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Abstract. Assume A owns two secret k-bit strings. She is willing to 
disclose one of them to B ,  at his choosing, provided he does not learn 
anything about the other string. Conversely, B does not want A to learn 
which secret he chose to learn. A protocol for the above task is said to 
implement One-out-of-two String Oblivious Transfer, denoted (:)-OTk. 
This primitive is particularly useful in a variety of cryptographic settings. 
An apparently simpler task corresponds to the case k = 1 of two one-bit 
secrets: this is known as One-out-of-two Bit Oblivious Transfer, de- 
noted (:)-OT. We address the question of reducing (:)-OTk to (:)-OT. 
This question is not new: it was introduced in 1986. However, most so- 
lutions until now have implicitly or explicitly depended on the notion 
of self-intersecting codes. It can be proved that this restriction makes it 
asymptotically impossible to implement (:)-OTk with fewer than about 
3.5277k instances of (:)-OT. The current paper introduces the idea of 
using privacy amplification as underlying technique to reduce (:)-Ork 
to (:)-OT. This allows for more efficient solutions at the cost of an expo- 
nentially small probability of failure: it is sufficient t,o use slightly more 
than 2k instances of (:)-OT in order to implement (f)-OTk. Moreover, 
we show that privacy amplification allows for the efficient implementa- 
tion of (:)-OTk from generalized versions of (:)-OT that would not have 
been suitable for the earlier techniques based on self-intersecting codes. 
An application of this more general reduction is given. 
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1 Introduction 

One-out-of-two String Oblivious Transfer, denoted (:)-OT” is a primitive that 
originates with [Wie70] (under the name of “multiplexing”), a paper that marked 
the birth of quantum cryptography. According to this primitive, one party A 
owns two secret k-bit strings wo and w1, and another party B wants to learn w, 
for a secret bit c of his choice. A is willing to collaborate provided that B does 
not learn any information about wF, but B will only participate if A cannot ob- 
tain information about c .  Independently from [Wie7O] but inspired by [Rab81], 
a natural restriction of this primitive was introduced subsequently in [EGL83] 
with applications to contract signing protocols: One-out-of-two Bit Oblivious 
Transfer, denoted (?)-OT, concerns the case k = 1 in which wo and w1 are 
single-bit secrets, generally called bo and bl in that case. 

Techniques were introduced in [BCR86] and refined in [CSSlb, BCS96] to 
reduce (:)-OTk to (:)-OT: several two-party protocols were given to achieve 
One-out-of-two String Oblivious Transfer based on the assumption of the avail- 
ability of a protocol for the simpler One-out-of-two Bit Oblivious Transfer. The 
fact that (:)-OTk can be reduced to (:)-(IT is not surprising because a num- 
ber of authors [Ki188, Crk89, CGT951 have shown that (:)-OT is sufficient to 
implement any two-party computation. Our interest in direct reductions is their 
far greater efficiency. With the exception of [CSSla], all previous direct reduc- 
tions that we are aware of [BCR86, CSSlb, BCS96] are based on a notion called 
zigzag functions, whose construction is reduced to finding particular types of 
error-correcting codes called self-intersecting codes. In a nutshell, this approach 
consists in selecting once and for all a suitable function f from (0, l}n to  (0, 
for n as small as possible (n  > k), so that if 20 is a random preimage of wo and 
21 is a random preimage of wl, and if B is given to choose via (:)-OT to  see 
the ith bit of either 2 0  or 21, 1 5 i 5 n, then no information can be inferred 
on at, least one of wo or w1. This approach has led to various reductions with 
expansion factors ,8 ranging from 4.8188 to 18, that is various polynomial-time 
constructible methods using n = ,Bk instances of (q)-OT to perform one (i)-OTk 
on k-bit strings. Koml6s proved that this approach cannot yield an expansion 
factor ,B that is asymptotically better than 3.5277 [CL85]. I t  was recently proven 
by Stinson that the same bound applies even to non-linear zigzags [Sti97]. 

