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Abstract. To enhance system performance computer architectures tend 
to incorporate an increasing number of parallel execution units. This pa- 
per shows that the new generation of MD4-based customized hash func- 
tions (RIPEMD-128, RIPEMD-160, SHA-1) contains much more soft- 
ware parallelism than any of these computer architectures is currently 
able to provide. It is conjectured that the parallelism found in SHA-1 is 
a design principle. The critical path of SHA-1 is twice as short as that 
of its closest contender RIPEMD-160, but realizing it would require a 
7-way multiple-issue architecture. It will also be shown that, due to the 
organization of RIPEMD-I 60 in two independent lines, it will probably 
be easier for future architectures to exploit its software parallelisIn. 

Key words, Cryptographic hash functions, instruction-level parallelism, 
multiple-issue architectures, critical path analysis 

1 Introduction 

The current trend in computer designs is to incorporate more and more par- 
allel execution units, with the aim of increasing system performance. However, 
available hardware parallelism only leads to increased software performance, if 
the executed code contains enough software parallelism to exploit the potential 
benefits of the multiple-issue architecture. 

Cryptographic algorithms are often organized as an iteration of a comrnon 
sequence of operations, called a round. Typical examples of this technique are 
iterated block ciphers and customized hash functions based on MD4. In many 
applications, encryption and/or hashing forms a computational bottleneck, and 
an increased performance of these basic cryptographic primitives is often directly 
reflected in an overall improvement of the system performance. 

To increase the performance of round-organized cryptographic primitives it 
suffices to  concentrate the optimization effort on the  round function, knowing 
that each gain in the round function is reflected in the overall performance of 
the primitive multiplied by the number of rounds. Typical values for the number 
of rounds are between 8 and 32. 

This paper confronts one class of cryptographic primitives, namely the cus- 
tomized hash functions based on MD4, with the most popular computer archi- 
tectures in use today or in the  near future. Although only the MD4-like hash 
functions are considered in the sequel, much of it also applies to other classes of 
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iterated cryptographic primitives. Our main aim is to investigate the amount of 
software parallelism in the different members of the MD4 hash family, and the 
extent to which nowadays RISC and CISC processors are able to exploit this 
parallelism. This approach differs of the one in [BGV96] in that we now take the 
hashing algorithms as a starting point, and investigate the amount of inherently 
available parallelism, while previously we took a particular superscalar proces- 
sor as starting point, and investigated to which extent an implementation of the 
hashing algorithms could take advantage of that architecture. 

The next, section considers the basic requirements a processor has to  meet 
to enable efficient implementations of MD4-like hash functions. Section 3 gives 
an overview of currently available processor architectures, and lists their, for 
our purposes, interesting characteristics. Section 4 introduces the notion of a 
critical path. The available amount of instruction-level parallelism in the MD4- 
like algorithms is determined in section 5, and confronted with the available 
hardware of section 3. Finally, section 6 formulates the conclusions. 

2 Basic hardware requirements 

The customized hash functions based on MD4 include MD4 [Riv92a], MD5 
[Riv92b], SHA-1 [FIPSlBO-11, RIPEMD [RIPE95], RIPEMD-128 and RIPEMD- 
160 [DBP96]. It are all iterative hash functions using a cornpression function 
as their basic building block, the input to which consists of a 128 or 160-bit 
chaining variable and a 512-bit message block. The output is an update of the 
chaining variable. Internally, the compression function operates on 32-bit words. 
The conversion from external bit> strings to internal word arrays uses a big-endian 
convention for SHA-1 and a little-endian convention for all the other hash func- 
tions. Depending on the algorithm the conipression function consists of 3 to 5, 
possibly parallel, rounds, each made up of 20 (SHA-1) or 16 (all other) steps. Fi- 
nally, a feedforward adds the initial value of the chaining variable to  the updated 
value. Every round uses a particular non-linear function, and every step modifies 
one word of the chaining variable and possibly rotates another. Definitions of 
the round and step functions can be found in Tables 1 and 2, respectively. 

