Almost \boldsymbol{k}-wise Independent Sample Spaces and Their Cryptologic Applications

Kaoru Kurosawa ${ }^{1}$, Thomas Johansson ${ }^{2}$, Douglas Stinson ${ }^{3}$
${ }^{1}$ Dept. of Computer Science
Graduate School of Information Science and Engineering
Tokyo Institute of Technology
2-12-1 O-okayama, Meguro-ku, Tokyo 152, Japan
kurosawa@ss.titech.ac.jp
${ }^{2}$ Dept. of Information Technology, Lund University, PO Box 118, S-22100 Lund, Sweden thomas@it.lth.se
${ }^{3}$ Dept. of Computer Science and Engineering University of Nebraska Lincoln NE 68588, USA stinson@bibd.unl.edu

Abstract

An almost k-wise independent sample space is a small subset of m bit sequences in which any k bits are "almost independent". We show that this idea has close relationships with useful cryptologic notions such as multiple authentication codes (multiple A-codes), almost strongly universal hash families and almost k-resilient functions. We use almost k-wise independent sample spaces to construct new efficient multiple A-codes such that the number of key bits grows linearly as a function of k (here k is the number of messages to be authenticated with a single key). This improves on the construction of Atici and Stinson [2], in which the number of key bits is $\Omega\left(k^{2}\right)$. We also introduce the concept of ϵ-almost k-resilient functions and give a construction that has parameters superior to k-resilient functions. Finally, new bounds (necessary conditions) are derived for almost k-wise independent sample spaces, multiple A-codes and balanced ϵ-almost k resilient functions.

1 Introduction

An almost k-wise independent sample space is a probability space on m-bit sequences such that any k bits are almost independent. A ϵ-biased sample space is a space in which any (boolean) linear combination of the m bits has the value 1 with probability close to $1 / 2$. These notions were introduced by Naor and Naor [17] and further studied in [1] due to their applications to algorithms and complexity theory. However, there are also cryptographic applications: Krawczyk applied ϵ-biased sample spaces to the construction of authentication codes [13].

In this paper, we investigate several new relationships between almost k wise independent sample spaces and useful cryptologic notions such as multiple
authentication codes (multiple A-codes) [2] and k-resilient functions [10, 3, 11, $24,4]$.

In a multiple A-code, $k \geq 2$ messages are authenticated with the same key. (In "usual" A-codes, just one message is authenticated with a given key.) Recently, Atici and Stinson [2] defined some new classes of almost strongly universal hash families which allowed the construction of multiple A-codes. Here, we prove that almost k-wise independent sample spaces are equivalent to multiple A-codes. This allows us to obtain a more efficient construction of multiple A-codes from the almost k-wise independent sample spaces of [1].

Next, we present a lower bound on the size of the keyspace in a multiple A-code. Numerical examples show that the multiple A-codes we construct are quite close to this bound. Further, from the above equivalence, a lower bound on the size of almost k-wise independent sample spaces is obtained for free. (While a lower bound on the size of ϵ-biased sample spaces was given in [1], no lower bound was known for the size of almost k-wise independent sample spaces.)

Finally, we generalize the idea of resilient functions. A function $\phi:\{0,1\}^{m} \rightarrow$ $\{0,1\}^{l}$ is called k-resilient if every possible output l-tuple is equally likely to occur when the values of k arbitrary inputs are fixed by an opponent and the remaining $m-k$ input bits are chosen at random. This is a useful tool for achieving key renewal: an m-bit secret key $\left(x_{1}, \cdots, x_{m}\right)$ can be renewed to a new l-bit secret key $\phi\left(x_{1}, \cdots, x_{m}\right)$ about which an opponent has no information if the opponent knows at most k bits of $\left(x_{1}, \cdots, x_{m}\right)$.

We show that k can be made larger if the definition of resilient function is slightly relaxed. Thus, we define an ϵ-almost k-resilient function as a function ϕ such that every possible output l-tuple is almost equally likely to occur when the values of k arbitrary inputs are fixed by an opponent. (The statistical difference between the output distribution of a k-resilient function and an ϵ-almost k-resilient function is ϵ.) We prove that a large set of almost k-wise independent sample spaces is equivalent to a balanced ϵ-almost k-resilient function, generalizing a result of [24]. From this equivalence, we are able to obtain both efficient constructions and bounds for balanced ϵ-almost k-resilient functions.

2 Almost k-wise independent sample spaces

Let $S_{m} \subseteq\{0,1\}^{m}$, and let $X=x_{1} \cdots x_{m}$ be chosen uniformly from S_{m}.
Definition 1. [1] We say that S_{m} is an (ϵ, k)-independent sample space if for any k positions $i_{1}<i_{2}<\cdots<i_{k}$ and any k-bit string α, we have

$$
\begin{equation*}
\left|\operatorname{Pr}\left[x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}=\alpha\right]-2^{-k}\right| \leq \epsilon . \tag{1}
\end{equation*}
$$

If $\epsilon=0$, then S_{m} is equivalent to an orthogonal array $\mathrm{OA}_{\lambda}(k, m, 2)$, where $\lambda=\left|S_{m}\right| / 2^{k}$.

The following efficient construction for (ϵ, k)-independent sample spaces is proved in [1].