The current paper exploits a new approach to this problem using przvacy 
amplification, a notion first introduced in the context of key exchange protocols 
[BBR88]. The new approach allows for a solution requiring only slightly more 
than 2k instances of (:)-OT to perform one (f)-OTk, and it can be extended 
to a whole range of generalizations of (:)-OT that could not be used with the 
reductions based on zigzag functions. 

An application of the simplest of our generalizations is also considered: 
(:)-OTk from A to B can be reduced to (f)-OT in the other direction (from 
B to d) by only doubling the cost of reducing to (:)-OT from A to B. This 
improves on an earlier result of [CS9la]. 
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Method 
Monte Carlo Zigzag’ 

2 Privacy Amplification Method 

expansion failure construction 
factor probability time 

4.8188 + E Y 8  O ( k 2 )  

Assume A knows a random n--bit string 2 about which B has partial infor- 
mation. Privacy a ~ ~ p l i f i ~ a t i ~ n  is a technique invented in [BBR88] and refined 
in [BBCM95] that allows A to shrink z to a shorter string w about which B 
has an arbitrarily small amount of information even if he knows the recipe 
used by A to transform 5 into w.  Intuitively, this can be used to  implement 
(?)-OT’(wo, w1) (c) from (:)-OT because A can offer B to  read one of two ran- 
dom strings 20 or 2 1  by a simple sequence of (:)-OT(zd, zi)(ci). Subsequently, 
A tells B how to transform 20 into wo and z1 into w1 by way of privacy amplifi- 
cation. An honest B who accessed all the bits of zc can reconstruct w, from this 
informition. But a dishonest 6 who tried to access some of the bits of 20 and 
some of the bits of $1 will not have enough information on at least one of them 
to infer any information on the corresponding wj or even joint information on 
both wo and W I .  

An important fact about the method based on zigzag functions considered in 
earlier papers is that there is no way for B to learn information about both wo 
and w1 even though the zigzag function is known before he gets to choose which 
bits of I C O  and z1 to  obtain through the (:)-OT instances. In the new approach 
based on privacy amplification] A reveals the function to B after the necessary 
(:)-OT’s have been performed. This allows for a protocol that is simpler, more 
general and more efficient, but at the cost of a vanishingly small probability of 
failure. A drawback of this approach is that a new function must be generated 
and transmitted at each run of the protocol. 

The following table compares the efficiency of the earlier methods to  that 
of privacy amplification. The column “expansion factor” gives a number ,B so 
that a (:)-OTk can be achieved with /3k instances of (:)-OTl s is a safety pa- 
rameter, and E is arbitrarily small in the limit of large k ,  Thus we see that the 
privacy amplification method is preferable provided a probability of failure can 
be tolerated. 

I -  

Las Vegas Zigzag2 
Zigzag B. la Justesen3 
Zigzag B. la Goppa4 
Privacy Amplification 

9.6377 + E 0 O(kZj 
18 0 O(k4) , 

6.4103 0 o(k32) - 
2 t E 2-5 O(k2) 

Attributed to Cohen and Lempel in [BCS96]. 
Attributed to Joe Kilian in [BCS96]. 
From [BCS96]. 
From [CZ94] based on a method of [CSSlb]. 
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3 The New Protocol 

Let s be a security parameter chosen by d and B so that they agree to tolerate 
a probability 2-' of failure. Let y be a constant to be determined later, let 
n = yk + s, and let Fz denote the field of integers modulo 2. 

Privacy amplification is based on the general notion of universal classes of 
hash functions [CW79]. For sake of simplicity, we use a specific class of hash 
functions in our protocol to implement (:)-OTk from (f)--OT: 

{ h  I h ( z )  = M z ,  for M a k x n matrix over 7 2 )  . 

Other, more efficient classes of hash functions can be used, but it is not known 
if the definition of universal classes is sufficient in general to  make our protocol 
work. 