Table 1. Definition of the Boolean round functions used in MD4-family algorithms. 

This short overview allows us to conclude that an implementatioIi of MD4- 
like hash functions will benefit from a processor that 
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Algorithm 
MD4 
MD5 
SHA-1 

RIPEMD 
RIPEMD-128 

RIPEMD-160 

Step function using Boolean function: Mux Maj Xor Or-Xor 
A := ( A  + f(B, C, D )  + X ,  + K)<<<' 
-4 := B + ( A  + f ( B ,  C, D )  + X ,  -t K)<<<' 

x, := (X, a3 x1+2 a3 x,+a 63 X,+13)=1 

1 2 3  
1,2 3 4 

from step 17 onwards: 

A := A + + f(C, D ,  E )  + X, + K 1 3 2,4 c ,= ~ < < < 3 0  

A := ( A  + f (B,  C ,  D )  + x', + K)<<<' 2L,3R 1L,4R 3L,2R 

A := E + ( A  + f (B,  C, D )  + X, + K)'"' 1L,5R 5L,1R 

A := ( A  + f(B, C,  D )  + Xt + h-)<<<' 1 2 3  

4L,1R 
2,4 c := C<<<'O 3 

Table 2. Definition of the step funct,ion used in MD4-family algorithms. Additions are 
modulo 2". Rotating z over .s bits to the left is indicated as z<<<'. A ,  B ,  C,  D ,  E are 
the words of the chaining variable, K and s are constants, X ,  is a message word or 
a combination thereof, and f ( )  is one of the functions defined in Table 1. The last 4 
columns indicate in which rounds these functions are used, and, if different, whet,her 
in the left (L) or  right (R)  parallel line. 

1. supports 32-bit operations. 
2. can handle both little-endian and big-endian memory addressing. 
3. has a rotate instruction, and, in addition to the standard logical instructions 

and, o r ,  and xor,  instructions like nand, nor ,  nxor,  and-not, and or-not ,  
where the latter two are defined as, respectively, the and and o r  of the first 
operand and the complement of the second. Remark that xor-not would be 
the same as nxor.  

4. is able to keep all local variables in registers: 16 message words, 5 chaining 
words, and 2 auxiliary words. The RIPEMD-family, having two parallel lines, 
requires two copies of the last two items. So in total up to 30 registers are 
required. 

5. supports parallel execution of arithmetic or logical (ALU) operations. This 
item will be further investigated in the next section. 

3 Hardware parallelism 

The basic implementation technique, applied by all nowadays processors, to irn- 
prove CPU performance is pipelining. A pipeline is organized in a number of 
stages, each of which executes part of a CPU instruction. Multiple instructions 
can overlap in execution by letting each stage in the pipeline complete a part 
of a different instruction. Hence, this technique allows different parts of con- 
secutive inst,ructions to be executed in parallel. As a consequence, pipelining 
increases the CPU instruction throughput. The execution time of each instruc- 
tion usually slightly increases due to pipeline control overhead, but this is more 
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than compensated for by the increase in instruction throughput. The net effect 
is a substantial decrease in the number of' clock cycles per instruction, ideally 
resulting in a speedup equaling the number of pipeline stages. 

To enhance performance even further two approaches are available: increase 
the number of pipeline stages, or use a number of parallel pipelines. The former 
architecture is called superpipelined and emphasizes temporal parallelism, while 
the latter relies on spatial parallelism and comes in two flavors: superscalar or 
very long instruction word (VLIW). The aim of these techniques is to further 
increase the throughput. A superpipelined architecture achieves this by reduc- 
ing the clock cycle time, while a superscalar/VLIW architecture tries to issue 
more than 1 instruction per clock cycle. However, there is a limit to what can be 
gained in terms of performance. This limit is determined by two factors; a soft- 
ware one and a hardware one. The software factor is the amount of parallelism 
in the instruction stream, i.e., the amount of data dependencies between the 
instructions. In the next section the available instruction-level parallelism in an 
instruction stream will be characterized by the its critical path. The hardware 
factor is the impact of the increase in the number of pipeline stages or pipelines 
on the clock cycle time. 

