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Abstract. An almost k-wise independent sample space is a small subset
of m bit sequences in which any k bits are “almost independent”. We
show that this idea has close relationships with useful cryptologic notions
such as multiple authentication codes (multiple A-codes), almost strongly
universal hash families and almost k-resilient functions.

We use almost k-wise independent sample spaces to construct new efli-
cient multiple A-codes such that the number of key bits grows linearly
as a function of k (here k is the number of messages to be authenticated
with a single key). This improves on the construction of Atici and Stinson
[2], in which the number of key bits is £2(k?).

We also introduce the concept of e-almost k-resilient functions and give
a construction that has parameters superior to k-resilient functions.
Finally, new bounds (necessary conditions) are derived for almost k-wise
independent sample spaces, multiple A-codes and balanced e-almost k-
resilient functions.

1 Introduction

An almost k-wise independent sample space is a probability space on m-bit se-
quences such that any k bits are almost independent. A e-biased sample space is
a space in which any (boolean) linear combination of the m bits has the value 1
with probability close to 1/2. These notions were introduced by Naor and Naor
[17] and further studied in [1] due to their applications to algorithms and com-
plexity theory. However, there are also cryptographic applications: Krawczyk
applied e-biased sample spaces to the construction of authentication codes [13].

In this paper, we investigate several new relationships between almost k-
wise independent sample spaces and useful cryptologic notions such as multiple

W. Fumy (Ed.): Advances in Cryptology - EUROCRYPT *97, LNCS 1233, pp. 409-421, 1997.
© Springer-Verlag Berlin Heidelberg 1997



410

authentication codes (multiple A-codes) [2] and k-resilient functions [10, 3, 11,
24, 4].

In a multiple A-code, k > 2 messages are authenticated with the same key. (In
“usual” A-codes, just one message is authenticated with a given key.) Recently,
Atici and Stinson [2] defined some new classes of almost strongly universal hash
families which allowed the construction of multiple A-codes. Here, we prove that
almost k-wise independent sample spaces are equivalent to multiple A-codes.
This allows us to obtain a more efficient construction of multiple A-codes from
the almost k-wise independent sample spaces of [1].

Next, we present a lower bound on the size of the keyspace in a multiple
A-code. Numerical examples show that the multiple A-codes we construct are
quite close to this bound. Further, from the above equivalence, a lower bound on
the size of almost k-wise independent sample spaces is obtained for free. (While
a lower bound on the size of e-biased sample spaces was given in [1], no lower
bound was known for the size of almost k-wise independent sample spaces.)

Finally, we generalize the idea of resilient functions. A function ¢ : {0,1}™ —
{0, 1}! is called k-resilient if every possible output I-tuple is equally likely to occur
when the values of k arbitrary inputs are fixed by an opponent and the remaining
m — k input bits are chosen at random. This is a useful tool for achieving key
renewal: an m-bit secret key (x;, - -,Z;m) can be renewed to a new [l-bit secret
key ¢(x1,- -, T.) about which an opponent has no information if the opponent
knows at most & bits of (x1,---,2m)

We show that k can be made larger if the definition of resilient function is
slightly relaxed. Thus, we define an e-almost k-resilient function as a function
¢ such that every possible output I-tuple is almost equally likely to occur when
the values of k arbitrary inputs are fixed by an opponent. (The statistical differ-
ence between the output distribution of a k-resilient function and an e-almost
k-resilient function is e.) We prove that a large set of almost k-wise independent
sample spaces is equivalent to a balanced e-almost k-resilient function, general-
izing a result of [24]. From this equivalence, we are able to obtain both efficient
constructions and bounds for balanced e-almost k-resilient functions.

2 Almost k-wise independent sample spaces

Let Sp, € {0,1}™, and let X = z, - - - z,,, be chosen uniformly from S$,.

Definition 1. [1] We say that S,, is an (e, k)-independent sample space if for
any k positions i; < i3 < --- < 1; and any k-bit string a, we have

| Prlz;, zs, - x4, = 0] — 2“’°| <e. (1)

If € = 0, then S,, is equivalent to an orthogonal array OAj(k,m,2), where
A =|Sn|/2k.