Protocol 3.1 ( (?)-0T'((w0, WI)(C)  ) 

1: A picks two random n-bit strings xo and ti. 
2: DO A transfers t' t (?)-OT(zb,z;)(c) t o  8.  
3: A picks two random k x n matrices Mo and M1 over Fz; 

4: A sets mo t MOXO, ml t MIXI,  yo t mo @ wo and y1 t ml @ w;  

5:  B recovers w c  by computing (M,t)  @ yc. 

n 

1= 1 

she announces them to B. 

she announces yo and yl to 8. 

We postpone to  Sect. 5 the proof that this protocol is private provided y 2 2 
because we shall first generalize it to permit at no extra cost the use of another 
primitive called X O R  Oblivious Transfer. (Informally, a protocol is private if 
B cannot learn information on both wo and wl  except perhaps with negligible 
probability. In addition, B must not be able to obtain joint information on wo 
and 2~11 except for what follows from his a priori knowledge and his learning one 
of the two strings. Conversely, should learn nothing at all. See [BCSSG] for 
a formal information-theoretic definition. We shall later relax the condition to 
allow B an exponentially small amount of unauthorized information.) 

4 XOR Oblivious Transfer 

A (T)-XOT is an extension of (T)-OT that enables a sender A t o  transfer to a 
receiver B either one bit among bo and bl or their exclusive-orl at B's choice. More 
formally,d inputs bo and bl into the protocol, B inputs c E {0,1, @}, and l3 learns 
b, while A learns nothing, where for convenience we use be to denote bo CB b l .  

As usual, this is done in an all-or-nothing fashion: 8 cannot get more information 
about bo and b l  than bo,  bl or b e ,  however malicious or computationally powerful 
he is. Note that in our application of (:)-XOT, which is to  use it instead of 
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(?)-OT inside Protocol 3.1, an honest f? would never requests 6,. Therefore we 
can safely use any protocol in which it is merely tolerated that f? might learn be 
in cheating attempts even though A is not required to provide it upon request. 

The (?)-XOT comes naturally in a specific implementation of (f)-OT: in 
[BCRSSa] a protocol for (f)-OT is given under the assumption that deciding 
quadratic residuosity modulo a composite number is hard. In that implementa- 
tion, the possibility that 6 obtains he arises naturally and some effort is made 
to  prevent it. The current paper shows that this effort was unnecessary if the 
final goal is to  implement (H)-OTk rather than simply (:)-OT. 

5 Privacy 

Consider a variation of Protocol 3.1 in which the transfers at step 2 are per- 
formed through (?)-XOT instead of (f)-OT. Even though this makes no differ- 
ence if B follows the protocol honestly, it gives him additional opportunities for 
cheating if he so desires. Our goal is to show that whatever program s is ran 
by B,  he is not able to obtain information on both wg and w1, except with a 
probability that is exponentially small in the security parameter s. Moreover, 
it is obvious from inspection of the protocol that a cheating A cannot obtain 
any information about B’s secret parameter c. From now on, think of E O  and 21 
as column-vectors of length n, and of mo = MOZO and ml = Mlz1 as column- 
vectors of length k, all over &. First, we show that immediately after Step 3 of 
the protocol, whatever program a is ran by f?, he will have no information about 
one of mo or ml and no information allowing him to connect rno and mi (such 
as mo @ rnl for instance), except with exponentially small probability. (Formally, 
there will be some bit C such that the first three steps of the protocol would give 
no additional information to  6 about the pair (mo, mi) than if he were simply 
told the value of mE; see [BCSSCi].) We conclude the result about wo and w1 at 
the end of the protocol from the fact that mo and ml are used as one-time pads 
to  transfer them. 

Suppose reads the bits xi, with ci E { 0 , 1 ,  @} at his choosing. 
Let g be a non-trivial linear function of mo and ml .  In other words, 
g ( m o ,  ml) = V O ~ O  @ vlml for some line-vectors vo and v1 of length k over F2 
such that both vo and v1 are non-zero 5 .  

