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Abstract. We show that the usual constructions of bent functions, 
when they are suitably modified, allow constructions of correlation-immune 
and resilient functions over Galois fields and, in some cases, over Galois 
rings. 

1 Introduction 

The functions used in a conventional cipher must provide both diffusion, for 
merging several inputs, and confusion, for hiding any structure (cf. [19]). These 
notions are respectively formalized through the properties of correlation-immunity 
[2, 3, 4, 5, 20, 221 and nonlinearity [15, 161. 

Correlation-immune functions play an important role in several aspects of 
cryptography such as, for instance, the design of running-key generators in 
stream ciphers which resist the correlation attack [20] or the design of hash 
functions (cf. [21]). The most general definition (cf. [3]) defines them over fi- 
nite alphabets (the original definition was given in [20] for binary functions): let 
A be a finite alphabet; a function f from A" to A" is t-th order correlation- 
immune if the probability distribution of the output vector f ( X 1 , .  . . , X n ) ,  where 
X I , .  . . , X ,  are random input variables assuming values from A with indepen- 
dent equiprobable distributions, is unaltered when at  most t of the variables 
X I , .  . . , X, are fixed (i.e. replaced by constants). 
In [22], Xiao Guo-Zhen and J. L. Massey give a convenient characterization of 
binary correlation-immune functions by means of characters. It is generalized in 
[3] by Camion and Canteaut to finite abelian groups. Recall that the group of 
characters on a finite abelian group G is isomorphic with G itself. For x, u E G, 
we denote by (x, u )  the image of x under the character associated to u via such 
an isomorphism. We have: 
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Such an isomorphism being chosen, the characters on the group Gn (n  > 0 )  are: 
n 

(xc,u)n = n ( x i , u i )  7 z =  ( ~ 1 ,  ...,xn), 'u. = ( u l , . . .  7un). 
i= 1 

A function f from G" to G" is t-th order correlation-immune if 

VV E G", VU E G", 15 W H ( U )  5 t ,  C ( z , u ) ~ ( ~ ( z ) , u ) ,  = 0 (2) 
xEGn 

where W H ( U )  denotes the Hamming weight of u. 
According to property ( l ) ,  the equality in (2 )  is satisfied for every u # 0 if II = 0. 
Thus, 
f is t-resilient if it is t-th order correlation-immune and balanced. It is a simple 
matter to show that, thanks to the characterization above, this is equivalent to: 

may be assumed to be nonzero in (2). 

VV E G", v # 0, VU E G", W H ( U )  <_ t ,  C ( z , u ) n ( f ( z ) , v ) ,  = 0. (3) 
xEG" 

In [4] is given a bound on the degree relative to each variable of the algebraic 
normal form of a t-th order correlation-immune (resp. t-resilient) function over 
a finite field: in each monomial, at most n - t (resp. n - t - 1, provided q" # 2 
or t # n - m) of the variables have (maximum) degree q - 1. 
This bound, that generalizes Siegenthaler inequality [20], shows that the func- 
tions over finite fields are better suited than binary ones to achieve high linear 
complexity, given the order of their correlation-immunity. 

The bent functions [5, 6, 7, 9, 11, 13, 15, 171 are those Boolean functions 
whose nonlinearity is maximum. The notion has been first defined for Boolean 
functions over GF(2)n (cf. [17], recall that n must then be even) and later 
generalized to  functions over residue class rings (cf. [13]): let q and n be any 
positive integers; we denote by Z, the ring Z / q Z .  A function f from Z," to  Z, 
is called bent if, for any vector s, the character sum: 

c W q f ( x ) - x ' S  
xEZ,n 

has magnitude q ? ,  where wq = e2iK/'J.  The function f is called regular-bent if 
there exists a function f such that, for any s: 

f ( X ) - - Z . S  = q% wqf(s). c w q  
XEZ," 

There exists also a generalization of the notion to functions over finite fields (cf. 
[l]), that is not equivalent for prime fields. These definitions can be extended 
to definitions of (regular-) bent functions over a Galois ring GR(p',m) (whose 
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definition is recalled in subsection 2 .1 ) :  the character sums to be considered in 
this wider framework are: 

where T r  is the trace function from GR(pk,  m) to Z p b .  

