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Abstract. An almost k-wise independent sample space is a small subset 
of m bit sequences in which any k bits are “almost independent”. We 
show that this idea has close relationships with useful cryptologic notions 
such as multiple authentication codes (multiple A-codes), almost strongly 
universal hash families and almost k-resilient functions. 
We use almost k-wise independent sample spaces to construct new effi- 
cient multiple A-codes such that the number of key bits grows linearly 
as a function of k (here k is the number of messages to be authenticated 
with a single key). This improves on the construction of Atici and Stinson 
[2], in which the number of key bits is f2(k2). 
We also introduce the concept of e-almost k-resilient functions and give 
a construction that has parameters superior to k-resilient functions. 
Finally, new bounds (necessary conditions) are derived for almost k-wise 
independent sample spaces, multiple A-codes and balanced ealmost k- 
resilient functions. 

1 Introduction 

An almost k-wise independent sample space is a probability space on m-bit se- 
quences such that  any k bits are almost independent. A e-biased sample space is 
a space in which any (boolean) linear combination of the m bits has the value 1 
with probability close to 1/2. These notions were introduced by Naor and Naor 
[17] and further studied in [l] due to their applications to  algorithms and com- 
plexity theory. However, there are also cryptographic applications: Krawczyk 
applied €-biased sample spaces to the construction of authentication codes [13]. 

In this paper, we investigate several new relationships between almost k- 
wise independent sample spaces and useful cryptologic notions such as multiple 
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authentication codes (multiple A-codes) [2] and k-resilient functions [lo, 3, 11, 
24, 41. 

In a multiple A-code, k 2 2 messages are authenticated with the same key. (In 
“usual” A-codes, just one message is authenticated with a given key.) Recently, 
Atici and Stinson [2] defined some new classes of almost strongly universal hash 
families which allowed the construction of multiple A-codes. Here, we prove that 
almost k-wise independent sample spaces are equivalent to  multiple A-codes. 
This allows us to obtain a more efficient construction of multiple A-codes from 
the almost k-wise independent sample spaces of [l]. 

Next, we present a lower bound on the size of the keyspace in a multiple 
A-code. Numerical examples show that the multiple A-codes we construct are 
quite close to  this bound. Further, from the above equivalence, a lower bound on 
the size of almost k-wise independent sample spaces is obtained for free. (While 
a lower bound on the size of €-biased sample spaces was given in [l], no lower 
bound was known for the size of almost k-wise independent sample spaces.) 

Finally, we generalize the idea of resilient functions. A function 4 : (0 , l )”  -+ 
(0 , l ) ’  is called k-resdient if every possible output E-tuple is equally likely to  occur 
when the values of k arbitrary inputs are fixed by an opponent and the remaining 
m - k input bits are chosen at random. This is a useful tool for achieving key 
renewal: an rn-bit secret key (21,. . . , z,) can be renewed to a new Z-bit secret 
key $(XI,. . . , z,) about which an opponent has no information if the opponent 
knows at most k bits of (XI, . . . , z,). 

We show that k can be made larger if the definition of resilient function is 
slightly relaxed. Thus, we define an c-almost k-resilient function as a function 
4 such that every possible output Z-tuple is almost equally likely to  occur when 
the values of k arbitrary inputs are fixed by an opponent. (The statistical differ- 
ence between the output distribution of a k-resilient function and an c-almost 
k-resilient function is E . )  We prove that a large set of almost k-wise independent 
sample spaces is equivalent to  a balanced €-almost k-resilient function, general- 
izing a result of [24]. From this equivalence, we are able to obtain both efficient 
constructions and bounds for balanced t--almost k-resilient functions. 

2 Almost k-wise independent sample spaces 

Let S m  

Definition 1. [l] We say that S, is an (6, k)-independent sample space if for 
any k positions il < i a  < . . . < i k  and any k-bit string a, we have 

(0 ,  l},, and let X = x1 . . . xm be chosen uniformly from S,. 

If E = 0, then S, is equivalent to  an orthogonal array OAx(k,m,2), where 

The following efficient construction for (E, k)-independent sample spaces is 
A = ISmJ/2k. 

proved in [l]. 
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Proposition 2. There exists an (6, k)-independent sample space S, such that 

log, JS,I = 2(log, log, m - log, E + log, k - 1). 