In case of a superpipelined architecture limited parallelism in the instruction 
stream will eventually lead to so-called pipeline stalls due to  data dependencies: 
the execution of an instruction has to be stalled until the data needed to complete 
it become available. But even in the absence of dependencies superpipelining 
will eventually run out of steam. The clock cycle time can never be lower than 
the overhead pipelining incurs on each stage: clock skew and pipeline register 
overhead [HePa96]. Therefore, increasing the number of pipeline st.ages beyond 
a critical point will result in performance degradation rather than performance 
gain. 

Further increase in performance can then only be obtained by either going 
superscalar or using VLIWs. 

- A superscalar processor has dynamic issue capability: a varying number of 
instructions is issued every clock cycle. The hardware dynamically decides 
which instructions are simultaneously issued and to which pipelines! based 
on issue criteria and possible data dependencies. 

- A VLIW processor has fixed issue capability: every clock cycle a fixed number 
of inst>ructions is issued, formatted as one large instruction (hence the name). 
The software (i.e., the compiler) is completely responsible for creating a 
package of instructions that can be simultaneously issued. No decisions about 
multiple issue arc dynamically taken by the hardware. 

An advantage of a VLIW over a superscalar is that the amount of required 
hardware can be reduced: choosing the instructions to be issued simultaneously 
is done a t  compile-time, and not at  run-time. However, the siiperscalar has  two 
major advantages; its code density is little affected by the available parallelism in 
the instruction stream, and it can be object-cwde compatible with a large family 
of non-parallel processors. The major challenge in the design of a superscalar 
processor will be t,o limit the impact on the clock cycle time of issuing and 
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executing multiple instructions per cycle. This is illustrated by the fact that to 
datc a factor of 1.5 to 2 in clock rate has consistently separated the highest, clock 
rate processors and the most sopliist,icated multiple-issue processors [HePa96]. 

A final uniprocessor technique to exploit parallelism inherent in many algo- 
rithms is single-instruction, multiple-data (SIMD) processing, a term originally 
only used in the context of multiprocessor environments [Fly66]. A SIMD in- 
struction performs the same operation in parallel on multiple data elements, 
packed into a single processor word. Tuned to accelerate multimedia and com- 
munications software, these instructions can be found in an increasing number of 
general-purpose processor architectures. Examples are Intel’s MMX [PeWe96], 
UltraSPARC’s VIS [TONH96], and PA-RISC 2.0 architecture’s MAX [Lee96]. 
MMH [HaKr97] is an example of a cryptographic hash function taking advan- 
tage of this new technology. R.emark that a combination of multiple-issue and 
SIMD techniques creates in effect a kind of multiple-issue, multiple-data (MIMD) 
parallelism, also called SIMD-MIMD parallelism [Lee95]. 

CPUs can be differentiated among based on the type of their internal storage: 
a stack, an accumulator, or a set of registers. Only the latter class of CPUs will 
be considered in the sequel, since virtually every processor designed after 1980 
uses that architecture, called a (general-purpose) register architecture. A further 
division of this call can be made based on the way instructions can access memory 
and on the operands for a typical ALU instruction. 

- In a register-memory architecture memory can be accessed as partj of any 
instruction, while in a register-register architecture memory can only be 
accessed with load and store instructions, for which rcason the latter is also 
called a load-store architecture. 

- The maximum number of operands of an ALU instruction is either two or 
three. A three-operand instruction contains a destination and two source 
operands, while in a t,wo-operand instruction one of the operands is both a 
source and a destination for the operation. 

- The number of rnemory operands of an ALU instruction can vary from none 
to the maximum number of operands (2 or 3). 