The following efficient construction for (e, k)-independent sample spaces is
proved in [1].
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Proposition 2. There ezxists an (¢, k)-independent sample space S,, such that
log, |Sm| = 2(log, log, m — log, € + log, k — 1).

In this section, we prove that almost k-wise independent sample spaces are
equivalent to multiple authentication codes (more precisely, almost strongly
universal-k hash families, as defined in {2}]). This allows us to obtain more efficient
multiple A-codes than were previously known.

2.1 Multiple A-codes and ASU-k hash families

We briefly review basic concepts of (multiple) authentication codes. In the usual
Simmons model of authentication codes (A-codes) [21, 22], there are three par-
ticipants, a transmitter, a receiver and an opponent. In an A-code without secrecy,
the transmitter sends a message (s, a) to the receiver, where s is a source state
(plaintext) and a is an authenticator. The authenticator is computed as a = e(s),
where e is a secret key shared between the transmitter and the receiver. The key
e is chosen according to a specified probability distribution.

In a multiple A-code, we suppose that an opponent observes 7 > 2 messages
which are sent using the same key. Then the opponent places a new bogus
message (s',a’') into the channel, where s’ is distinct from the i source states
already sent. This attack is called a spoofing attack of order i. Py, denotes the
success probability of a spoofing attack of order i, see [15].

Almost strongly universal hash families are a very useful way of constructing
practical A-codes. This idea was introduced by Wegman and Carter [26], and
further developed and refined in papers such as [23, 5, 13, 12]. Atici and Stinson
[2] generalized the definitions so that they could be applied to multiple A-codes.
We review these definitions now.

Definition 3. An (N;m,n) hash family is a set F of N functions such that
f:A— Bforeach f € F, where |[A] =m,|B|=n and m > n.

Definition4. An (NV;m,n) hash family F of functions from A to B is € almost
strongly universal-k (or e-ASU (N;m,n,k)) provided that, for all distinct ele-
ments 1,%2,---,Zx € A, and for all (not necessary distinct) y1,¥y2, -, 4% € B,
we have

HfeF:f(z) =y 1 <i<kH<ex|{f€F: f(z:)=y;, 1 <i<k—1}.

The following result gives the connection between eASU (N;m,n, k) hash
families and multiple A-codes.

Proposition 5. (2] There exists an A-code without secrecy for m source states,
having n authenticators and N equiprobable authentication rules and such that
Py,._, <€, if and only if there exists an e-ASU (N;m,n, k) hash family F.
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2.2 Equivalence of hash families and sample spaces

We can can rephrase Definition 1 in terms of hash families, and generalize it to
the non-binary case, as follows.

Definition6. An (V;m,n) hash family F of functions from A to B is (e, k)-

independent if for all distinct elements zy, 2, -,z € A, and for all (not nec-
essary distinct) y1,yq, -+, yx € B, we have
|Pr(f($i)=yi71§iﬁk)—nvk|Sfa (2)

where f € F is chosen uniformly at random.

The following results are straightforward.

Proposition 7. An (¢, k)-independent sample space Sy, is equivalent to an (¢, k)-
independent (|Sy,|;m,2) hash family.

Proposition 8. If there exists an (e, k)-independent sample space Sy, then there
exists an (e, k/t)-independent (|Sp|;m/t,2%) hash family.

Now we show the equivalence of (¢, k)-independent sample spaces and almost
strongly universal-k hash families.

Theorem 9. If F is an (¢, k)-independent (N;m,n) hash family, then F is a
0-ASU (N;m,n, k) hash family, where

_ (nF+e
T n(nk ~¢€)’

Proof. Suppose that Eq. (2) holds. Then for any y;,---,yx € B, we have

Prif(z:) =y, 1<i < k| >n" % —¢,
Z Prif(zi) =y, 1 <i< k] > Z (n"% —¢), and

vk B yx€B
Prf(z:)) =y, 1 <i<k-1]12n(n"* —¢).