Theoreml. Consider the knowledge that L? has about mo and ml immediately 
after Step 3 of the protocol. Provided y 2 2,  

3 non-trivial g such that 8 knows g(mo, m1) 

Note that by virtue of wo and n o  being a line-vector and a column-vector, respec- 
tively, a “matrix” multiplication such as uomo computes the scalar product; similarly, 
given that 20 is also a colurnn-vector, an expression such as WOMOSO makes sense: 
it is simply an element of Fz!. This notation is handy because VOMOCO can be thought 
of indifferently as either the scalar product of vo with MOZO or of VOMO with EO. 
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Proof. We first describe the condition under which b learns g ( m 0 ,  ml) at Step 3 
of the protocol for some specific non-trivial linear function g. By definition 

g ( m 0 ,  m1) = womo CE Z'lrnl = voMoto e3 VlMlZl = 2020 CE 21x1 
- 

where zo = WOMO and z1 = q M 1 .  Because z0 and z1 are random, 23 cannot learn 
anything about g(rn0 ,  ml) at Step 3 unless he is lucky enough that his choices 
ci simultaneously follow 

0 when (z6 , z f )  = ( 1 , O )  
1 when ( z 6 , ~ : )  = ( 0 , l )  { @ when (z:,.:) = (1,l) 

ci = 

in all the instances of (q)-XOT such that z6 and zf are not both 0. (The value 
of ci is unimportant when (26, 2;) = (0,O) since neither xi nor xf is required in 
that case to  compute g ( m 0 ,  rn l ) . )  

But remember that MO and M I  are picked at random and neither vo nor v1 is 
zero. Therefore zo = voM0 and z1 = v lMl  are random binary strings of length n 
chosen independently according to the uniform distribution. In particular, a0 and 
z1 are independent of a ' s  choices of C ~ S .  It follows that,  for each i, the probability 
that either ( z ; ,  2:) = (0,O) or L? chose ci appropriately according to the above 
case analysis is exactly 1/2. Since b must be lucky for each i, 1 5 i 5 n,  

Prob s learns g ( r n o ,  rn l ) )  = 2-" 

for each non-trivial linear function g ,  whatever choices L? makes for the ci's. 
Finally, given that there are less than 22k such linear functions, we conclude 
that 

Prob 3 non-trivial g such that a learns g(mo, m~)) 

( 

- 
( < 2 2 k - n  = 2 ( 2 - 7 ) k - s  < 2 - 5  

provided y 2 2. 0 

Theorem 2. Protocol 3.1 is private even if the transfers at step 2 are performed 
through ( f ) -XOT instead of(:)-OT.  

Proof. We know from Theorem 1 that, except with probability at most 2-', 
23 has not learned g(m0, rnl) by the end of Step 3 for any linear function g 
that involves both r n o  and rnl in a non-trivial way.6 It follows that there is a 
d E ( 0 , l )  such that B learns no non-trivial linear function of m d  because if he 
could learn non-trivial linear functions g o ( m o )  and g1 (ml) ,  he would have learned 
g O ( m 0 )  @ g l ( r n l ) ,  a non-trivial linear function of both mo and ml. We can say 
something stronger: not only does a learn no non-trivial linear function of m d ,  

but he learns no information of any kind that involves md. This is true because 

Of course, it is possible for B to learn linear functions of mo or ml alone by setting 
all the c,  = 0 or c ,  = 1 as in the honest protocol. 
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mo and rnl are purely random and the only source of information that B has 
about them (up until Step 3) is given by linear functions of 7 n O  and ml.  Since 
md is used by A at Step 4 as one-time pad to transmit wd to a, it follows that 

0 learns no information of any kind that involves wd. 

6 Application: Reversing Oblivious Transfer 

Consider that A wants to send one of two words wo or w1 to B when they 
only have an (T)-OT channel running from B to A. A very efficient protocol 
for sending one of two bits from A to  B is given in [CSSla] provided A does 
not mind the possibility that B might learn the exclusive-or of her two bits: 
two instances of reversed (:)-OT are sufficient to implement (:)-XOT. No such 
efficient constructions are known that would implement (f)-OT from so few 
instances of reversed (f)-OT. In other words it is much easier to implement 
(:)-XOT than (f)-OT from A to  B given an (Y)-OT channel from B to A. This 
is fine because we just showed that (:)-XOT is just as good as (f)-OT for 
the purpose of implementing (:)-OTk. Therefore, (:)-OTk from A to B can be 
implemented from slightly more than 4k instances of (:)-OT from l3 to A. This 
is a three-fold improvement over [CSgla]. 