These notions of correlation-immune and bent functions are very similar. The 
purpose of this paper is to show that various constructions of bent functions, 
when they are suitably modified, lead to constructions of correlation-immune 
functions. Some of these constructions will be primary, in the sense that they 
lead to new classes of correlation-immune functions without using known ones. 
Others, on the contrary, will be secondary constructions. 

2 Primary constructions 

2.1 A Maiorana-McFarland-like class 

Maiorana-McFarland class (cf. 1111) is the set of all the (bent) Boolean functions 
on GF(2)n = {(x ,y ) , s ,y  E G F ( 2 ) S )  (n even) of the form : f ( z , y )  = z . ~ ( y )  + 
g(y) where 7r is any permutation on GF(2)F and g is any Boolean function on 
GF(2)3 .  
In [5] is derived a construction of binary resilient functions: 
let t and n = T + s be any positive integers (T > t > 0, s > 0), g any boolean 
function on GF(2)s  and $ a mapping from GF(2)s  to GF(2)' such that every 
element in r#(GF(2)s) has Hamming weight greater than t ,  then the function: 

f(z7 Y) = z .  $(!l) + dY), z E G W ) ' ,  Y E GF(2Y 

is t-resilient. 
We generalize this construction to any Galois ring in theorem 1. Before we state 
this theorem, we recall what are the definition and major properties of Galois 
rings. 
For any prime p and any positive integers k and m, the Galois ring GR(pk,  m) 
is the Galois extension of degree m of the ring Z p b .  When m = 1, GR(pk,  m) is 
equal to  Z p k  and when k = 1, it is equal to the Galois field GF(p"). We refer 
to [14] for a general presentation of this notion and to [12]  for the special case 
p = k = 2 .  
Galois rings share with Galois fields almost all their properties. 

Their elements can be described in two different forms by means of a primitive 
element E of order pm: 
- the "multiplicative" form (this term comes from field theory): 

k 
z = c p i - l z l i ,  zli E {0,1,(, . . . ,[+-2}, 

i= 1 
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- the "additive" form: 
m-1 

x = C ar tT ,  a, E z p k .  

T=o . They admit a Frobenius automorphism: 

k k 

i= 1 i=l 

and a trace map from GR(pk ,m)  to Z p b :  

T T  : x --+ x + cp(x) + . . . + cp"-'(x), 

where cp"-l is m - 1 times the composition of cp by itself. 
The difference between Galois fields and general Galois rings is obviously that 
every nonzero element of GR(pk ,m)  is not necessarily a unit; the units of 
GR(pk,  m) are the elements: 

k x pz--lui, U l  E { 1, E ,  . . . , p-}, u2,. . . 
i = I  

Their number is p("-')" . (p" - 1) = lGR(pk, m)l . (9). 
We denote again by x . y the expression: 

n 

C x j  y j ,  x = ( 5 1 , .  . . , xn) E GR(pk,  m ) n ,  y = ( y i ,  . . . , Yn) E GR(pk,  m)". 

The characters on GR(pk,m)" are the functions: 2 + (x,y),, = W p k  TT(x.Y), 

where wpk = e 2 n i / p k .  

The construction given in [5] could be extended to general finite rings. In the 
case of Galois rings, it is easy to state: 

Theoreml. Let G be any Galois ring, t and n = T + s any positive integers 
(T > t > 0 ,  s > 0) ,  g any function from G" to G and 4 a mapping from G" to 
G' such that any element in 4(G") has more than t coordinates that are units, 
then the junction: 

j = 1  

f ( X , Y )  = x .  $ ( Y )  + d Y ) ,  x E G', Y E G" 

is a t-resilient function on Gn 

Proof: 
For any nonzero element v of G and any element (u, u') of G" (u E G', u' E G"),  
we have: 

C 
xEGP, yEG' 

(x, U ) r ( Y y  u')a(f(~>y)t v )  = 



426 

The sum: 

xEG' 

is equal to 0, unless v#(y) + u = 0, according to property (1). Therefore: 

c (2, 4l.(Y,-4s(f(X, Y ) I  4 = 
xEG',yEG' 