Proposition 2. There exists an (ϵ, k)-independent sample space S_{m} such that

$$
\log _{2}\left|S_{m}\right|=2\left(\log _{2} \log _{2} m-\log _{2} \epsilon+\log _{2} k-1\right) .
$$

In this section, we prove that almost k-wise independent sample spaces are equivalent to multiple authentication codes (more precisely, almost strongly universal- k hash families, as defined in [2]). This allows us to obtain more efficient multiple A-codes than were previously known.

2.1 Multiple \boldsymbol{A}-codes and ASU-k hash families

We briefly review basic concepts of (multiple) authentication codes. In the usual Simmons model of authentication codes (A-codes) [21, 22], there are three participants, a transmitter, a receiver and an opponent. In an A-code without secrecy, the transmitter sends a message (s, a) to the receiver, where s is a source state (plaintext) and a is an authenticator. The authenticator is computed as $a=e(s)$, where e is a secret key shared between the transmitter and the receiver. The key e is chosen according to a specified probability distribution.

In a multiple A-code, we suppose that an opponent observes $i \geq 2$ messages which are sent using the same key. Then the opponent places a new bogus message (s^{\prime}, a^{\prime}) into the channel, where s^{\prime} is distinct from the i source states already sent. This attack is called a spoofing attack of order i. $P_{d_{i}}$ denotes the success probability of a spoofing attack of order i, see [15].

Almost strongly universal hash families are a very useful way of constructing practical A-codes. This idea was introduced by Wegman and Carter [26], and further developed and refined in papers such as [23, 5, 13, 12]. Atici and Stinson [2] generalized the definitions so that they could be applied to multiple A-codes. We review these definitions now.

Definition 3. An ($N ; m, n$) hash family is a set F of N functions such that $f: A \rightarrow B$ for each $f \in F$, where $|A|=m,|B|=n$ and $m>n$.

Definition 4. An ($N ; m, n$) hash family F of functions from A to B is ϵ almost strongly universal-k (or ϵ-ASU ($N ; m, n, k$)) provided that, for all distinct elements $x_{1}, x_{2}, \cdots, x_{k} \in A$, and for all (not necessary distinct) $y_{1}, y_{2}, \cdots, y_{k} \in B$, we have

$$
\left|\left\{f \in F: f\left(x_{i}\right)=y_{i}, 1 \leq i \leq k\right\}\right| \leq \epsilon \times\left|\left\{f \in F: f\left(x_{i}\right)=y_{i}, 1 \leq i \leq k-1\right\}\right| .
$$

The following result gives the connection between ϵ-ASU ($N ; m, n, k$) hash families and multiple A-codes.

Proposition 5. [2] There exists an A-code without secrecy for m source states, having n authenticators and N equiprobable authentication rules and such that $P_{d_{k-1}} \leq \epsilon$, if and only if there exists an $\epsilon-A S U(N ; m, n, k)$ hash family F.

2.2 Equivalence of hash families and sample spaces

We can can rephrase Definition 1 in terms of hash families, and generalize it to the non-binary case, as follows.

Definition 6. An $(N ; m, n)$ hash family F of functions from A to B is (ϵ, k) independent if for all distinct elements $x_{1}, x_{2}, \cdots, x_{k} \in A$, and for all (not necessary distinct) $y_{1}, y_{2}, \cdots, y_{k} \in B$, we have

$$
\begin{equation*}
\left|\operatorname{Pr}\left(f\left(x_{i}\right)=y_{i}, 1 \leq i \leq k\right)-n^{-k}\right| \leq \epsilon, \tag{2}
\end{equation*}
$$

where $f \in F$ is chosen uniformly at random.
The following results are straightforward.
Proposition 7. An (ϵ, k)-independent sample space S_{m} is equivalent to an (ϵ, k) independent $\left(\left|S_{m}\right| ; m, 2\right)$ hash family.

Proposition 8. If there exists an (ϵ, k)-independent sample space S_{m}, then there exists an ($\epsilon, k / t)$-independent $\left(\left|S_{m}\right| ; m / t, 2^{t}\right)$ hash family.

Now we show the equivalence of (ϵ, k)-independent sample spaces and almost strongly universal- k hash families.

Theorem 9. If F is an (ϵ, k)-independent $(N ; m, n)$ hash family, then F is a $\delta-A S U(N ; m, n, k)$ hash family, where

$$
\delta=\frac{\left(n^{-k}+\epsilon\right)}{n\left(n^{-k}-\epsilon\right)}
$$

Proof. Suppose that Eq. (2) holds. Then for any $y_{1}, \cdots, y_{k} \in B$, we have

$$
\begin{gathered}
\operatorname{Pr}\left[f\left(x_{i}\right)=y_{i}, 1 \leq i \leq k\right] \geq n^{-k}-\epsilon \\
\sum_{y_{k} \in B} \operatorname{Pr}\left[f\left(x_{i}\right)=y_{i}, 1 \leq i \leq k\right] \geq \sum_{y_{k} \in B}\left(n^{-k}-\epsilon\right), \quad \text { and } \\
\operatorname{Pr}\left[f\left(x_{i}\right)=y_{i}, 1 \leq i \leq k-1\right] \geq n\left(n^{-k}-\epsilon\right)
\end{gathered}
$$