In this section, we prove that almost k-wise independent sample spaces are 
equivalent to  multiple authentication codes (more precisely, almost strongly 
universal-k hash families, as defined in [2]). This allows us to obtain more efficient 
multiple A-codes than were previously known. 

2.1 Multiple A-codes and ASU-k hash families 

We briefly review basic concepts of (multiple) authentication codes. In the usual 
Simmons model of authentication codes (A-codes) [21, 221, there are three par- 
ticipants, a transmitter, a receiver and an opponent. In an A-code without secrecy, 
the transmitter sends a message ( s ,  a )  to  the receiver, where s is a source state 
(plaintext) and a is an authenticator. The authenticator is computed as a = e(s), 
where e is a secret key shared between the transmitter and the receiver. The key 
e is chosen according to a specified probability distribution. 

In a multiple A-code, we suppose that an opponent observes i 2 2 messages 
which are sent using the same key. Then the opponent piaces a new bogus 
message (s’ ,u’)  into the channel, where s’ is distinct from the i source states 
already sent. This attack is called a spoofing attack of order i. Pd, denotes the 
success probability of a spoofing attack of order i, see [15]. 

Almost strongly universal hash families are a very useful way of constructing 
practical A-codes. This idea was introduced by Wegman and Carter [26], and 
further developed and refined in papers such as [23, 5, 13, 121. Atici and Stinson 
[2] generalized the definitions so that they could be applied to multiple A-codes. 
We review these definitions now. 

Definition3. An ( N ; m , n )  hash family is a set F of N functions such that 
f : A -+ B for each f E F ,  where IAJ = m, IBJ = n and m > n. 

Definition 4. An ( N ;  m, n) hash family F of functions from A to B is E almost 
strongly universal-k (or E-ASU ( N ;  m, n, k)) provided that, for all distinct ele- 
ments X I ,  2 2 ,  . . . , xk E A ,  and for all (not necessary distinct) ~1,512, . . . , yk E B,  
we have 

The following result gives the connection between 6-ASU ( N ;  m, n,  k )  hash 
families and multiple A-codes. 

Proposition 5. [2] There exists an A-code without secrecy for m source states, 
having n authenticators and N equiprobable authentication mles  and such that 
Pdk-, 5 E ,  z f  and only if there exasts an E-ASU (N;m,n ,  k) hash family F .  
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2.2 

We can can rephrase Definition 1 in terms of hash families, and generalize it to 
the non-binary case, as follows. 

Definition6. An (N;m,n)  hash family F of functions from A to B is ( E ,  k ) -  
independent if for all distinct elements X I ,  2 2 ,  . . . , x k  E A,  and for all (not nec- 
essary distinct) y 1 ,  y2, . . . , yk E B ,  we have 

Equivalence of hash families and sample spaces 

I Pr(f(zi) = y i ,  1 5 i 5 k )  - n-kl 5 E ,  (2) 

where f E F is chosen uniformly at random. 

The following results are straightforward. 

Proposition 7. An ( E ,  k)-independent sample space S,  is equivalent to an ( 6 ,  k ) -  
independent (ISml; m, 2) hush family. 

Proposition8. If there exists an ( E ,  k)-independent sample space S,, then there 
exists an (E, k/t)-independent (IS,\; m/t,  2 t )  hash family. 

Now we show the equivalence of ( E ,  k)-independent sample spaces and almost 
strongly universal-k hash families. 

Theorem9. If F i s  an (~,k)- independent  ( N ; m , n )  hash family, then F i s  a 
6-ASU ( N ;  m, n, k )  hash family, where 

(nPk + E )  

n(n--k - E )  ' 
6 =  

Proof. Suppose that Eq. (2) holds. Then for any yl,. . . , yk E B, we have 

Pr[f(zi) = y,, 1 5 i 5 k ]  2 n-k - E ,  

Pr[f(zi) = yi, 1 5 i 5 k ]  2 
YkEB VkEB 

(n-k - E ) ,  and 

P r [ f ( x i )  = y i ,  1 5 i 5 k - 11 2 n(n-k - E ) .  