It  turns out that two’ combinations suffice to classify all the CPUs that will be 
considered: 

class 1 - a tree-operand load-store architecture (no memory operands in ALU 
instruction) : MIPS, Precision Architecture (PA-RISC), PowerPC, SPARC, 
Alpha. 

class 2 - a two-operand register-memory architecture (at most one memory 
operand in ALU instruction) : 80x86 (including Pentium and PentiumPro) , 
680x0. 

Remark that the same division also distinguishes between RISC processors (class 
1) and CISC processors (class 2 ) .  

Three suffice to  classify nearly all existing machines, see [HePaSG, Section 2.21 
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Table 3 summarizes the characteristics of these architectures with respect 
to the requirements formulated at the end of the previous section, including the 
available hardware parallelism for ALU instructions [Sta96, HePa96, Bha961. The 
figures are for the most recent processors of each architecture. As far as RISC 
processors are concerned, these are all 64-bit, although compatibility with their 
32-bit predecessors is retained. Since Alpha was designed as a 64-bit, device, the 
support for 32-bit operations is limited. All RISC architectures include support 
for both little and big-endian addressing, but especially with PA-R.ISC and Al- 
pha architectures an implementation is riot required to implement both address- 
ing modes. An Alpha implementation is not even required to support changing 
the convention during program execution, but only at boot time [Dig96]. The 
other RISCs can use either format, selectable in either software or hardware. 
Some architectures are more than 2-way superscalar, but none can issue more 
than 2 instructions in parallel of the ALU subset that interests us: add. logical 
operations, rotatelshift. 

Architecture 
Word Size 
Integer regs 
Endianness 
AND 

OR 

XOR 
ROT 
ALU pipe s 
32-bit subset 
Processor 

rn 
64 
31 

select. 
and 

or ,nor  

xor  
No 

Yes 
R4000, 
RlOOOO 

1"/2' 

PA 2.0 
64 
31 

select. 
and, 

and-not 
o r  

x o r  
Yes" 

2 
Yes 

PA-8000 

PowerPC 
64 
32 

select. 
and,nand, 
and-no t 
or,nor, 
or-not  

xor,nxor 
Yes 

2 
Yes 

PowerPC 
620 

;PARC V9 
64 
31 

select. 
and, 

and-not 
o r ,  

or-not 
xor,nxor 

No 
2 

Yes 
Ultra- 

SPARC 

Ilpha EV5 
64 
31 

Little 
and, 

and-not 
or, 

or-not  
xor,nxor 

NO 
2 

Nod 
21164 

80x86 
32 
7 

Little 
and 

o r  

xor 
Yes 

2 

Pentium 
PPro 

(Yes) 

- 
i80x0 

32 
8 

Big 
and 

- 

o r  

xo r  
Yes 

2 
(Yes) 
58060 
- 

a The PA-RISC 2.0 instruction shrpw r l , r 2 , x , t  shifts the concatenation of rl aiid 
r2 to the right over x bits, and puts the result in t. By taking r l  = r 2  = t it is in 
effect a rotate. 
The R4000 is superpipelined (but not superscalar) and its pipeline clock is twice the 
external clock frequency, so that 2 instructions can be issued per clock cycle. 
The R.lOOOO is superscalar, but not superpipelined. 

'' The Alpha architecture has just 3 32-bit integer operations: add, subtract, multiply. 
In addition, it has a set of in-register manipulation instructions on 32-bit quantities, 
such as extract, insert, and mask. 

Table 3. Overview of the latest designs of the most popular comput,er architectures. 
Only t,hose characteristics are listed that are relevant when implementing MD4-like 
hash functions on these architectures. 