From the above inequality and Eq. (2), we have

Pr(f(zi) = yi,1 <1 < Kk n*+e
Prlf(zi) =y, 1<i<k—1] ~ n(n~% —¢)’

Let 6 2 (n=* + ¢)/(n(n™* — ¢)). Then
|{f€F:f((l?,‘)=yi,1SiSk}|S5X '{fEF:f(.’I?,')‘-:yi,lSiSk"l}l.
Hence, F'is a 6-ASU (N;m,n, k) hash family. a
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Definition 10. An (N;m,n) hash family F of functions from A to B is strongly
(€, k)-independent if for any t such that 1 < ¢ < k and for all distinct elements
T1,T2, " ,T¢ € A, and for all (not necessary distinct) y1,y2,---,¥y: € B, we have

|Pr(f(z:) =y, 1<i<t)—n"t <e (3)
where f € F' is chosen uniformly at random.

Theorem 11. If an (N;m,n) hash family F is strongly (¢, k)-independent, then
F is a 8-ASU (N;m,n, k) hash family, where § = (n=% +¢)/(n=*~1 —¢).

Proof. The proof is similar to the proof of Theorem 9. O

Lemma 12. [2] Suppose that a hash family F of functions from A to B is ¢-ASU
(N;m,n, k). Then for for all 1 < j < k, for all distinct elements x1,z5,---,T; €
A, and for all (not necessary distinct) y1,y2,--,y; € B, we have

HfEF: f(z:) =y, 1<i<j} < xN (4)
Lemma 13. [2] If a hash family F is e-ASU (N;m,n, k), then € > 1/n.

Theorem 14. If a hash family F is e-ASU (N;m,n, k), then F is (8, k)-indepen-
dent, where § = (n* — 1)(e* — n¥).

Proof. From Lemma 12, we have

Prf(z;) =yi,1<i<k] <€ and (5)
Pr[f(zi) =y, 1 <i<k]—-n"* <eb —nF, (6)
On the other hand, from eq.(5), we have
> Pr(f(z;) = 4:,1 < i < k] < (nF — 1)e.

(F1, - 96)# (Y1, yx)

Therefore, we have

Pr(f(z:) =y, 1 <i<k|=1- > Pr(f(z:) = §i, 1 < i < K]
(G150 )# (V1,7 uk)
> 1 - (n* - 1)k
Hence,
Prf(z:) =9:,1<i<k]l—-n"F>1—(nfF - 1)fF —n~F
=1—-enk 4 —nF
= —(n* —1)(¥ —n7F).
From Lemma 13, we see that € — n~* > (. Hence,
—(* —1)(* ~n7F) <Pr(f(z:) = 4:,1 <i<k]—nF < —nF
Then the family is (4, k)-independent, where

§ = max{lek ~n*|,| - (n* — 1)(ek —n M)} = (nk ~ 1)(k —n)
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2.3 New multiple A-codes

By combining Propositions 2 and 8 with Theorem 9 or Theorem 11, we can
obtain new multiple A-codes (ASU-k hash families) from an (e, k)-independent
sample space. Since the (¢, k)-independent sample spaces from [1] mentioned in
Proposition 2 can be shown to be strong, we will apply Theorem 11.

Theorem 15. There exists a §-ASU (N;m,n, k) hash family where
log, N = 2(log, log, (m log, n) + klog, n — logy (nd — 1) +logy(klogy n) —1). (7)
Proof. Define | = klog, n, u = mlog, n, and

_ n~%(én - 1)

~nk -
1 =n " (dn—-1).

Apply Proposition 2 and 8, constructing a strongly (e, k)-independent (N, m,n)
hash family, where log, N = 2(log, log, u—log, e+log, [—1). Now apply Theorem
11, to obtain a §-ASU (N;m,n, k) hash family. We compute log, N as

log, N = 2(log, log, (m log, n) — log, (n™*(6n — 1)) + log,(klogy n) — 1)
= 2(log, log,(m log, n) + klogy, n — log,(dn — 1) + log, (klog, n) — 1).

O

3 A lower bound

In this section, we present a lower bound on the size of ASU-k hash families and
almost k-wise independent sample spaces.

