
0 blivious Transfers and Privacy Amplification

Gilles Brassard * and Claude Crdpeau ++

DCpartement IRO, UniversitC de Montreal
C.P. 6128, succursale centre-ville

Montrkal (Qukbec), Canada H3C 357
email: {brassard, crepeau} Oiro .umontreal. ca

Abstract. Assume A owns two secret k-bit strings. She is willing to
disclose one of them to B , at his choosing, provided he does not learn
anything about the other string. Conversely, B does not want A to learn
which secret he chose to learn. A protocol for the above task is said to
implement One-out-of-two String Oblivious Transfer, denoted (:)-OTk.
This primitive is particularly useful in a variety of cryptographic settings.
An apparently simpler task corresponds to the case k = 1 of two one-bit
secrets: this is known as One-out-of-two Bit Oblivious Transfer, de-
noted (:)-OT. We address the question of reducing (:)-OTk to (:)-OT.
This question is not new: it was introduced in 1986. However, most so-
lutions until now have implicitly or explicitly depended on the notion
of self-intersecting codes. It can be proved that this restriction makes it
asymptotically impossible to implement (:)-OTk with fewer than about
3.5277k instances of (:)-OT. The current paper introduces the idea of
using privacy amplification as underlying technique to reduce (:)-Ork
to (:)-OT. This allows for more efficient solutions at the cost of an expo-
nentially small probability of failure: it is sufficient t,o use slightly more
than 2k instances of (:)-OT in order to implement (f)-OTk. Moreover,
we show that privacy amplification allows for the efficient implementa-
tion of (:)-OTk from generalized versions of (:)-OT that would not have
been suitable for the earlier techniques based on self-intersecting codes.
An application of this more general reduction is given.

Key Words: Information-Theoretic Security, Reduction Between Protocols,
Oblivious Transfer, Privacy Amplification.

* Supported in part by Canada’s NSERC, The Canada Council and QuCbec’s FCAR.
** Supported in part by Qdbec’s FCAR and Canada’s NSERC.

W. Fumy (Ed.): Advances in Cryptology - EUROCRYPT ’97, LNCS 1233, pp. 334-347, 1997.
0 Springer-Verlag Berlin Heidelberg 1997

335

1 Introduction

One-out-of-two String Oblivious Transfer, denoted (:)-OT” is a primitive that
originates with [Wie70] (under the name of “multiplexing”), a paper that marked
the birth of quantum cryptography. According to this primitive, one party A
owns two secret k-bit strings wo and w1, and another party B wants to learn w,
for a secret bit c of his choice. A is willing to collaborate provided that B does
not learn any information about wF, but B will only participate if A cannot ob-
tain information about c . Independently from [Wie7O] but inspired by [Rab81],
a natural restriction of this primitive was introduced subsequently in [EGL83]
with applications to contract signing protocols: One-out-of-two Bit Oblivious
Transfer, denoted (?)-OT, concerns the case k = 1 in which wo and w1 are
single-bit secrets, generally called bo and bl in that case.

Techniques were introduced in [BCR86] and refined in [CSSlb, BCS96] to
reduce (:)-OTk to (:)-OT: several two-party protocols were given to achieve
One-out-of-two String Oblivious Transfer based on the assumption of the avail-
ability of a protocol for the simpler One-out-of-two Bit Oblivious Transfer. The
fact that (:)-OTk can be reduced to (:)-(IT is not surprising because a num-
ber of authors [Ki188, Crk89, CGT951 have shown that (:)-OT is sufficient to
implement any two-party computation. Our interest in direct reductions is their
far greater efficiency. With the exception of [CSSla], all previous direct reduc-
tions that we are aware of [BCR86, CSSlb, BCS96] are based on a notion called
zigzag functions, whose construction is reduced to finding particular types of
error-correcting codes called self-intersecting codes. In a nutshell, this approach
consists in selecting once and for all a suitable function f from (0, l}n to (0,
for n as small as possible (n > k), so that if 20 is a random preimage of wo and
21 is a random preimage of wl, and if B is given to choose via (:)-OT to see
the ith bit of either 2 0 or 21, 1 5 i 5 n, then no information can be inferred
on at, least one of wo or w1. This approach has led to various reductions with
expansion factors ,8 ranging from 4.8188 to 18, that is various polynomial-time
constructible methods using n = ,Bk instances of (q)-OT to perform one (i)-OTk
on k-bit strings. Koml6s proved that this approach cannot yield an expansion
factor ,B that is asymptotically better than 3.5277 [CL85]. I t was recently proven
by Stinson that the same bound applies even to non-linear zigzags [Sti97].