From this table we can conclude that,  with respect to the requirements of 
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section 2, all listed RISC architectures fulfill requirement 4, while all of the first 3 
requirements are only met by the PowerPC, and to a varying degree by the other 
RISCs. The most serious problem for a number of RISCs is certainly the absence 
of a rotate instruction, while CISCs are severely restricted by their small register 
set. In section 5 it is investigated whether such a two-way superscalar architec- 
ture suffices to  exploit all the parallelism available in the MD4-like algorithms, 
using the analysis restricted to MD5 in [Tou95] as a starting point. 

So far only superpipelined and/or superscalar processors have been consid- 
ered. Nowadays most multiple-issue processors are superscalar, but VLIW is 
experiencing a comeback in popularity. An example of the latter is the recently 
introduced 32-bit VLIW processor TM-1 of Philips Tkimedia [SRD96]. Up to 5 
operations can be packed into a single VLIW-instruction and executed in a single 
clock cycle. Although intended for multimedia processing, its ability to execute 
5 ALU operations in parallel creates new opportunities for fast implementations 
of existing and for the design of new cryptographic algorithms [Cla97]. 

4 Critical path length 

To determine the amount of available instruction-level parallelism in the MD4- 
like hash functions, a critical path analysis is applied. To that end the algorithms 
are represented as a so-called activity-on-edge network, which is a directed graph 
with weighted edges. 

Geometrically a graph G is defined as a set V ( G )  of vertices vi interconnected 
by a set E(G) of edges ei. In a directed graph or digraph an edge ei is a directed 
pair (u i , u j )  and represented by an arrow from the tail ui to the head u j .  A 
directed path from lip to ug is a sequence of vertices up,  u i l ,  u i2 ,  . . . , vi, , 'uu4 such 
t,hat (vp, 'ui l ) ,  ( V ~ ~ , V ~ ~ ) , .  . . , (w~,,~uq) are edges in E(G).  

A network is a graph with weighted edges, i.e., to each edge e a weight w(e) is 
assigned. In an activity-on-edge network (AOE-network) tasks t o  be performed 
are represented by directed edges. The vertices in the network represent events, 
signaling the completion of certain activities. Activities represented by edges 
leaving a vertex cannot be started until the event at that vertex has occurred. 
An event occurs only when all activities entering it have been completed. The 
weight w(e) assigned to  an edge e represents the time required to complete the 
activity associated with e. 

The length of a path is then defined as C, w(e), where e runs over all edges 
on the path. It is the time it takes to complete the task represented by the path. 
Assuming the activities in an AOE network can be carried out in parallel, the 
minimum time to complete the overall task is the length of the longest path from 
the start vertex to the termination vertex. Such a path is called a critical path. 

The evaluation of an arithmetic expression can be modeled as an AOE net- 
work. The start vertex corresponds to  the availability of the input data, the 
activities represented by the edges correspond to  the arithmetic operations con- 
stituting the expression, and the termination vertex corresponds to  the result of 
the expression. The weight of an edge represents the time it takes to complete 
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Algorithm Operations in CP 
MD4, RIPEMD, RIPEMD-128 f ( ) ,  t, <<< 
MD5, RIPEMD-160 
SHA-1 +, <<< 

f 0 ,  +, <<<, + 

the corresponding arithmetic operation. Maximum performance in evaluating 
an arithmetic expression will therefore be obtained by making its critical path 
as short as possible, using, as much as possible, parallel execution of individ- 
ual arithmetic operations. However, we must take into account that eventually 
the evaluation of the expression will take place on a multiple-issue architecture 
of the kind described in the previous section, i.e., all parallel execution units 
are pipelined, and all advance at the same rate. Unless out-of-order execution 
is supported, operations executed in parallel all deliver their result at  the same 
moment, and therefore not faster than the time of the slowest operation. For this 
reason the critical path length will be expressed in terms of required pipeline 
stages, rather than in clock cycles. A measure similar to critical path length is 
depth, as used in the analysis of parallel algorithms [Ble96]. 