Theorem 16. If there exists an e-ASU(N;m,n, k) hash family such that
& <1/n, (8)

N_(‘_it)_l)

s (%)

Proof. Suppose F' is an e-ASU(N;m,n, k) hash family from A to B, where
|A| = m, |B] = n and k > 2. Construct an N x mn binary matrix G = (g;;),
with rows indexed by the functions in F and columns indexed by 4 x B, defined
by the rule

then

_flif f(z) =y
95 TV 0if f(z) # .

Interpret the columns of G as incidence vectors of the N-set F. We obtain a
set-system (F,C = {Cy: « € A,y € B}), where

Cey={f€F:f(z)=y}
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forallz € A,y € B. Let
t2 | N) + 1. (9)
This set-system satisfies the following properties: (A) |F| = N, (B) |C| = mn,
(C) Y cec ICl = Nm, (D) there does not exist a subset of ¢ points that occurs
as a subset of k different blocks (see Lemma 12).
Property (D) says that (F,C) is a t-packing of index A = k — 1 (i.e., no
t-subset of points occurs in more than A blocks). Hence we obtain the following:

W] )

Property (C) implies that the average block size is Nm/mn = N/n. Define a
real-valued function f(z) as

_fo ifr<t
f(z) = z(x —1)...(x — t + 1) otherwise.

Since f(z) is convex, we have

A0ehn()= 2w

cec

from Jensen’s inequality. We observe that N/n >t — 1 follows from Eq. (8) and
Eq. (9). Then, we obtain

N(N=1)---(N—t+1)

k—1 > 12
UEESy ey 2T "
and hence ,
N—-t+1
- — 1 > . 13
(k 1)(%—t+1) > mn (13)

From Eq. (9), we have t < N + 1. Then Eq. (13) can be simplificd as follows.

1—ek\*
(k—l)(1 k) > mn, and hence

T

1- ¢ mn
k

n

from which our bound is obtained. 0

Corollary 17. Suppose Sy, is an (€, k)-independent sample space. Denote 6 =
(27% +€)/(2(27% —¢)). If 6% < 1/2, then

Proof. This follows from Theorem 9. a
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3.1 Some numerical examples of multiple A-codes

We give some numerical examples to compare the multiple A-codes constructed
by Atici and Stinson in [2], our new multiple A-codes obtained from Theorem 15,
and the lower bound of Theorem 16. Suppose we want an authentication code
for m = 22" source states with deception probability § = 2—4°, We tabulate the
number of key bits (i.e., log, N) for k = 3,4, 10. Note that we take n = 2/§ = 2
in Theorem 15 and Theorem 16 (whereas in [2], n > 2/4).

k| [2] Theorem 15|Lower bound

3657 518 243
411043 602 283
10(5376 1096 523

A counter-based multiple authentication scheme would (of course) require less
key bits than the proposed construction. For example, tabulated values from
(2] show that the construction from [5] would for the parameters above and
k = 4 require 447 key bits. Hence, the 602 — 447 = 155 additional key bits
we use can be thought of as the price payed for having a stateless multiple
authentication scheme. An interesting property that can be verified through
Theorem 15 is the following. When k& — oo, the number of key bits required per

message approaches log, n, which is the same as for the counter-based multiple
authentication scheme.

4 Almost resilient functions

In what follows, let m > [ > 1 be integers and let ¢ : {0,1}™ — {0, 1}
Definition 18. ¢ is called an (., 1, k)-resilient function if
Pr[¢($1,"-azm) = (yl""ayl) | TiyTig =" Ty, = a] = 2_l

for any k positions 4; < - -- < 4, for any k-bit string « and for any (y1,---,4) €

{0,1}!, where the values x; (j & {i1,...,ix}) are chosen independently at ran-
dom.

Resilient functions have been studied in several papers, e.g., [10, 3, 11, 24, 4].
We now introduce a generalization, which we call e-almost resilient functions, in

which the the output distribution may deviate from the uniform distribution by
a small amount e.