IGl' c W p k  T r ( v ( y ) + y . u ' ) ,  

gEG' I v$(y)+u=O 

If we assume that (u, u') has Hamming weight at  most t ,  then u, whose Ham- 
ming weight is a fortiori at most t ,  cannot be equal to -v $(y): according to the 
hypothesis on #, vqb(y) has more than t nonzero coordinates. Thus, the sum C (z,~),(y,ll'),(f(z,y),v) is equal to  zero. f is t-resilient. 0 

xEG', yEG" 

Example: if G is a Galois field and $(y) = ($l(y), . . . , @r(y)) is such that: 
. the sets Ei = {y E Gs 1 $i(y) = O}, i = 1,. . . ,T are disjoint each others; 
. a monomial in the algebraic normal form of one of the functions qbi has maxi- 
mum degree q - 1 relative to each variable; 
then f ( z ~ * - ~ ,  . . . ,zrcl-',y1,. . . , ys) is ( r  - 2)-resilient (according to theorem 1 
and to  [3], prop. 9) and almost reaches the bound on the degrees recalled in the 
introduction. 

2.2 A Partial-Spreads-like class 

In [ll] is also introduced the class of bent functions called PS,, (a subclass of 
Partial-Spreads class) whose elements are defined the following way: 
GF(2)5 is identified to the Galois field GF(22) ;  PS,, is the set of all the 
functions of the form f ( z , y )  = g(zy2's-2) (i.e. g(:) with i~ = 0 if z = 0 
or y = 0) where g is a balanced Boolean function on GF(2):. We have then 

The idea of this construction may be used to obtain a construction of correlation- 
immune €unctions. We give this construction in its most general form (involving 
a Galois field GF(q)  where q is any prime power). 
In the next theorem, we identify a power Fm of a Galois field 3 = GF(y) 
to the Galois field GF(qm) .  Such an identification is done the following way: 
we choose a basis (a1 ] . .  . ,a,) of the .F-vector space GF(y") and we identify 
x = (XI,. . . ,x,) E Fm to Czl xiai E GF(ym). We know that a dot product 
on Fm is, via this identification T~,~(zy), where TT, is the trace map from 

Y 

h:, Y) = 9(f).  



427

GFiqm) to GFiq). But the notion of correlation-immune function depends on
the choice of the dot product on Tm. So, we assume that the basis ( « i , . . . , am)
is self-dual (it is always possible to find such a basis when q is even or m is odd),
so that:

TO

Trm(xy) =

Notice that if we do not have a self-dual basis, we still have, for any basis,
x-y = Trm(axy), a £ GF(qm).
We will use a well-known fact about linear mappings: let </> be a linear mapping
from GF(qn) to GF(qm), there exists a linear mapping (j>* (called adjoint of (f>)
from GF(qm) to GF(qn) such that, for every x £ GF(qm) and every y £ GF(qn):

Trm(x<fi(y))=Trn(<}>*(x)y).

We state theorem 2 in the case we have self-dual basis in GF(qm) and GF(qn).
It can be easily generalized to any case.

Theorem 2. Let T = GF(q) (q = p" ) be a finite field and tr the trace function
from T to its prime field GF(p). Let n and m be two positive integers (n, m odd
if q is odd), g a function from GF(qm) to T, <j> a linear mapping from GF(qn)
to GF(qm) and a an element of GF{qm) such that a + 4>(y) ± 0, Vy € GF{qn).
Let f be the function from Tm x Tn to T defined by:

= 9 —rrn; + Trn(by),
\a + <t>(y)J

where b £ GF(qn) and where x, y are viewed as elements of GF(qm), GF(qn)
respectively.
Assume that, for every z in GF(qTn) and every v ^ 0 in T, (j>*(z) + vb has weight
greater than t, then f is t-resilient.