7 Generalized Oblivious Transfer 

A (:)-GOT is a cryptographic protocol for two participants that enables a sender 
A to transfer a one-hit function evaluated on (bo ,  b,) to a receiver B who chooses 
secretly which one-bit function ( f )  he gets from her input bits. This is done in 
an all-or-nothing fashion: B cannot get more information about bo and bl than 
f ( b 0 ,  b l )  for some f ,  however malicious or computationally powerful he is, and 
A finds out nothing about the choice f of B. As was the case with (;)-XOT in 
Sect. 4, one may think of a (:)-GOT protocol as merely tolerating the fact that 
a cheating B might learn f ( b 0 ,  b l )  for some f rather than specifying that any  
such f can be learned at B’s whim. 

The following table enumerates all 14 possible non-constant functions from 
two bits to  one. (We ignore the two constant function since they would yield no 
information if used.) The symbols used refer to the common boolean functions. 
Example: ii stands for 60 A b l .  The notat,ions 0 and 1 are used for the projection 
functions boob1 = bo and b o l b l  = b l .  We say that a function f ( b 0 ,  b , )  is bzased if 
the probability that f ( b o ,  b l )  = 1 is not 1/2 when bo and bl are chosen randomly 
and independently according to the uniform distribution. The ordinary (f)-OT 
is a special c u e  of (!)-GOT where B is limited to the functions 0 and 1. 
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It has been shown in [BCR86] that (:)-GOT is a sufficient primitive to 
implement (;)-OT. The reduction they presented uses O(s) runs of (:)-GOT 
to achieve a single (;)-OT in such a way that the reduction may fail and give 
both bits to B with probability 2-'. If this protocol is combined with a standard 
reduction of (:)-OTk we obtain a global cost of O(ks )  runs of (:)-GOT per 
(f)-OTk. Contrary to  reductions to (:)-OT, reductions to (:)-GOT must involve 
a failure probability since it is always possible to get all the information sent by 
A by selecting the appropriate biased function at  each transfer by sheer luck. 
For example, if B requests xi A at step 2 of Protocol 3.1 for some i, and if he 
obtains the value 1, then he knows that both xi and zi are equal to 1. Using 
the new privacy amplification method we obtain a direct reduction of (i)-OTk 
at  a cost of only O(lc + s )  instances of (;?)-GOT. 

Consider a variation of Protocol 3.1 in which the transfers of step 2 are per- 
formed through (?)-GOT instead of (f)-OT. Our goal is to show that whatever 
program l? is ran by B ,  he is not able to obtain non-negligible information on 
both wo and wl ,  except with a probability that is exponentially small in the se- 
curity parameter s. Contrary to  the analysis in Sect. 5, it will no longer suffice to  
take n = yk + s for some y, but n will nevertheless remain in Q ( k  + s)-see the 
proof of Theorem 3 for details. First we show that immediately after Step 3 of 
the protocol, whatever program r? is ran by a, he will have negligible information 
about one of mo or ml , and negligible information allowing him to connect mo 
and ml. We conclude a similar result about wo and w1 at the end of the protocol 
from the fact that mo and ml are used as one-time pads to transfer them. 

obtains bits z:, with ci E {V, f, 1, =F,O, @,X, A ,  G, 0, -+, 1, t, V }  
at his choosing. As before, let g be a non-trivial linear function of mo and ml,  
that  is g(m0, ml) = vOmO @ vlml for some non-zero binary line-vectors vo and 
vl of length k .  We say that B can a-bias a bit if he can guess it with probability 
better than $ + a of being correct. 