From the above inequality and Eq. (2), we have

$$
\frac{\operatorname{Pr}\left[f\left(x_{i}\right)=y_{i}, 1 \leq i \leq k\right]}{\operatorname{Pr}\left[f\left(x_{i}\right)=y_{i}, 1 \leq i \leq k-1\right]} \leq \frac{n^{-k}+\epsilon}{n\left(n^{-k}-\epsilon\right)}
$$

Let $\delta \triangleq\left(n^{-k}+\epsilon\right) /\left(n\left(n^{-k}-\epsilon\right)\right)$. Then

$$
\left|\left\{f \in F: f\left(x_{i}\right)=y_{i}, 1 \leq i \leq k\right\}\right| \leq \delta \times\left|\left\{f \in F: f\left(x_{i}\right)=y_{i}, 1 \leq i \leq k-1\right\}\right| .
$$

Hence, F is a $\delta-\mathrm{ASU}(N ; m, n, k)$ hash family.

Definition 10. An $(N ; m, n)$ hash family F of functions from A to B is strongly (ϵ, k)-independent if for any t such that $1 \leq t \leq k$ and for all distinct elements $x_{1}, x_{2}, \cdots, x_{t} \in A$, and for all (not necessary distinct) $y_{1}, y_{2}, \cdots, y_{t} \in B$, we have

$$
\begin{equation*}
\left|\operatorname{Pr}\left(f\left(x_{i}\right)=y_{i}, 1 \leq i \leq t\right)-n^{-t}\right| \leq \epsilon \tag{3}
\end{equation*}
$$

where $f \in F$ is chosen uniformly at random.
Theorem 11. If an $(N ; m, n)$ hash family F is strongly (ϵ, k)-independent, then F is a $\delta-A S U(N ; m, n, k)$ hash family, where $\delta=\left(n^{-k}+\epsilon\right) /\left(n^{-(k-1)}-\epsilon\right)$.

Proof. The proof is similar to the proof of Theorem 9.
Lemma 12. [2] Suppose that a hash family F of functions from A to B is $\epsilon-A S U$ ($N ; m, n, k$). Then for for all $1 \leq j \leq k$, for all distinct elements $x_{1}, x_{2}, \cdots, x_{j} \in$ A, and for all (not necessary distinct) $y_{1}, y_{2}, \cdots, y_{j} \in B$, we have

$$
\begin{equation*}
\left|\left\{f \in F: f\left(x_{i}\right)=y_{i}, 1 \leq i \leq j\right\}\right| \leq \epsilon^{j} \times N \tag{4}
\end{equation*}
$$

Lemma 13. [2] If a hash family F is $\epsilon-A S U(N ; m, n, k)$, then $\epsilon \geq 1 / n$.
Theorem 14. If a hash family F is $\epsilon-A S U(N ; m, n, k)$, then F is (δ, k)-independent, where $\delta=\left(n^{k}-1\right)\left(\epsilon^{k}-n^{-k}\right)$.

Proof. From Lemma 12, we have

$$
\begin{gather*}
\operatorname{Pr}\left[f\left(x_{i}\right)=y_{i}, 1 \leq i \leq k\right] \leq \epsilon^{k} \quad \text { and } \tag{5}\\
\operatorname{Pr}\left[f\left(x_{i}\right)=y_{i}, 1 \leq i \leq k\right]-n^{-k} \leq \epsilon^{k}-n^{-k} \tag{6}
\end{gather*}
$$

On the other hand, from eq.(5), we have

$$
\sum_{\left(\hat{y}_{1}, \cdots, \hat{y}_{k}\right) \neq\left(y_{1}, \cdots, y_{k}\right)} \operatorname{Pr}\left[f\left(x_{i}\right)=\hat{y}_{i}, 1 \leq i \leq k\right] \leq\left(n^{k}-1\right) \epsilon^{k} .
$$

Therefore, we have

$$
\begin{aligned}
\operatorname{Pr}\left[f\left(x_{i}\right)=y_{i}, 1 \leq i \leq k\right] & =1-\sum_{\left(\hat{y}_{1}, \cdots, \hat{y}_{k}\right) \neq\left(y_{1}, \cdots, y_{k}\right)} \operatorname{Pr}\left[f\left(x_{i}\right)=\hat{y}_{i}, 1 \leq i \leq k\right] \\
& \geq 1-\left(n^{k}-1\right) \epsilon^{k} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[f\left(x_{i}\right)=\hat{y}_{i}, 1 \leq i \leq k\right]-n^{-k} & \geq 1-\left(n^{k}-1\right) \epsilon^{k}-n^{-k} \\
& =1-\epsilon^{k} n^{k}+\epsilon^{k}-n^{-k} \\
& =-\left(n^{k}-1\right)\left(\epsilon^{k}-n^{-k}\right) .
\end{aligned}
$$

From Lemma 13, we see that $\epsilon^{k}-n^{-k} \geq 0$. Hence,

$$
-\left(n^{k}-1\right)\left(\epsilon^{k}-n^{-k}\right) \leq \operatorname{Pr}\left[f\left(x_{i}\right)=\hat{y}_{i}, 1 \leq i \leq k\right]-n^{-k} \leq \epsilon^{k}-n^{-k}
$$

Then the family is (δ, k)-independent, where

$$
\delta=\max \left\{\left|\epsilon^{k}-n^{-k}\right|,\left|-\left(n^{k}-1\right)\left(\epsilon^{k}-n^{-k}\right)\right|\right\}=\left(n^{k}-1\right)\left(\epsilon^{k}-n^{-k}\right)
$$

2.3 New multiple A-codes

By combining Propositions 2 and 8 with Theorem 9 or Theorem 11, we can obtain new multiple A-codes (ASU- k hash families) from an (ϵ, k)-independent sample space. Since the (ϵ, k)-independent sample spaces from [1] mentioned in Proposition 2 can be shown to be strong, we will apply Theorem 11.