min. CPL 
3 
4 
2 

5 C P L  analysis of the MD4-family 

The critical path length (CPL) of the MD4-like compression functions is mainly 
determined by the CPL of the individual rounds: the CPL of the feedforward is 
a t  most 2. The CPL of e x h  round is equal to the sum of the CPLs of each step, 
so that the CPL of the compression function is easily derived from the CPL of‘ 
a step. Each step updates one of the chaining words, and this updated word 
is then input to the next step. It is this basic dependency between steps that 
will determine their CPL. An inspection of two consecutive steps of every MD4- 
family member (see Appendix A) learns us that, except for SHA-1, the chaining 
word updated in one step is input to the Boolean function of the next step. The 
chaining word updated in that step only becomes available after adding in the 
Boolean result, rotating the resulting sum, and, in case of MD5 and RIPEMD- 
160, adding in another chaining word. SHA-1, in contrast, inputs the updated 
chaining word to a simple rotate, and the next chaining word becomes available 
after only 1 more addition. These lower bounds on a step’s CPL are summarized 
in Table 4. 

Table 4. Lower bound on the CPL of a step for each of the MD4-fa1nily members, 
assuming that it takes a minimum of 1 stage to deliver the result of a Boolean function. 

SHA-1 uses exactly the same kind and amount of operations as MD5 and 
RIPEMD-160 to  update a chaining variable: 1 application of a Boolean function, 
4 additions, and a rotate. However, the lower bound on a step’s CPL is only half 
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that  of MD5 and RIPEMD-160. This is due to  t,he fundamentally different way 
SHA-1's step function is organized compared to all the others: 

1. The rotate is not applied to a sum of intermediate results, but to an indi- 

2 .  None of the arguments of the Boolean function are, except for a rotate, 
vidual chaining variable. 

updated in the previous step, but in the step before that. 

This in itself might, be a coincidence, but it turns out that the lower bound is 
also the actual CPL of each SHA-1 step, while this is riot the case for any of the 
other hash functions, as will be shown in the sequel. This seeming coincidence 
might well be a design principle. 

For the other hash functions the Boolean function is part of the critical path. 
'l'his results in an increase of the CPL if the result cannot be delivered within the 
1 stage assunled for the lower bound. This is, e.g., the case for the multiplexer 
(z A y) v (3 A 2) used in all MD4-like hash functions. It would seem that from 
t,he niorrient z becomes available, arid only using and, o r ,  and xor,  it takes 
three more stages t,o deliver the multiplexer result, [Tou95]. However, using the 
niatheniatically equivalent expression ((y cfi z )  A z) cff z [McC94, NMVR951, it 
only takes two more stages. Since this is still 1 more than the value assumed 
in the lower bound, this multiplexer lengthens the CPL of all steps using it 
by 1, except for SHA-1, where t,he Roolean function isn't necessarily part of 
t,he critical path. Remark that,  as far as CPL is concerned, it doesn't always 
pay off to use the equivalent multiplexer expression. Consider the alternative 
multiplexer (x A z )  V (y AT)  used in MD5, RIPEMD-128, and RIPEMD-160, and 
where the critical path runs through y. Without rewriting it only takes 2 stages 
t,o deliver the result from the point y becomes available, but using the equivalent 
expression ((z (3 y) A z )  B y the CPL increases to 3. 

The results of this CPL analysis for the MD4-family of hash functions is given 
in Table 5. The analysis is done using both 3-operand and 2-operand instructions. 
With the exception of the fiIst and third round steps of SHA-I, the shortest 
possible critical path is the same for both operand formats. However, for the same 
CPL a realization on a 2-operand architecture requires more parallel execution 
units thari on a 3-operand one. This information can be derived from the last 4 
columns, where for both formats the required number of parallel units and their 
efficiency is given. The efficiency is defined as 

number of instructions in a steu 
CPL x number of execution units ' 

and is a rneasure of the average usage of the parallel execution units. The closer 
the value is to 1, the higher the degree of occupancy of the parallel units. 