Suppose 

Theorem3. Consider the knowledge that 
after Step 3 of the protocol. 

has about m o  and ml immediately 

Prob 3 non-trivial g such that can 2-k-1-J/2-bi as g(mo, m l ) )  < 2 - 5  ( 
provided n is chosen appropriately in  Q ( k  + s ) .  
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Proof. Let 7 and a be constants to be determined later and let n = (a+l)(yk+s).  
Let Biased = {i I ci E {V,F,=F,K] A, +, t, V}}, the set of positions where B 
uses a biased function. If #Biased < a(yk+s)  then Theorem 1 applies with y 2 2 
and n = y k  + s. We thus get the desired result. Otherwise #Biased  2 a(7k + s) 
is the more interesting case to consider. Consider the set of positions where B 
has used a biased function. As before, L? would have learned g(rn0,rnl) exactly 
if he had simultaneously ohtained 

xb when (z6,z. i)  = (1,O)  
xi when ( z ; ,  22) = ( 0 , l )  
xb when (26, zf) = ( I I  1) 

for all i for which 26 and z i  are not both 0. 

Remember that Mo, M I ,  20 and 2 1  are picked at random. Thus zo and ZI 

are random binary words of length 11. Since 8 has used a biased function in 
position i, wit,h probability 1/4 he will have learned both z6 and 21, and with 
probability 3/4 he will be able to l / b b i a s  x2,, xi and xi. (This is because each 
biased function has one output that uniquely defines a specific pair of inputs, 
while the other output leaves three pairs of inputs equally likely.) This means 
that in each such position i, b has obtained the bit he needs with probability 
7/16 and with probability 9/16 he can only l/6-bias the bit he needs. Of the 
a(ylc+s) such values of i, less than cs(7k+s)/4 of them will fall in the second case 
with probability at  most 2e-25a(yk+s)11024 M 2-(yk++”) according to Bernstein’s 
law of large numbers [RCn70, Chap. VII, Sect. 4, Theorem 21, for a w 28. When 
7 ( 7 k + s )  of the bits involved in the calculation of g ( r n 0 ,  rnl) are 1/6-biased, even 
if all the other hits are exactly known, B can only ( 1/3)7(rk+s)/2-bias the value 
of g(mo, ml) .  (In general, S-biasing each of x1,22, ..., 1 1  allows to (26)‘/2-bias 
xi  Cq 2 2  @ ... @XI [Cre90].) It follows that for any set of choices { c i } ,  and any 

. .  

V 0 , V l  # ok 
Prob a can 3-7(yk+s)/2-bias g(m0, m1)) < 2 - ( y k + s )  . 

Finally, given that there are less than 22k pairs V O ,  v1, taking 7 2 2, and using 
the fact that 3-7 ( rk+s ) /2  5 2-k-1-8 /2 ,  we conclude as desired that 

( 

Prob 3 non-trivial g such that b can 2-k-1--s/2-b’ 

- 
( < 229-(7k+*) < 2-3 . 

0 

To conclude that, except with probability 2-*, B has no more than 2-’ bit of 
information on at least one of mo or ml immediately after Step 3, and therefore 
no more than 2-+” bit of information on at  least one of wo or w1 at  the end of 
the protocol (even if he is given the other string-see the Appendix for formal 
definitions)] it suffices to apply the following theorem with E = 1/2k+1Ss/2. 
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Theorem4. Let k be an integer and E 5 1/2k+1. Consider a k-bit string m so 
that 23 cannot &-bias any non-trivial linear function of the bits of m. Then B's 
information on m in the sense of Shannon is less than (2"'~)' bit. 