Theorem 15. There exists a $\delta-A S U(N ; m, n, k)$ hash family where

$$
\begin{equation*}
\log _{2} N=2\left(\log _{2} \log _{2}\left(m \log _{2} n\right)+k \log _{2} n-\log _{2}(n \delta-1)+\log _{2}\left(k \log _{2} n\right)-1\right) \tag{7}
\end{equation*}
$$

Proof. Define $l=k \log _{2} n, u=m \log _{2} n$, and

$$
\epsilon=\frac{n^{-k}(\delta n-1)}{\delta+1} \approx n^{-k}(\delta n-1)
$$

Apply Proposition 2 and 8 , constructing a strongly (ϵ, k)-independent (N, m, n) hash family, where $\log _{2} N=2\left(\log _{2} \log _{2} u-\log _{2} \epsilon+\log _{2} l-1\right)$. Now apply Theorem 11, to obtain a δ-ASU $(N ; m, n, k)$ hash family. We compute $\log _{2} N$ as

$$
\begin{aligned}
\log _{2} N & =2\left(\log _{2} \log _{2}\left(m \log _{2} n\right)-\log _{2}\left(n^{-k}(\delta n-1)\right)+\log _{2}\left(k \log _{2} n\right)-1\right) \\
& =2\left(\log _{2} \log _{2}\left(m \log _{2} n\right)+k \log _{2} n-\log _{2}(\delta n-1)+\log _{2}\left(k \log _{2} n\right)-1\right)
\end{aligned}
$$

3 A lower bound

In this section, we present a lower bound on the size of ASU- k hash families and almost k-wise independent sample spaces.

Theorem 16. If there exists an $\epsilon-A S U(N ; m, n, k)$ hash family such that

$$
\begin{equation*}
\epsilon^{k} \leq 1 / n \tag{8}
\end{equation*}
$$

then

$$
N \geq \frac{1}{\epsilon^{k}}\left(\frac{\log \left(\frac{m n}{k-1}\right)}{\log \left(\frac{1-\epsilon^{k}}{\frac{1}{n}-\epsilon^{k}}\right)}-1\right)
$$

Proof. Suppose F is an $\epsilon-\operatorname{ASU}(N ; m, n, k)$ hash family from A to B, where $|A|=m,|B|=n$ and $k \geq 2$. Construct an $N \times m n$ binary matrix $G=\left(g_{i j}\right)$, with rows indexed by the functions in F and columns indexed by $A \times B$, defined by the rule

$$
g_{f,(x, y)}=\left\{\begin{array}{l}
1 \text { if } f(x)=y \\
0 \text { if } f(x) \neq y
\end{array}\right.
$$

Interpret the columns of G as incidence vectors of the N-set F. We obtain a set-system $\left(F, \mathcal{C}=\left\{C_{x, y}: x \in A, y \in B\right\}\right.$), where

$$
C_{x, y}=\{f \in F: f(x)=y\}
$$

for all $x \in A, y \in B$. Let

$$
\begin{equation*}
t \triangleq\left\lfloor\epsilon^{k} N\right\rfloor+1 \tag{9}
\end{equation*}
$$

This set-system satisfies the following properties: (A) $|F|=N$, (B) $|\mathcal{C}|=m n$, (C) $\sum_{C \in \mathcal{C}}|C|=N m$, (D) there does not exist a subset of t points that occurs as a subset of k different blocks (see Lemma 12).

Property (D) says that (F, \mathcal{C}) is a t-packing of index $\lambda=k-1$ (i.e., no t-subset of points occurs in more than λ blocks). Hence we obtain the following:

$$
\begin{equation*}
\lambda\binom{N}{t} \geq \sum_{C \in \mathcal{C}}\binom{|C|}{t} \tag{10}
\end{equation*}
$$

Property (C) implies that the average block size is $N m / m n=N / n$. Define a real-valued function $f(x)$ as

$$
f(x)= \begin{cases}0 & \text { if } x<t \\ x(x-1) \ldots(x-t+1) & \text { otherwise }\end{cases}
$$