Table 5 also shows that if 3-operand instructions are used the shortest pus- 
sible critical path of all SHA-1 steps is equal to the lower bound of Table 4: 2 
stages. This is illustrated for the most involved case in Figure 1: the step function 
of the third round using the majority function. As a result the CPL of SHA-1's 
compression function is the shortest of all the MD4-like hash functions, as shown 
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Algorithm CPL 

MD4 176 
MD5 304 
SHA-1 160 
RIPEMD 176 
RIPEMD-128 240 

(st ages) 

RIPEMD-160 368 

The message expansion only starts at step 17. Therefore, the first 16 steps have only 
an efficiency of 0.64 and 0.61, respectively. 
3-operandf2-operand figure 
Xor/Miix2 figure 

#Regs Pipes 
# Eff. 

22 2 0.91 
22 2 0.84 
26 7 0.85 
28 4 0.91 
27 4 0.90 
29 4 0.96 

Table 5. Results of the crit,ical path analysis on the MD4-like steps. Listed are for each 
stcp the lower bound and t,he actual value of the CPL, the required number of state 
(niessage+chaining) and auxiliary registers, and the required number and efficiency 
of parallel ALU pipelines, both for 3-operand and 2-operand instruction formats. The 
figures for the last two rounds of RIPEMD-128 and RIPEMD-160 are not listed, since 
they are the same as those for the first two rounds. 

Table 6. The shortest possible CPLs of the MDClike compression functions (without 
feedforward), and the required resources in terms of registers and parallel execution 
units. A 3-operand instruction format is assumed. 
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Fig. 1. The first 4 steps of SHA-1's round 3 on a 7-way multiple-issue architecture 
using a 3-operand instruction format. Instructions executed in parallel are drawn on 
the same horizontal level, while instructions belonging to the same step are shown 
between diagonal dotted lines. A CPL of 2 stages is realized by executing 7 instructions 
of up to 4 different steps in parallel, as shown between the 2 horizontal dotted lines. 

in Table 6. To realize a CPL of 2 in round 1 and 3 of SHA-1, two parallel rotates 
of the same variable are required, see Figure 1. However, the rotate instruction 
is a unary operation, and hence its 2-operand format has equal source and desti- 
nation, making a parallel execution on the same variable impossible. Comparing 
the requirements of Table 6 with the resources of Table 3 shows that current su- 
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perscalar architect,ures are only able to exploit all the available instruction-level 
parallelism of MD4 and MD5, two algorithms that as collision-resistant hash 
functions can no longer be considered as secure [Dob96a, Dob96b, Rob961. 

The natural question to ask is: how realistic are the prospects for a general- 
purpose processor issuing one day 7 ALU instructions in parallel? Issuing many 
instructions per clock is difficult due to an increasingly complex issuing logic 
having a negative impact on the clock cycle time. Therefore, a high issuing rate 
will only pay off if the parallel execution units are kept sufficiently busy, so that 
the increase in cycle time will be more than compensated for by an enhanced 
throughput. The CPL analysis of SHA-1 shows that some algorithms certainly 
conhin enough instruction-level parallelism to sustain such a11 increased issuing 
rate, but it is doubtful whether this will be the case for an average instruction 
sequence. 

The RIPEMD-family has, in contrast to SHA- 1, two completely independent 
lines, leaving room for exploiting parallelism on a differcnt level: the use of a 
multiprocessor system where the multiple-issue capability of each processor is 
limited, rather than a uniprocessor system with a, single, very sophisticated pro- 
cessor capable of offering all the required parallelisin on its own. In this respect 
[HePa96, Section 4.101 states that ‘to date, computer architects do not know how 
to design processors that can effectively exploit instruction-level parallelism in a 
multiprocessor configuration.’ The capability of placing two fully configured pro- 
cessors on a single die, which should be possible around the turn of the century, 
might result in a new type of archit lire allowing processors to be more tightly 
coupled than before, and at the same time allowing them to achieve very high 
performance individually. Therefore, exploiting the instruction-level parallelism 
of the RIPEn’ID-family in the near future seems much more likely, since each of 
the independent lines only requires a two-way superscalar architecture, which is 
already a standard feature of most, processors today. 