Proof:
We have, for any (u,u') in !Fm x Tn and any nonzero v in T:

J2 {n,x)m(u',y)n{v,f(x,y))= £ W p M ]

Since, for every y, a + (j>(y) ^ 0, the element z = a+lu \ r a n S e s o v e r t n e whole
field GF(qm) when x does. We deduce:

^2 iu>z)m(u',y)n(v, f{x,y))r -

SP „, tr[Trm{u(az + z<j>(y)))+Trn(u'y)+vg(z))+vTr^{by)} __
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tEGF(q"') I ~ * ( u z ) ) + u ' + v h = U  

according to  property (1). 
If W H ( U , U ' )  5 t ,  then according to the hypothesis on $*, the set 

{ z  E GF(q") I $*(uz)) + U' + u b = 0} 

is empty, and this sum is equal to  0. Thus, f is t-resilient. 0 

Example: Let E be an F-subspacc of F" of maximum weight n - t - 1 and $I 
a linear mapping from 3m to  E. Let b be a word of weight n in F. Then the 
condition of theorem 2 is satisfied by 4 = $*, provided that a does not belong 
to  the image of $I* (which is always possible if n < m). 

3 Secondary constructions 

3.1 

Dillon proves in 1111 that if a binary function f is bent on GF(2)" (n  even) and 
if E is a ;-dimensional flat on which f is constant, then, denoting by SE the 
indicator of E ,  the function f + SE is bent too. 
We shall prove a similar result on correlation-immune functions. 

Theorem 3. Let G be any finite abelian group, t, m and n any positive integers 
and f a t-th order correlation-immune function from G" to G". 
Assume there exists a subgroup E of G", whose minimum nonzero weight is 
greater than t and such that the restriction of f to the orthogonal of E (ie.  the 
subgroup of G": E L  = {u E G" IVx E E ,  (u,x), = 1)) is constant. Then f 
remains t-th order correlation-immune if we change its constant value on E l  
into any other one. 

Proof: 
Let a be the constant value off on E l  and b any element of G". Set f'(x) = f(x) 
if z 4 E l ,  f'(x) = b if z E E l .  
For any nonzero element v of G" and any element u of G", we have: 

Modifying a correlation-immune function on a subgroup 

c (2, .U . )n ( f ' (Z ) ,  4 m  = 
xEG" 
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If u is nonzero and if its weight is at most equal to t, then:

V {*.n\-{f'(*Y«\- = I \ (X,u)n I ({b,v)m - (a,v)m).

The sum: ^P {x,u)n is equal to 0, since u does not belong to E.

3.2 Adapting a secondary construction known for bent functions

It is known, cf. [11, 17], that if g, h, k and g + h + k are bent on GF(2)m (TO
even), then the function defined on any element (xi,X2,x) of GF(2)m+2 by:

t(z1,z2, =

g(x)h(x) + g(x)k(x) + h(x)k(x) + [g(x) + /i(x)]xx + [g(x) + k(x)]x2 + xxx2

is bent.

Theorem 4. Let g, h and k be three functions from GF(2)m to GF(2). If g is
t-resilient, h and k are (t — l)-resilient and g + h + k is (t — 2)-resilient, then
the function on GF(2)m+2:

f(xi,x2,x) =

g(x)h(x) + g(x)k(x) + h(x)k(x) + \g(x) + h(x)]xi + [g(x) + k(x)]x2

is t-resilient (the converse is true).

Proof:
We have:

\ "* /-^\f(x1,X2,x)+a1xi+a2X2 + ax _ \ ""

xi,X2€GF(2),xeGF(2)

Changing Xi into Xi + g(x) + k(x) + a2 and x2 into x2 + g(x) + h(x) + ai, we
obtain:

that is equal to:

2 \ ' / ^ • j p ( x ) + a i [ s

x€GF(2)™

Assume that the word (ai,a2,a) has Hamming weight at most t. Then if a\ =
0,2 = 0, we obtain:

2 Y, (-iyix)+a-x,
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that is equal to zero, according to the hypothesis and since a has Hamming 
weight at  most t. If a1 = 0 and a2 = 1 (resp. al = 1 and a2 = O ) ,  we obtain: 
2 c (-l)h(")+a." (resp. 2 1 ( - l )k ( s )+a ' s ) ,  that is also equal to zero, 

since a has Hamming weight at  most t - 1. If a1 = a2 = 1, we obtain: 
zEGF(2)'" ZEOF(2)rn 

that is equal to zero too, since a has Hamming weight at most t - 2. 
The converse is similar. 