Since $f(x)$ is convex, we have

$$
\begin{equation*}
\frac{\lambda}{m n}\binom{N}{t} \geq \frac{1}{m n} \sum_{C \in \mathcal{C}}\binom{|C|}{t} \geq \frac{f(N / n)}{t!} \tag{11}
\end{equation*}
$$

from Jensen's inequality. We observe that $N / n \geq t-1$ follows from Eq. (8) and Eq. (9). Then, we obtain

$$
\begin{equation*}
(k-1) \frac{N(N-1) \cdots(N-t+1)}{\frac{N}{n}\left(\frac{N}{n}-1\right) \cdots\left(\frac{N}{n}-t+1\right)} \geq m n \tag{12}
\end{equation*}
$$

and hence

$$
\begin{equation*}
(k-1)\left(\frac{N-t+1}{\frac{N}{n}-t+1}\right)^{t} \geq m n \tag{13}
\end{equation*}
$$

From Eq. (9), we have $t \leq \epsilon^{k} N+1$. Then Eq. (13) can be simplificd as follows.

$$
\begin{aligned}
(k-1)\left(\frac{1-\epsilon^{k}}{\frac{1}{n}-\epsilon^{k}}\right)^{t} & \geq m n, \quad \text { and hence } \\
\left(\epsilon^{k} N+1\right) \log \left(\frac{1-\epsilon^{k}}{\frac{1}{n}-\epsilon^{k}}\right) & \geq \log \left(\frac{m n}{k-1}\right)
\end{aligned}
$$

from which our bound is obtained.
Corollary 17. Suppose S_{m} is an (ϵ, k)-independent sample space. Denote $\delta=$ $\left(2^{-k}+\epsilon\right) /\left(2\left(2^{-k}-\epsilon\right)\right)$. If $\delta^{k} \leq 1 / 2$, then

$$
\left|S_{m}\right| \geq \frac{1}{\delta^{k}}\left(\frac{\log \left(\frac{2 m}{k-1}\right)}{\log \left(\frac{1-\delta^{k}}{\frac{1}{2}-\delta^{k}}\right)}-1\right)
$$

Proof. This follows from Theorem 9.

3.1 Some numerical examples of multiple \boldsymbol{A}-codes

We give some numerical examples to compare the multiple A-codes constructed by Atici and Stinson in [2], our new multiple A-codes obtained from Theorem 15, and the lower bound of Theorem 16. Suppose we want an authentication code for $m=2^{2^{128}}$ source states with deception probability $\delta=2^{-40}$. We tabulate the number of key bits (i.e., $\log _{2} N$) for $k=3,4,10$. Note that we take $n=2 / \delta=2^{41}$ in Theorem 15 and Theorem 16 (whereas in [2], $n>2 / \delta$).

k	$[2]$	Theorem 15	Lower bound
3	657	518	243
4	1043	602	283
10	5376	1096	523

A counter-based multiple authentication scheme would (of course) require less key bits than the proposed construction. For example, tabulated values from [2] show that the construction from [5] would for the parameters above and $k=4$ require 447 key bits. Hence, the $602-447=155$ additional key bits we use can be thought of as the price payed for having a stateless multiple authentication scheme. An interesting property that can be verified through Theorem 15 is the following. When $k \rightarrow \infty$, the number of key bits required per message approaches $\log _{2} n$, which is the same as for the counter-based multiple authentication scheme.

4 Almost resilient functions

In what follows, let $m \geq l \geq 1$ be integers and let $\phi:\{0,1\}^{m} \rightarrow\{0,1\}^{l}$.
Definition 18. ϕ is called an (m, l, k)-resilient function if

$$
\operatorname{Pr}\left[\phi\left(x_{1}, \ldots, x_{m}\right)=\left(y_{1}, \ldots, y_{l}\right) \mid x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}=\alpha\right]=2^{-l}
$$

for any k positions $i_{1}<\cdots<i_{k}$, for any k-bit string α and for any (y_{1}, \cdots, y_{l}) \in $\{0,1\}^{l}$, where the values $x_{j}\left(j \notin\left\{i_{1}, \ldots, i_{k}\right\}\right)$ are chosen independently at random.

Resilient functions have been studied in several papers, e.g., $[10,3,11,24,4]$. We now introduce a generalization, which we call ϵ-almost resilient functions, in which the the output distribution may deviate from the uniform distribution by a small amount ϵ.

Definition 19. We say that ϕ is an ϵ-almost (m, l, k)-resilient function if

$$
\left|\operatorname{Pr}\left[\phi\left(x_{1}, \ldots, x_{m}\right)=\left(y_{1}, \ldots, y_{l}\right) \mid x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}=\alpha\right]-2^{-l}\right| \leq \epsilon
$$

for any k positions $i_{1}<\cdots<i_{k}$, for any k-bit string α and for any (y_{1}, \cdots, y_{l}) \in $\{0,1\}^{l}$, where the values $x_{j}\left(j \notin\left\{i_{1}, \ldots, i_{k}\right\}\right)$ are chosen independently at random.

4.1 Relation with (ϵ, \boldsymbol{k})-independent sample space

It is well-known that a resilient function is equivalent to a large set of orthogonal arrays [24]. Here we prove a similar result for almost resilient functions that involves k-wise independent sample spaces.

Definition 20. A large set of (ϵ, k, m, t)-independent sample spaces, denoted $L S(\epsilon, k, m, t)$, is a set of $2^{m-t}(\epsilon, k, m, t)$-independent sample spaces, each of size 2^{t}, such that their union contains all 2^{m} binary vectors of length m.