From the above inequality and Eq. (2), we have 

Hence, F is a &ASU ( N ;  m, n, k) hash family. 0 
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Definition 10. An ( N ;  m, n)  hash family F of functions from A to B is strongly 
(e ,  k)-independent if for any t such that 1 5 t 5 k and for all distinct elements 
XI, x2, . * + , xt E A,  and for all (not necessary distinct) y l ,  y z , .  . . , yt E B,  we have 

I Pr( f (xi) = y i ,  1 5 i 5 t )  - n-tI 5 c (3) 

where f E F is chosen uniformly at random. 

Theorem 11. If a n  ( N ;  m, n)  hush family F as strongly ( e ,  k)-independent, then 
F is a 6-ASU ( N ;  m, n,  k )  hash family, where S = (n-k + E)/ (n- (k- l )  - 6 ) .  

Proof. The proof is similar to  the proof of Theorem 9. 0 

Lemma 12. [Z] Suppose that a hash family F of functions f rom A to  B is C-ASU 
( N ;  m, n, k). Then f o r  f o r  all 1 5 j 5 k, f o r  all distinct elements XI, XZ, . . . , xj E 
A, and f o r  all (not necessary distinct) yl,  y2, . . . , y j  E B ,  we have 

I {  f E F : f (xi) = y i ,  1 5 i 5 j } l  5 €1 x N (4) 
Lemma 13. [2] I f  a hash family F is e-ASU ( N ;  m, n, k), then E 2 l /n.  

Theorem 14. If a hush famdy  F is E-ASU ( N ;  m, n,  k ) ,  then F is (6,  k)-indepen- 
dent, where 6 = (n' - 1 ) ( @  - n-'). 

Proof. From Lemma 12, we have 

Pr[f(xi) = pi, 1 5 i 5 k] 5 ek 
Pr[f(xi) = yi, 1 5 i 5 l ~ ]  - n-' 5 ek  - n-k .  

and (5) 
(6) 

On the other hand, from eq.(5), we have 

c pr[f(xi) = ci, 1 5 i 5 k] 5 (nk - 1 ) ~ ~ .  
(Yl.".tdk)#(Yl~'"rYk) 

Therefore, we have 

Pr[f (xi) = yi, 1 5 i 5 k ]  = 1 - c 
2 1 - (nk - 1 1 2 .  

P r [ f  (xi) = yi, 1 5 i 5 k] 
( ! k ~ ' " , $ k ) # ( Y l  ,"',Yk) 

Hence, 

P r [ f  (xi) = j j i ,  1 5 i 5 k ]  - n-k 2 1 - (nk - 1 ) ~ ~  - n-k  

= - (nk - 1)(2 - n-'1. 

= l - ~ n  k k  + E  k - n - k  

From Lemma 13, we see that ek - n-k 2 0. Hence, 

- (nk - I)(c' - n - k )  5 pr[f(xi) = ci, 1 5 i 5 1c1- n-k 5 6' - npk 

Then the family is (6, k)-independent, where 

6 = max(I2 - n-kl, I - (n' - I)(€'  - n-')>l} = (nk - 1 ) ( c k  - n-') 
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2.3 New multiple A-codes 

By combining Propositions 2 and 8 with Theorem 9 or Theorem 11, we can 
obtain new multiple A-codes (ASU-k hash families) from an ( E ,  k)-independent 
sample space. Since the (c, k)-independent sample spaces from [l] mentioned in 
Proposition 2 can be shown to be strong, we will apply Theorem 11. 

Theorem 15. There exists a 6-ASU (N; m, n, Ic) hash family where 

log, N = 2(log, log, (m log, n)  + k log, n - log2(nd - 1) +log, (k log, n) - 1). (7) 

Proof. Define 1 = k log, n, u = m log, n, and 

n-"6n - 1) 
€ =  w n-k(6n - 1). 

6 + 1  

Apply Proposition 2 and 8, constructing a strongly ( 6 ,  k)-independent ( N ,  m, n) 
hash family, where log, N = 2(log, log, u-log2  log, I-1). Now apply Theorem 
11, to  obtain a d-ASU ( N ;  m, n, k) hash family. We compute log, N as 

log, N = 2(10g, log,(mlog, n) - 10g,(n-~((6n - 1)) + 10g2(kl0g2 n) - 1) 
= 2(10g, log,(m log, n) + k log, n - 1og2(6n - 1) + 10g,(k log, n)  - 1). 

0 

3 A lower bound 

In this section, we present a lower bound on the size of ASU-k hash families and 
almost k-wise independent sample spaces. 