Algorithms with more instruction-level parallelism than the hardware they 
are executed on can provide, will inevitably see their CPL increase. This is illus- 
trated by means of the first step of MD4’s round 2. Using a 3-operand instruction 
format two parallel units suffice two exploit all available instruction-level paral- 
lelism, as illustrated in the left diagram of Figure 2. Remark that the efficiency 
is 100%. Using a 2-operand instruction format will increase the number of in- 
structions, as operations of the form A t ,!? op C will require two instructions: 
A t B and A t A op C. Due to  the already 100% efficiency of the 3-operand 
instruction stream, 3 parallel units are now required to realize the same CPL 
of 4. Therefore, an implementation using only 2 parallel units will inevitably 
have a longer critical path. This is illustrated in the right diagram of the same 
figure, showing an increase in CPL of 1 stage. The left diagram is expected to 
be found on e.g., a PowerPC 604 [SDC94] or a PA 7100LC [BKQW95], while 
the right diagram resembles the situation on a Pentium processor, except that a 
Pentium cannot execute a rotate over more than 1 bit in parallel with any other 
instruction, resulting in a further increase of the CPL. 
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Fig. 2. The first step of MD4’s round 2 implemented on a two-way superscalar archi- 
tecture. Instructions executed in parallel are drawn on the same horizontal level, while 
instructions belonging to the same step are shown between diagonal dotted lines. The 
left diagram uses 3-operand instructions, and shows both instruction pipes already oc- 
cupied for 100%. The use of 2-operand instructions increases the number of instructions 
by 2,  either requiring an additional instruction pipe for the same CPL, or resulting in 
an increased CPL on the same architecture, as shown on the right. 

6 Conclusion 

The new generation of cust,omized hash functions based on MD4 (RIPEMD-128, 
RIPEMD-160, SHA-1) contains more instruction-level parallelism than current 
general-purpose computer architectures are able t o  provide. The critical path of 
SHA-1 is shorter than any of the other MD4-like hash functions, but exploiting 
it would require a 7-way multiple-issue architecture. Exploiting the  instruction- 
level parallelism of the RIPEMD-family in the near future seems more likely, 
due to their organization in two independent lines, each of which only requires 
a 2-way superscalar architecture. Opening up new perspectives is the recent 
introduction of a new 5-way VLIW processor, primarily intended for multimedia 
processing. 
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A Dependencies between consecutive steps

This appendix lists, for each member of the MD4-family, the first two steps of
an arbitrary round.

- MD4
A := (A + f{B, C, D)+Xi + K)<«*
D :={D + f{A,B, C) + Xj + K)<«^

- MD5
A -.= B + {A + f(B, C, D) + Xi + K)<«'*
A:=B + (A + f(B, C, D) + Xi + K)<+<

- SHA-1
Xi := (Xi ® Xi+2 e X i+8 © Xi+i3)<<:<1

E := E + A<«5 + f(B, C, D) +Xt + K
B := B«<30

Xl+1 -.= {Xi+1 © Xi+3 © Xl+9 © Xi+U)<«1

D:=D + E<«5 + f(A, B, C) + Xi+1 + K
A := A«<rii)

- RIPEMD
A:=(A + f(B, C, D) + Xi + ^ )<« s '
D := (D + f(A,B,C) + Xj + AT)<«S=

- RIPEMD-128
A := {A + f(B, C, D) + Xi + K)<«'1

D :=(D + f(A, B, C) + X3 + K)<«'*
- RIPEMD-160

A := E + (A + f(B, C, D) + Xi + /^)<«'Sl

C := C< < < 1 0

E := D + {E + f{A, B, C) + Xj + K)<<<82

B := B«<10
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