Definition 19. We say that ¢ is an e-almost (m,l, k)-resilient function if
IPr[d(21,. - Tm) = (W1y- -y 01) | iy Tiy - xs, =] =27 <€

for any k positions 4; < - -+ < ik, for any k-bit string o and for any (y1,---,y1) €

{0,1}, where the values z; (§ & {41,...,ix}) are chosen independently at ran-
dom.



417

4.1 Relation with (e, k)-independent sample space

It is well-known that a resilient function is equivalent to a large set of orthogonal

arrays [24]. Here we prove a similar result for almost resilient functions that
involves k-wise independent sample spaces.

Definition 20. A large set of (¢,k,m,t)-independent sample spaces, denoted

LS(e, k,m,t), is a set of 2™~¢ (¢, k, m, t)-independent sample spaces, each of size
2t such that their union contains all 2™ binary vectors of length m.

Theorem 21. If there exists an LS(e, k,m,t), then there exists a §-almost (m, m
t, k)-resilient function, where § = ¢/2m~t~k,

Proof. There are 2™~ (¢, k)-independent sample spaces in the set. Name the
(¢, k)-independent sample spaces C., v € {0,1}™ %, Then define a function
¢ :{0,1}™ — {0,1}™* by the rule

&z1,...,Tm) = if and only if (z1,...,2m) € C,.

For any k positions i; < --- < iy, any k-bit string « and any v € {0,1}™7, let

A
L={(z1,...,Zm) 1 i, - Tip, =, (T1,...,Zm) € Cy}.
Then
L
Prig(z1,...,2m) = v | Ti,%s, - - Ti, = ] = Sk (14)
From Definition 1, we have
L
2-’°—65§g2—’“+e. (15)
Hence, from (14) and (15), we obtain
(e €
|Pr{g(z1, -, 2m) = 7 | T2y -+ i = 0] = 27| < oy
O

Definition 22. The function ¢ : {0,1}™ — {0,1}" is called balanced if we have
Prip(z1,...,2m) = (y1,...,m)] =27F
for all (y1,---,u) € {0,1}.
For balanced functions, we can prove the converse of Theorem 21.

Theorem 23. If there exists a balanced e-almost (m, 1, k)-resilient function, ¢,
then there exists an LS(d,k,m,m — ), where § = ¢/2%¢,
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Proof. For v € {0,1}}, let

A
Cy ={(z1,..-,%m) 1 #(z1,...,Zm) =7}
Since ¢ is balanced, |C,| = 2™~} If each C, is an (e, k)-independent sample
space, then we automatically get a large set. For any k positions i; < -+ < ik,
for any k-bit string « for and any v € {0, 1}, let
a
L=|{(z1,--s2m) : Ti, - Tiy, =, (T1,...,Tm) € Cy}|.
Then, within the sample space C,, we have
L L

g e =) = —— = . 16
Pr{z;, zs, - - T, = ] A (16)

From Definition 19, we get
27l _e< G <2l te a7

Hence, from (16) and (17), we obtain

€

[Pr(z; @iy 2y, = @) — 27k < T

4.2 Constructions of ¢-almost resilient functions

Definition 24. An (¢, k)-independent sample space S, is t-systematic if [Sp| =
2%, and there exist t positions i; < --- < i; such that each ¢-bit string occurs in
these positions for exactly one m-tuple in S,,.

A t-systematic (e, k)-independent sample space can be transformed into an L5(e, k, m, t)
by using the same technique as [25, Theorem 3]. We have the following resuilt.

Theorem 25. If there exists a t-systematic (e, k)-independent sample space S,
then there exists a balanced -almost (m,m — t,k)-resilient function, where § =
e/zm—t—k ]

Due to space limitations, we will present only a very brief summary of our
construction for ¢-systematic (e, k)-independent sample spaces. Our approach is
similar to [12] (see also [18]), and depends on the Weil-Carlitz-Uchiyama bound.
In what follows, let T'r denote the trace function from GF(2!) to GF(2).

