can assume that 

(1) a l = . . . = a , - l = l o r  
(2) a1 = . . . = aj = 1 and = 0 for some 1 5 j 5 s - 2. 
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In case 1, 

Q = I + Ps-' 
In case 2, 

Q = I + P J + X ,  

where X cancels no elements of I + P3. In any case, W(y,)  2 2 for any i and 
W ( p , )  2. 2 for any i. Thus, the conditions of Theorem 16 are satisfied for 1 = 1. 

Finally, apply Corollary 37. 0 

Theorem 42 can be generalized as follows. 

Theorem43. FOT any k 2 0 and any s 1 k + 1, let 

Then  

(1)  there exists a (2s,m)-SAC(k) function F with deg(F) = s - 1. 
(2) there exists a (2s,m)-SAC(k) function F with 

Remark. In [3], we showed that there exists an (n ,  rn)-SAC(L) function F if there 
exists a linear [Ar, rn, k + 11 code such that 

n - 1 if n is even 
N = {  n - 2 if n is odd . 

In this construction, 

(1) deg(F) and N ( F )  are small. Actually, deg(F) = 2. 
(2) However, 7 r ~  can be larger than that of Theorem 42 and Theorem 43. 

In other words, there is a tradeoff between the construction of [3] and Theorem 
42 and Theorem 43 of this paper. 
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