Theorem 16. If there exists an c-ASU(N;  m, n,, k) hash fami ly  such that 

ek 5 l /n ,  (8) 

then 

Proof. Suppose F is an e -ASU(N;m,n , k )  hash family from A to B ,  where 
IAl = m, IBI = n and k 2 2. Construct an N x mn binary matrix G = (gij), 
with rows indexed by the functions in F and columns indexed by A x B, defined 
by the rule 

Interpret the columns of G as incidence vectors of the N-set F .  We obtain a 
set-system (F,C = {Cz,y : z E A ,  y E B}), where 
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for all x E A,  y E B .  Let 

This set-system satisfies the following properties: (A) IF1 = N ,  (B) 1CI = mn, 
(C) EGEC ICI = N m ,  (D) there does not exist a subset of t points that occurs 
as a subset of k different blocks (see Lemma 12). 

Property (D) says that (F,C) is a t-packing of index X = k - 1 (i.e., no 
t-subset of points occurs in more than X blocks). Hence we obtain the following: 

(9) 
A t = p v j  + 1. 

Property (C) implies that the average block size is Nm/mn = N/n. Define a 
real-valued function f (z) as 

i f x < t  
(.) = { :(x - 1) . . . (x - t + 1) otherwise. 

Since f(z) is convex, we have 

from Jensen's inequality. We observe that N/n 2 t - 1 follows from Eq. (8) and 
Eq. (9). Then, we obtain 

and hence 

N ( N  - 1) * * * ( N  - t + 1) > mn, 
n 

From Eq. (9), we have t 5 c k N  + 1. Then Eq. (13) can be simplified as follows. 
t 1 - € k  (k - 1) ( F) 2 mn, and hence 

from which our bound is obtained. 0 

Corollary 17. Suppose S ,  is a n  ( E ,  k)-andependent sample space. Denote 6 = 
(2-k + c)/(2(2pk - c)). ~f d k  5 1/2, then  

Proof. This follows from Theorem 9. 0 
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3.1 Some numerical examples of multiple A-codes

We give some numerical examples to compare the multiple A-codes constructed
by Atici and Stinson in [2], our new multiple A-codes obtained from Theorem 15,
and the lower bound of Theorem 16. Suppose we want an authentication code
for m = 22 source states with deception probability 8 = 2~40. We tabulate the
number of key bits (i.e., log2 N) for k = 3,4,10. Note that we take n — 2/8 = 241

in Theorem 15 and Theorem 16 (whereas in [2], n > 2/8).

k
3
4
10

[2] Theorem 15
657 518
1043 602
5376 1096

Lower bound
243
283
523

A counter-based multiple authentication scheme would (of course) require less
key bits than the proposed construction. For example, tabulated values from
[2] show that the construction from [5] would for the parameters above and
k = 4 require 447 key bits. Hence, the 602 - 447 = 155 additional key bits
we use can be thought of as the price payed for having a stateless multiple
authentication scheme. An interesting property that can be verified through
Theorem 15 is the following. When k ->• oo, the number of key bits required per
message approaches log2 n, which is the same as for the counter-based multiple
authentication scheme.

4 Almost resilient functions

In what follows, let m > I > 1 be integers and let (j> : {0, l } m ->• {0,1}'.

Definition 18. <f> is called an (m, I, k)-resilient function if

, . . . , xm) = ( y i , . . . , y z ) | x^x^ •••xik = a] = 2~l

for any A: positions ii < • • • < ik, for any k-bit string a and for any (yi, • • •, yi) €
{0,1}', where the values Xj (j 0 {i i , . . .,«*}) are chosen independently at ran-
dom.

Resilient functions have been studied in several papers, e.g., [10, 3, 11, 24, 4].
We now introduce a generalization, which we call e-almost resilient functions, in
which the the output distribution may deviate from the uniform distribution by
a small amount e.

Definition 19. We say that 4> is an e-almost (m,l,k)-resilient function if

, . . . , x m ) = ( y i , . . . , y j ) | xilXia •••xik =a] -2~'\ <e

for any k positions i\ < ••• < ik, for any fc-bit string a and for any (yi, • • •, yz) €
{0,1}', where the values Xj (j 0 {*i, • - -, ik}) are chosen independently at ran-
dom.
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4.1 

It is well-known that a resilient function is equivalent to a large set of orthogonal 
arrays [24]. Here we prove a similar result for almost resilient functions that 
involves k-wise independent sample spaces. 