Proposition 26 Weil-Carlitz-Uchiyama bound. [9] Let f(z) = 21.;1 fixt €
GF(2')[z] be a polynomial that is not expressible in the form f(z) = g(z)? —
g(x) + 8 for any polynomial g(z) € GF(2')[z] and for any 8 € Fy:. Then

> (—nTrUtel) < (D - 1)V2E.

cEGF(2)
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Definition 27. A polynomial h(z) € GF(2!)[z] is a (2¢, D)-polynomial if h has
degree at most D and a; = 0 for all even i, where h = Zi’;o a;zt. Define
H(2', D, k) to be a set of (2¢, D)-polynomials such that any k polynomials in the
set are independent over GF(2).

For h;,, hi,,. .., hiy, € H(2, D, k) and for any k elements ay, - - -,ay € GF(2),
define

A
Naly---vak (hilv [ERE! hik) = |{z € GF(2t) : Tr(hil (1’)) =aQy, ’Tr(hik (:E)) = ak}l'
Lemma28. [12] [Nay.. o (hiy,. .. ki) — 207K < (D — 1)V2L

Proof. The proof is an application of Proposition 26. The case £ = 2 can be
found in [12] and the general case is proved similarly. O

Theorem 29. Suppose that 3 is a primitive element of GF(2t), and H(2!, D, k)
is chosen such that {z,Bz,3%z,...,Bt 'z} C H(2',D,k). There exists a t-
systematic (e, k)-independent sample space S,, where m = |H(2!,D,k)| and

e= (D - 1)/V2t.

Proof. Let H(2!,D k) = {h1,- -, hm}. Construct a sample space S,, as follows:
A binary string X, = 129 - Tm € Sp, is specified by any v € GF(2!), where
the ith bit of X, is #; = Tr(h;(v)). The proof that S,, is (e, k)-independent
follows from Lemma 28. Further, S,, can be shown to be systematic using the
fact that {z, Bz, 8%z,...,8' 1z} C H(2!, D,k) (the proof will be given in the
final paper). O

4.3 An Application

In our approach, using Theorem 29, we need to construct a set of polynomials
H(2%,D,k) such that any k of them are linearly independent over GF(2). For
this we can use linear error-correcting codes (see [14]). For a fixed (odd) degree

D, we can express each polynomial as a linear combination of polynomials in
the set

{z,Bz,...,8  e,2® B2?, ..., 8. 2P B2, gt e l)

Indexing the polynomials in H(2!,D,k) as hi, ha,...,h, we obtain a binary
tD' x m matrix, where D' = (D + 1)/2, which is a parity check matrix of an
[m,1,d] error correcting code in which m — I = tD' and d = k + 1. Conversely,
given such a code, we obtain a t-systematic sample space, and hence a balanced
e-almost (m, m — t, k)-resilient function, as follows.

Theorem 30. Suppose D = 2D’ — 1 and there is a [m,m — tD', k + 1] code.
Then there exists a balanced e-almost (m,m — t, k)-resilient function such that

_@-)E

am—k
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A suitable value of ¢ would be 2=™*+¢~1. We obtain the following corollary
of Theorem 30 by taking D = 3 and k = (¢/2) — 2.

Corollary 31. Suppose there is an [m, m — 4k — 8,k + 1] code. Then there exists
a balanced 2™ 2+3 _glmost (m, m — 2k — 4, k)-resilient function.

As a typical example, suppose we take m = 160 and k = 18. A [160, 80, 23]
code is known to exist see ([6]), so we obtain a balanced 2~?!-almost (160, 120, 18)-
resilient function.

Let’s compare the above result to the best-known (160, 120, k)-resilient func-
tion. The most important construction method for resilient functions [3, 10] uses
linear error-correcting codes, as follows: Let G be a generator matrix for an
[m,1,d] linear code. Define a function f : (GF(2))™ ~ (GF(2))! by the rule
f(z) = 2GT. Then f is an (m,I,d — 1) linear resilient function. The maximum
d for which a [160,120,d] code is known to exist is d = 12 (see [6]). Hence,
the maximum k for which we can construct a (160,120, k)-resilient function is
k=11.

5 Comments

The techniques of this paper can also be used to construct “almost” versions of
other cryptographic tools. These include correlation-immune functions (see, for
example, [19, 8, 7]) and locally random pseudo-random number generators (see
[20, 16, 18]). Details will be given in the full version of the paper.
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