Proof sketch. Let X be the random variable over the binary strings of length k 
that corresponds to B's probability distribution on m. Consider the set G of 
all non-trivial linear functions on k-bit strings: there are exactly 2k - 1 such 
functions. For any g E G, let p ,  be the probability that g(X) = 0. We have 
- E < p ,  < f + E for all g E G by assumption that B cannot &-bias non-trivial 

linear functions of the bits of m. 
It is easily shown that the probability that X = x for any given string 2 is 

given by 
1 

Prob(X = x) = 2-k t - 
2" s(g,x) x ( 2 p ,  - 1) 

!3E G 

for some function s : G x (0, l}k + {-1,l) whose detail does not concern us. 
It follows that Prob (3- = x) differs from 2-" by less than the largest value of 
2p ,  - 1 in absolute value, which is less than 2 ~ .  The random variable X that 
would give the most information to 23, yet respect the above constraint, would 
have half the strings with probability 2-k - 2~ and the other half with proba- 
bility 2-k + 2 ~ .  Therefore, 

H(X) 5 - 2 k - 1 ( 2 - k  - 2 ~ )  lg(2-k - 2 ~ )  - 2 k - 1 ( 2 - k  + 2 ~ )  lg(2-k + 2 ~ )  

8 Open Problems 

The value of n used in our proof of Theorem 3 is in O(k  + s) but we conjecture 
that it could be made significantly smaller in terms of the hidden constant, 
perhaps as small as 2k + s. 

As a further generalization, consider any a < 2.  An a-(f)-UOT is a cryp- 
tographic protocol for two participants that enables a sender A to trans- 
fer cr bits of information, in the sense of Shannon, about two bits ( b o , b ~ )  
to a receiver f3 who chooses secretly which information fi(bo,bl) he gets 
from her input bits. Werequire that fi(c,y) be a random variable such that 
H ((Bo, B1)1fi(~~,~~)) 2 2 - cr when Bo and B1 are uniformly distributed over 
( 0 , l ) .  This is done in an all-or-nothing fashion: B cannot get more information 
about bo and 61 than a sample from f2(bo,b,) for some f2, however malicious or 
computationally powerful he is, and that A finds out nothing about the choice fi 
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of B. To see that this is genuinely more general t,han (:)-GOT, consider the case 
in which l? would request to  see both bits through a binary symmetric channel 
with error rate 11%. Because Ha(ll%) x 0.5, this would give B one bit of in- 
formation about the two bits of A. However, this scenario cannot be simulated 
with (:)-GOT. 

Conjecture5. For aEl cly < 2 (or  perhaps merely f o r  all CY 5 I?), Protocol 3.1 
remains private even if occurrences of (!)-OT are replaced with cly-(f)-UOT, 
provided n 2 Pa(k + s) f o r  an appropriate constant pa t o  be determined, where 
s i s  the safety parameter. 

Conjecture6. If conjecture 5 fails as stated, i t  works i f  Shannon entropy i s  
replaced with Re‘nyi entropy of o r d e r p  in the definition of(~-(?)-UoT for all 
p > 1 [Cac97] or perhaps merely f o r  p = 2 [BBCM95]. 
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A 
Generalized 0 blivious Transfer 

Appendix: Information Theoretic Definition of 

A cryptographic protocol is a multi-party synchronous program that describes 
for each party the computations to be performed or the messages to  be sent to 
some other party at each point in time. The protocol terminates when no party 
has any message to send or information to compute. The protocols we describe 
in this paper all take place between two parties A and B. We denote by d and a 
the honest programs to  be executed by A and B: honest parties behave according 
to A and 8 and no other program. In the following definitions of correctness and 
privacy we also consider alternative dishonest programs 2 and executed by 
A or B in a effort to obtain unauthorized information from one another. The 
definitions specify the result of honest parties interacting together through a 
specific protocol as well as the possible information leakage of an honest party 
facing a dishonest party. We are not, concerned with the situation where both 
parties may be dishonest as they can do anything they like in that case; we 
are only concerned with protecting an honest party against a dishonest party. 
At the end of each execution of a protocol, each party will issue an “accept” 
or “reject” verdict regarding their satisfaction with the behaviour of the other 
party. Two honest parties should always issue “accept” verdicts at  the end of 
their interactions. An honcst party will issue a “reject” verdict at the end of a 
protocol if he received some message from the other party of improper format or 
some message not satisfying certain conditions specified by the protocol. We also 
implicitly assume certain time limits for each party to issue messages to each 
other: after a specified amount of time a party will give up interacting with the 
other party and issue a “reject” verdict. 