Definition 20. A large set of ( E ,  k ,  m, t)-independent sample spaces, denoted 
L S ( E ,  k, m, t), is a set of 2m-t (E, k ,  m, t)-independent sample spaces, each of size 
2 t ,  such that their union contains all 2m binary vectors of length m.. 

Relation with ( E ,  k)-independent sample space 

Theorem 21. If there exists an L S ( q  k,m, t), then there exists a &-almost (m, m- 
t, k)-resilient function, where 6 = ~ / 2 ~ - ~ - ~ .  

Proof. There are 2m-t (e,k)-independent sample spaces in the set. Name the 
( E ,  k)-independent sample spaces C,, y E (0, l}m-t. Then define a function 
4 : (0, l}m + (0, l}m-t by the rule 

4(x1 , . . . , xm)  = y if and only if (XI, . . . , z,) E C,. 

For any k positions i l  < . . . < ik, any k-bit string cy and any y E (0, l}m-t, let 

Then 

(14) 
L Pr[d(zl,. . . , x,) = y I xil ziz . . . xik = a] = - 2m-k ' 

F'rom Definition 1, we have 

L 
2t - 

2-k  - & 5 - < 2-k + 6 .  

Hence, from (14) and (15), we obtain 

Definition22. The function C$ : (0,l)" + {0,1}' is called balanced if we have 

Pr[$(zl,. . . ,xm) = (PI,. . . ,yi)] = 2 -  1 

for all (yl, . . , y ~ )  E (0, I}'. 

For balanced functions, we can prove the converse of Theorem 21. 

Theorem 23. If there exists a balanced t-almost (m, I ,  k)-resilient function, 4, 
then there exists an LS(6, k,m,m - l ) ,  where 6 = ~ / 2 ~ - ~ .  
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Proof. For y E {O,l}l ,  let 

A 
C-y = { ( X I , .  . ,, xm) : la(z1, .. . , 2,) = Y}. 

Since 4 is balanced, IC,l = 2,-'. If each C, is an (~,k)-independent sample 
space, then we automatically get a large set. For any k positions il < . . < i k ,  

for any k-bit string a for and any y E {O,l}I, let 
A L = I{(x1,. . . , ~ m )  : xil * " 2 i b  = (Y, ( 2 1 , .  . - , ~ m )  E CT}l. 

Then, within the sample space C,, we have 

L L 
Pr[zilziz . . . xiL = a] = - = - IC,l 2 , - l .  

Rom Definition 19, we get 

2-' - 6 5 - <2-"+ ,  2"-k - 

Hence, from (16) and (17), we obtain 
c 

2k-1' I Pr(zil ziz . . x ik  = a)  - 2pk I 5 - 

4.2 

Definition 24. An (E, k)-independent sample space S, is t-sgstematdc if IS,( = 
2 t ,  and there exist t positions il < . s .  < it such that each t-bit string occurs in 
these positions for exactly one m-tuple in Sm. 

A t-systematic (6, k)-independent sample space can be transformed into an LS(E,  k, m, t )  
by using the same technique as [25, Theorem 31. We have the following result. 

Theorem 25. If there exists a t-systematic ( 6 ,  k)-independent sample space Sm, 
then there exists a balanced 6-almost (m, m - t ,  k)-resilient function, where 6 = 

Due to space limitations, we will present only a very brief summary of our 
construction for t-systematic (c, k)-independent sample spaces. Our approach is 
similar to [12] (see also [18]), and depends on the Weil-Carlitx-Uchiyama bound. 
In what follows, let Tr  denote the trace function from GF(2t )  to GF(2) .  

Proposition 26 Weil-Carlitz-Uchiyama bound. 19) Let f(x) = c,"=, fixi E 
GF(2t)[x] be a polynomial that is not expressible in the form f(z) = g(x)2 - 
g ( z )  + 6 for any polynomial g (x)  E GF(2t )[z]  and for any 0 E F2t. Then 

Constructions of €-almost resilient functions 

4 2 m - t - k .  