Example: This result may be applied to functions g,  h and k chosen in Maiorana- 
McFarlsnd-like class (over GF(2) ) :  g(2,y) = x.#(y)+gl(y),  h(z ,y)  = z.qh'(y)+ 
hl(y),  k(z ,y)  = 2 . $"(y) + Icl(y), where any element of 4(G8)  (resp. #'(Gs), 
4"(GS) ,  (4 + q5' + @')(G"))  has more than t (resp. t - 1, t - 1, t - 2)  nonzero 
coordinates. 

Remark: It is possible to extend this result to general finite fields, but the hy- 
pothesis becomes hard to satisfy. 

3.3 Constructing correlation-immune functions from bent functions 

The construction of bent functions that is recalled in the previous subsection is 
generalized in [8]: 
Let m, and T be two positive eveu integers. Let f be a Boolean function on 
GF(2)n'f' such that, for any element z' of GF(2)',  the function on GF(2)m: 

f Z I  : 2 4 f(2,z')  

(Pu : z' --$ fst(u) 

is bent. Then f is bent if and only if for any element 'u of GF(2)m, the function 
- 

is bent on GF(2)' (5 always exists: every bent function on GF(2) in even 
dimension is regular-bent). This result generalizes to  functions f over Zqm+' (as 
stated in [8]) such that for every d ,  the function fs, is regular-bent. 
It leads us to a construction of resilient functions from regular-bent functions: 

Theorem 5 .  Let r be a positive integer, m (L positive even integer and p a prime. 
Let f be a function from (GF(p))"+' to GF(p) such that, for any eEement 2' of 
(GF(p))',  the function on (GF(p)jm: 

fz' : z 4 f{s,x') 

is regular-bent. 
If, for every element u of ( G F ( P ) ) ~  of Hamming weight at most t ,  the function - 

(pu : 2' -+ f"!(U) 

i s  ( t  - wH(u))-resilien,t, then f i s  t-resilient (the converse is true). 
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Proof: 
For every nonzero v in GF(p) ,  and every (u,u') in GF(p)"+', we have: 

f x I  being regular-bent, we have: 
- 

wpf,l(z)+u.z = pt , w p f 3 ~ ( - u ) ,  vu E GF(p)m.  (5) 
zEGF(p) '"  

Let us first prove that, for every nonzero w in G F ( p ) :  
- c 

x€GF(p)'" 

w ~ V ~ ~ ~ ( ~ ) + ~ . ~  = p? w P f d - t ) ,  vu E G F ( P ) ~  : 

let Cp be the cyclotomic field generated by wp over the rationnals, i.e. 

Cp = Q ( w p ) ;  

we know (cf. [18], see also [13]) that its Galois group is the abelian group each 
element (T of which raises wp to the w-th power, w E { 1,. . . , p -  1) (every element 
of Q being invariant under cr). Say (T = c r v .  
From equality (5) and since pf E Q, we deduce: 

thus: 

and therefore: c Wpwf"l(x)+u.z = P 2  wp Z(-:)* 
z t G F ( p )  rn 

From equalities (4) and (6), we deduce: 
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This completes the proof, since W H  (-:) = wj1(71) and since W H ( U , U ’ )  5 t im- 
plies W H ( U )  5 t and W H ( U ‘ )  5 t - W H ( U ) .  The converse is similar. 

Example: taking fzt in Partial  Spreads class and  ipu in Partial  Spreads-like class, 
we obtain that the  function f ( x , g , ~ ’ , y ‘ )  = k(f, &) +Tr,(bg‘), where for 
every z’, t h e  function z + Ic(x,z‘) is balanced, for every y’, a + $(y’) # 0, and 
for every z and every v # 0, q5*(z) + 71 b has weight greater than  t,  is t-resilient. 

Remark: Theorem 5 could be generalized to functions f(z, 2’) over a more general 
Galois field GF(q)  such tha t ,  for every 2 E GF(q)‘ and every nonzero ‘u E 

. t he  function f x t , ,  : z -+ vf (z ,  z’) is regular-bent, 
GF(q):  

. fZ1,V = V f X t J .  

- 
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