As discussed in Sect. 7,  a (:)-GOT is a cryptographic protocol for two par- 
ticipants that enables a sender d to transfer a one-bit function of two bits bo or 
61 to a receiver B who chooses secretly which function f ( b o ,  61) he gets. This is 
done in an all-or-nothing fashion, which means that B cannot get partial infor- 
mation about bo and bl at the same time, however malicious or computationally 
powerful he is, and that A finds out nothing about the choice f of B. 

Formally speaking we describe a two-party protocol that satisfies the follow- 
ing constraints of correctness and privacy, similar to those introduced for (:)-OT 
in [BCSSG]. 

Let [Po,Pl](a)(b) be the random variable (since Po and PI may be proba- 
bilistic programs) that describes the outputs obtained by A and B when they 
execute together the programs Po and PI on respective inputs a and b. Similarly, 
let [PO, P~]*(a)(b) be the random variable that describes the total information 
(including not only messages received and issued by the parties but also the 
result of any local random sampling they may have performed) acquired dur- 
ing the execution of protocol [PO, PI] on inputs a and b. Let [Po, P1Ip(a)(b) and 
[PO, Pl]>(a) (b)  be the marginal random variables obtained by restricting the 
above to only one party P .  The latter is often called the view of P [GMR89]. 
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In the following definition, the equality sign (=) means that the distributions on 
the 1.h.s. and the r.h.s. are the same. When required, we shall use more flexi- 
ble definitions that would allow an exponentially small probability of failure or 
amount of unauthorized information leakage. Details are left to the reader. 

Definition 7 (Correctness). Protocol [d, B] is correct for (:)-GOT if 

- V b o ,  b i  E (0, I}, f : {0,1}’ + {0,1} 

[A, m b o ,  b l ) ( f )  = ( € 1  f ( b 0 ,  bl)) (1) 

- for any program d there exists a probabilistic program A’ s.t. 
Vbo,  bl E (0, I}, f : (0, + (0,1} 

[j, ElIs (bo ,  b l ) ( f )  I fi accepts = [d, ( d ’ ( b 0 ,  bl))(f) I a accepts . (2) 

Intuitively, condition (1) means that if the protocol is executed as described, 
it will accomplish the task it was  designed for: D receives bit f ( b o ,  b l )  and A 
receives nothing. Condition (2) means that in situations in which B does not 
abort, A cannot induce a distribution on B’s output using a dishonest A that 
she could not induce simply by changing the input words and then being honest. 

Let Bo, B1 and F be the random variables taking values over ( 0 , l )  and 
(0,l)’  -+ (0,1} that describe A’s and a’s inputs. Weassume that both A 
and B are aware of the joint probability distribution of these random variables 
P B ~ , B ~ , F .  A sample b o , b l , f  is generated from that distribution and b o , b l  is 
provided as A’s secret input while f is provided as D’s secret input. 

Definition8 (Privacy). Protocol [ d  R] is private for (:)-GOT if 
VBo,Bi E{O, l} ,F :  {0,1}’+{0,1} 

- V b o ,  bl E (0,1} and for any program A 

I ( F ;  [.&B]l(Bo,&)(F) I (Bo,Bi) = ( b o , b i ) )  = O  (3) 

- Vf : (0,l)’ + {0,1} and for any program r? there exists a random variable 
P = R(F) : (0, 1}2 + (0,1} s.t. 

The above two conditions are designed to guarantee that each party is limited 
to the information he or she should get according to the honest task definition. 
Condition (3) means that d cannot acquire any information about F through the 
protocol. On the other hand, condition (4) means that may acquire only one 
bit of deterministic information about Bo, B1 through the protocol. We do not 
require that b be given F ( B o ,  B1) because there is no way to prevent him from 
obtaining any other F(B0, B1) through otherwise honest use of the protocol. 
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