Theorem 21. If there exists an $L S(\epsilon, k, m, t)$, then there exists a δ-almost (m, m $t, k)$-resilient function, where $\delta=\epsilon / 2^{m-t-k}$.

Proof. There are $2^{m-t}(\epsilon, k)$-independent sample spaces in the set. Name the (ϵ, k)-independent sample spaces $C_{\gamma}, \gamma \in\{0,1\}^{m-t}$. Then define a function $\phi:\{0,1\}^{m} \rightarrow\{0,1\}^{m-t}$ by the rule

$$
\phi\left(x_{1}, \ldots, x_{m}\right)=\gamma \text { if and only if }\left(x_{1}, \ldots, x_{m}\right) \in C_{\gamma}
$$

For any k positions $i_{1}<\cdots<i_{k}$, any k-bit string α and any $\gamma \in\{0,1\}^{m-t}$, let

$$
L \triangleq\left|\left\{\left(x_{1}, \ldots, x_{m}\right): x_{i_{1}} \cdots x_{i_{k}}=\alpha,\left(x_{1}, \ldots, x_{m}\right) \in C_{\gamma}\right\}\right| .
$$

Then

$$
\begin{equation*}
\operatorname{Pr}\left[\phi\left(x_{1}, \ldots, x_{m}\right)=\gamma \mid x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}=\alpha\right]=\frac{L}{2^{m-k}} \tag{14}
\end{equation*}
$$

From Definition 1, we have

$$
\begin{equation*}
2^{-k}-\epsilon \leq \frac{L}{2^{t}} \leq 2^{-k}+\epsilon \tag{15}
\end{equation*}
$$

Hence, from (14) and (15), we obtain

$$
\left|\operatorname{Pr}\left[\phi\left(x_{1}, \ldots, x_{m}\right)=\gamma \mid x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}=\alpha\right]-2^{-(m-t)}\right| \leq \frac{\epsilon}{2^{m-t-k}}
$$

Definition 22. The function $\phi:\{0,1\}^{m} \rightarrow\{0,1\}^{l}$ is called balanced if we have

$$
\operatorname{Pr}\left[\phi\left(x_{1}, \ldots, x_{m}\right)=\left(y_{1}, \ldots, y_{l}\right)\right]=2^{-l}
$$

for all $\left(y_{1}, \cdots, y_{l}\right) \in\{0,1\}^{l}$.
For balanced functions, we can prove the converse of Theorem 21.
Theorem 23. If there exists a balanced ϵ-almost (m, l, k)-resilient function, ϕ, then there exists an $L S(\delta, k, m, m-l)$, where $\delta=\epsilon / 2^{k-l}$.

Proof. For $\gamma \in\{0,1\}^{l}$, let

$$
C_{\gamma} \triangleq\left\{\left(x_{1}, \ldots, x_{m}\right): \phi\left(x_{1}, \ldots, x_{m}\right)=\gamma\right\}
$$

Since ϕ is balanced, $\left|C_{\gamma}\right|=2^{m-l}$. If each C_{γ} is an (ϵ, k)-independent sample space, then we automatically get a large set. For any k positions $i_{1}<\cdots<i_{k}$, for any k-bit string α for and any $\gamma \in\{0,1\}^{l}$, let

$$
L \triangleq\left|\left\{\left(x_{1}, \ldots, x_{m}\right): x_{i_{1}} \cdots x_{i_{k}}=\alpha,\left(x_{1}, \ldots, x_{m}\right) \in C_{\gamma}\right\}\right| .
$$

Then, within the sample space C_{γ}, we have

$$
\begin{equation*}
\operatorname{Pr}\left[x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}=\alpha\right]=\frac{L}{\left|C_{\gamma}\right|}=\frac{L}{2^{m-l}} \tag{16}
\end{equation*}
$$

From Definition 19, we get

$$
\begin{equation*}
2^{-l}-\epsilon \leq \frac{L}{2^{m-k}} \leq 2^{-l}+\epsilon \tag{17}
\end{equation*}
$$

Hence, from (16) and (17), we obtain

$$
\left|\operatorname{Pr}\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}=\alpha\right)-2^{-k}\right| \leq \frac{\epsilon}{2^{k-l}}
$$

4.2 Constructions of $\boldsymbol{\epsilon}$-almost resilient functions

Definition 24. An (ϵ, k)-independent sample space S_{m} is t-systematic if $\left|S_{m}\right|=$ 2^{t}, and there exist t positions $i_{1}<\cdots<i_{t}$ such that each t-bit string occurs in these positions for exactly one m-tuple in S_{m}.

A t-systematic (ϵ, k)-independent sample space can be transformed into an $L S(\epsilon, k, m, t)$ by using the same technique as [25, Theorem 3$]$. We have the following result.

Theorem 25. If there exists at-systematic (ϵ, k)-independent sample space S_{m}, then there exists a balanced δ-almost ($m, m-t, k$)-resilient function, where $\delta=$ $\epsilon / 2^{m-t-k}$.

Due to space limitations, we will present only a very brief summary of our construction for t-systematic (ϵ, k)-independent sample spaces. Our approach is similar to [12] (see also [18]), and depends on the Weil-Carlitz-Uchiyama bound. In what follows, let $T r$ denote the trace function from $G F\left(2^{t}\right)$ to $G F(2)$.