I 1 a€ G F (  2 ' )  
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Definition 27. A polynomial h ( z )  E GF(2t )[z]  is a (2 t ,  D)-polynomial if h has 
degree at most D and ai = 0 for all even i, where h = Ciz0 a$. Define 
H ( 2 t ,  D ,  k )  to be a set of (2 t ,  D)-polynomials such that any k polynomials in the 
set are independent over GF(2).  

D 

For hil ,  hiz, .  . . , hi, E H(2t,  D ,  k )  and for any k elements al , .  . . , C Y ~  E GF(2),  
define 

Lemma28. [I21 IN,, ,..., , , ( h i l , .  . . , hi,) - 2t-kl 5 ( D  - 1)a. 

Proof. The proof is an application of Proposition 26. The case k = 2 can be 
0 

Theorem 29. Suppose that P is a primitive element of GF(2t ) ,  and H(2t,  D ,  k )  
i s  chosen such that { z , p x ,  p2x , .  . . ,Pt-'x} H ( 2 t ,  D ,  k). There exists a t -  
systematic ( 6 ,  k)-independent sample space S, where m = IH(2t,  D ,  k)l and 
E = ( D  - 1)/*. 

Proof. Let H ( 2 t ,  D, k) = { h l , .  . . , h,}. Construct a sample space S,  as follows: 
A binary string X ,  = 21x2.' ' x ,  E S, is specified by any y E GF(2t ) ,  where 
the ith hit of X ,  is zi = Tr(hi(y)) .  The proof that S, is (c,k)-independent 
follows from Lemma 28. Further, S, can be shown to be systematic using the 
fact that {z, Pz, P2z , .  . . , p"-'z} C H ( 2 t ,  D, k) (the proof will be given in the 

found in [12] and the general case is proved similarly. 

final paper). 0 

4.3 An Application 

In our approach, using Theorem 29, we need to construct a set of polynomials 
H ( 2 t ,  D ,  k )  such that any k of them are linearly independent over GF(2). For 
this we can use linear error-correcting codes (see [14]). For a fixed (odd) degree 
D ,  we can express each polynomial as a linear combination of polynomials in 
the set 

{z,Pz,. . . , pt--1z,z3,pz3,. . . , p x 3 , .  . . , X D ,  p z D ,  . . . ,pt- lzD}.  

Indexing the polynomials in H ( 2 t ,  D, k )  as hl ,  hz, . . . , h, we obtain a binary 
tD' x m matrix, where D' = (D + 1) /2 ,  which is a parity check matrix of an 
[m, 1 ,  d] error correcting code in which m - I = tD' and d = k + 1. Conversely, 
given such a code, we obtain a t-systematic sample space, and hence a balanced 
6-almost (m, m - t ,  k)-resilient function, as follows. 

Theorem30. Suppose D = 2 0 '  - 1 and there i s  a [m,m - tD' ,  k + 11 code. 
Then there exists a balanced  almost (m, m - t ,  k)-resilient function such that 

( D  - 1)@ 
F =  2m-k ' 
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A suitable value of 6 would be 2-m+t-1. We obtain the following corollary 
of Theorem 30 by taking D = 3 and k = (t/2) - 2. 

Corollary 31. Suppose there is an [m, m - 4k - 8, k + 11 code. Then there exists 
a balanced 2-m+2k+3 -almost (m, m - 2k - 4, k)-resilient function. 

As a typical example, suppose we take m = 160 and k = 18. A [160,80,23] 
code is known to exist see ([6]), so we obtain a balanced 2-121-almost (160,120,18)- 
resilient function. 

Let's compare the above result to  the best-known (160,120, k)-resilient func- 
tion. The most important construction method for resilient functions [3, 101 uses 
linear error-correcting codes, as follows: Let G be a generator matrix for an  
[m,E,d] linear code. Define a function f : (GF(2))" c) (GF(2))' by the rule 
f(z) = xGT. Then f is an  (m ,E ,d  - 1) linear resilient function. The maximum 
d for which a [160,120,4 code is known to exist is d = 12 (see [S]). Hence, 
the maximum k for which we can construct a (160,120, k)-resilient function is 
k = 11. 

5 Comments 

The techniques of this paper can also be used to construct "almost" versions of 
other cryptographic tools. These include correlataon-immune functions (see, for 
example, [19, 8, 71) and locally random pseudo-random number generators (see 
[20, 16, 181). Details will be given in the full version of the paper. 
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