Proposition 26 Weil-Carlitz-Uchiyama bound. [9] Let $f(x)=\sum_{i=1}^{D} f_{i} x^{i} \in$ $G F\left(2^{t}\right)[x]$ be a polynomial that is not expressible in the form $f(x)=g(x)^{2}-$ $g(x)+\theta$ for any polynomial $g(x) \in G F\left(2^{t}\right)[x]$ and for any $\theta \in F_{2^{t}}$. Then

$$
\left|\sum_{\alpha \in G F\left(2^{t}\right)}(-1)^{\operatorname{Tr}(f(\alpha))}\right| \leq(D-1) \sqrt{2^{t}} .
$$

Definition 27. A polynomial $h(x) \in G F\left(2^{t}\right)[x]$ is a ($\left.2^{t}, D\right)$-polynomial if h has degree at most D and $a_{i}=0$ for all even i, where $h=\sum_{i=0}^{D} a_{i} x^{i}$. Define $H\left(2^{t}, D, k\right)$ to be a set of $\left(2^{t}, D\right)$-polynomials such that any k polynomials in the set are independent over $G F(2)$.

For $h_{i_{1}}, h_{i_{2}}, \ldots, h_{i_{k}} \in H\left(2^{t}, D, k\right)$ and for any k elements $\alpha_{1}, \cdots, \alpha_{k} \in G F(2)$, define
$N_{\alpha_{1}, \ldots, \alpha_{k}}\left(h_{i_{1}}, \ldots, h_{i_{k}}\right) \triangleq\left|\left\{x \in G F\left(2^{t}\right): \operatorname{Tr}\left(h_{i_{1}}(x)\right)=\alpha_{1}, \cdots, \operatorname{Tr}\left(h_{i_{k}}(x)\right)=\alpha_{k}\right\}\right|$.
Lemma 28. [12] $\left|N_{\alpha_{1}, \ldots, \alpha_{k}}\left(h_{i_{1}}, \ldots, h_{i_{k}}\right)-2^{t-k}\right| \leq(D-1) \sqrt{2^{t}}$.
Proof. The proof is an application of Proposition 26. The case $k=2$ can be found in [12] and the general case is proved similarly.

Theorem 29. Suppose that β is a primitive element of $G F\left(2^{t}\right)$, and $H\left(2^{t}, D, k\right)$ is chosen such that $\left\{x, \beta x, \beta^{2} x, \ldots, \beta^{t-1} x\right\} \subseteq H\left(2^{t}, D, k\right)$. There exists a t systematic (ϵ, k)-independent sample space S_{m} where $m=\left|H\left(2^{t}, D, k\right)\right|$ and $\epsilon=(D-1) / \sqrt{2^{t}}$.

Proof. Let $H\left(2^{t}, D, k\right)=\left\{h_{1}, \cdots, h_{m}\right\}$. Construct a sample space S_{m} as follows: A binary string $X_{\gamma}=x_{1} x_{2} \cdots x_{m} \in S_{m}$ is specified by any $\gamma \in G F\left(2^{t}\right)$, where the i th bit of X_{γ} is $x_{i}=\operatorname{Tr}\left(h_{i}(\gamma)\right)$. The proof that S_{m} is (ϵ, k)-independent follows from Lemma 28. Further, S_{m} can be shown to be systematic using the fact that $\left\{x, \beta x, \beta^{2} x, \ldots, \beta^{t-1} x\right\} \subseteq H\left(2^{t}, D, k\right)$ (the proof will be given in the final paper).

4.3 An Application

In our approach, using Theorem 29, we need to construct a set of polynomials $H\left(2^{t}, D, k\right)$ such that any k of them are linearly independent over $G F(2)$. For this we can use linear error-correcting codes (see [14]). For a fixed (odd) degree D, we can express each polynomial as a linear combination of polynomials in the set

$$
\left\{x, \beta x, \ldots, \beta^{t-1} x, x^{3}, \beta x^{3}, \ldots, \beta^{t-1} x^{3}, \ldots, x^{D}, \beta x^{D}, \ldots, \beta^{t-1} x^{D}\right\}
$$

Indexing the polynomials in $H\left(2^{t}, D, k\right)$ as $h_{1}, h_{2}, \ldots, h_{m}$ we obtain a binary $t D^{\prime} \times m$ matrix, where $D^{\prime}=(D+1) / 2$, which is a parity check matrix of an [m, l, d] error correcting code in which $m-l=t D^{\prime}$ and $d=k+1$. Conversely, given such a code, we obtain a t-systematic sample space, and hence a balanced ϵ-almost ($m, m-t, k$)-resilient function, as follows.

Theorem 30. Suppose $D=2 D^{\prime}-1$ and there is a $\left[m, m-t D^{\prime}, k+1\right]$ code. Then there exists a balanced ϵ-almost ($m, m-t, k$)-resilient function such that

$$
\epsilon=\frac{(D-1) \sqrt{2^{t}}}{2^{m-k}}
$$

A suitable value of ϵ would be 2^{-m+t-1}. We obtain the following corollary of Theorem 30 by taking $D=3$ and $k=(t / 2)-2$.

Corollary 31. Suppose there is an $[m, m-4 k-8, k+1]$ code. Then there exists a balanced $2^{-m+2 k+3}$-almost ($m, m-2 k-4, k$)-resilient function.

As a typical example, suppose we take $m=160$ and $k=18$. A $[160,80,23]$ code is known to exist see ([6]), so we obtain a balanced 2^{-121}-almost $(160,120,18)$ resilient function.

Let's compare the above result to the best-known ($160,120, k$)-resilient function. The most important construction method for resilient functions [3, 10] uses linear error-correcting codes, as follows: Let G be a generator matrix for an $[m, l, d]$ linear code. Define a function $f:(G F(2))^{m} \mapsto(G F(2))^{l}$ by the rule $f(x)=x G^{T}$. Then f is an ($m, l, d-1$) linear resilient function. The maximum d for which a $[160,120, d]$ code is known to exist is $d=12$ (see [6]). Hence, the maximum k for which we can construct a $(160,120, k)$-resilient function is $k=11$.

5 Comments

The techniques of this paper can also be used to construct "almost" versions of other cryptographic tools. These include correlation-immune functions (see, for example, $[19,8,7]$) and locally random pseudo-random number generators (see $[20,16,18])$. Details will be given in the full version of the paper.

References

1. N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of almost k-wise independent random variables. Random Structures and Algorithms 3 (1992), 289-304.
2. M. Atici and D. R. Stinson. Universal hashing and multiple authentication. Lecture Notes in Computer Science 1109 (1996), 16-30 (CRYPTO '96).
3. C. H. Bennett, G. Brassard, and J.-M. Robert. Privacy amplification by public discussion. SIAM Journal on Computing 17 (1988), 210-229.
4. J. Bierbrauer, K. Gopalakrishnan and D. R. Stinson. Bounds for resilient functions and orthogonal arrays. Lecture Notes in Computer Science 839 (1994), 247-257 (CRYPTO '94).
5. J. Bierbrauer, T. Johansson, G. Kabatianskii and B. Smeets. On families of hash functions via geometric codes and concatenation. Lecture Notes in Computer Science 773 (1994), 331-342 (CRYPTO '93).
6. A. E. Brouwer. Bounds on the minimum distance of binary linear codes. http://www.win.tue.nl/win/math/dw/voorlincod.html
7. P. Camion and A. Canteaut. Generalization of Siegenthaler inequality and SchnorrVaudenay multipermutations. Lecture Notes in Computer Science 1109 (1996), 372-386 (CRYPTO '96).
8. P. Camion, C. Carlet, P. Charpin and N. Sendrier. On correlation-immune functions. Lecture Notes in Computer Science 576 (1992), 86-100 (CRYPTO '91).
9. L. Carlitz and S. Uchiyama. Bounds on exponential sums. Duke Math. Journal, (1957), 37-41.
10. B. Chor, O. Goldreich, J. Hastad, J. Friedman, S Rudich and R. Smolensky. The bit extraction problem or t-resilient functions. 26th IEEE symposium on Foundations of Computer Science, pages 396-407, 1985.
11. J. Friedman. On the bit extraction problem. 33rd IEEE symposium on Foundations of Computer Science, pages 314-319, 1992.
12. T. Helleseth and T. Johansson. Universal hash functions from exponential sums over finite fields and Galois rings. Lecture Notes in Computer Science 1109 (1996), 31-44 (CRYPTO '96).
13. H. Krawczyk. New hash functions for message authentication. Lecture Notes in Computer Science 921 (1995), 301-310 (EUROCRYPT '95).
14. F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland, 1977.
15. J. L. Massey. Cryptography - A selective survey. Digital Communications, NorthHolland (1986), 3-21.
16. U. M. Maurer and J. L. Massey. Perfect local randomness in pseudo-random sequences. Lecture Notes in Computer Science 435 (1990), 100-112 (CRYPTO '89).
17. J. Naor and M. Naor. Small bias probability spaces: efficient constructions and applications. SIAM Journal on Computing 22 (1993), 838-856.
18. H. Niederreiter and C. P. Schnorr. Local randomness in polynomial random number and random function generators. SIAM Journal on Computing 22 (1993), 684694.
19. T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Trans. Inform. Theory 30 (1984), 776-780.
20. C. P. Schnorr. On the construction of random number generators and random function generators. Lecture Notes in Computer Science 330 (1988), 225-232 (EUROCRYPT '88).
21. G.J. Simmons. A game theory model of digital message authentication. Congressus Numeratium 34 (1982), 413-424.
22. G.J. Simmons. Authentication theory/coding theory, Lecture Notes in Computer Science. 196 (1985), 411-431 (CRYPTO '84).
23. D. R. Stinson. Universal hashing and authentication codes. Lecture Notes in Computer Science 576 (1992), 74-85 (CRYPTO '91).
24. D. R. Stinson. Resilient functions and large set of orthogonal arrays. Congressus Numerantium 92 (1993), 105-110.
25. D.R. Stinson and J. L. Massey. An infinite class of counterexamples to a conjecture concerning nonlinear resilient functions. Journal of Cryptology 8 (1995), 167-173.
26. M. N. Wegman and J. L. Carter. New hash functions and their use in authentication and set equality. Journal of Computer and System Sciences 22 (1981), 265-279.