The current paper exploits a new approach to this problem using przvacy
amplification, a notion first introduced in the context of key exchange protocols
[BBR88]. The new approach allows for a solution requiring only slightly more
than 2k instances of (:)-OT to perform one (f)-OTk, and it can be extended
to a whole range of generalizations of (:)-OT that could not be used with the
reductions based on zigzag functions.

An application of the simplest of our generalizations is also considered:
(:)-OTk from A to B can be reduced to (f)-OT in the other direction (from
B to d) by only doubling the cost of reducing to (:)-OT from A to B. This
improves on an earlier result of [CS9la].

336

Method
Monte Carlo Zigzag’

2 Privacy Amplification Method

expansion failure construction
factor probability time

4.8188 + E Y 8 O (k 2)

Assume A knows a random n--bit string 2 about which B has partial infor-
mation. Privacy a ~ ~ p l i f i ~ a t i ~ n is a technique invented in [BBR88] and refined
in [BBCM95] that allows A to shrink z to a shorter string w about which B
has an arbitrarily small amount of information even if he knows the recipe
used by A to transform 5 into w. Intuitively, this can be used to implement
(?)-OT’(wo, w1) (c) from (:)-OT because A can offer B to read one of two ran-
dom strings 20 or 2 1 by a simple sequence of (:)-OT(zd, zi)(ci). Subsequently,
A tells B how to transform 20 into wo and z1 into w1 by way of privacy amplifi-
cation. An honest B who accessed all the bits of zc can reconstruct w, from this
informition. But a dishonest 6 who tried to access some of the bits of 20 and
some of the bits of $1 will not have enough information on at least one of them
to infer any information on the corresponding wj or even joint information on
both wo and W I .

An important fact about the method based on zigzag functions considered in
earlier papers is that there is no way for B to learn information about both wo
and w1 even though the zigzag function is known before he gets to choose which
bits of I C O and z1 to obtain through the (:)-OT instances. In the new approach
based on privacy amplification] A reveals the function to B after the necessary
(:)-OT’s have been performed. This allows for a protocol that is simpler, more
general and more efficient, but at the cost of a vanishingly small probability of
failure. A drawback of this approach is that a new function must be generated
and transmitted at each run of the protocol.

The following table compares the efficiency of the earlier methods to that
of privacy amplification. The column “expansion factor” gives a number ,B so
that a (:)-OTk can be achieved with /3k instances of (:)-OTl s is a safety pa-
rameter, and E is arbitrarily small in the limit of large k , Thus we see that the
privacy amplification method is preferable provided a probability of failure can
be tolerated.

I -

Las Vegas Zigzag2
Zigzag B. la Justesen3
Zigzag B. la Goppa4
Privacy Amplification

9.6377 + E 0 O(kZj
18 0 O(k4) ,

6.4103 0 o(k32) -
2 t E 2-5 O(k2)

Attributed to Cohen and Lempel in [BCS96].
Attributed to Joe Kilian in [BCS96].
From [BCS96].
From [CZ94] based on a method of [CSSlb].

337

3 The New Protocol

Let s be a security parameter chosen by d and B so that they agree to tolerate
a probability 2-' of failure. Let y be a constant to be determined later, let
n = yk + s, and let Fz denote the field of integers modulo 2.

Privacy amplification is based on the general notion of universal classes of
hash functions [CW79]. For sake of simplicity, we use a specific class of hash
functions in our protocol to implement (:)-OTk from (f)--OT:

{ h I h (z) = M z , for M a k x n matrix over 7 2) .

Other, more efficient classes of hash functions can be used, but it is not known
if the definition of universal classes is sufficient in general to make our protocol
work.

Protocol 3.1 ((?)-0T'((w0, WI)(C))

1: A picks two random n-bit strings xo and ti.
2: DO A transfers t' t (?)-OT(zb,z;)(c) t o 8.
3: A picks two random k x n matrices Mo and M1 over Fz;

4: A sets mo t MOXO, ml t MIXI, yo t mo @ wo and y1 t ml @ w;

5: B recovers w c by computing (M,t) @ yc.

n

1= 1

she announces them to B.

she announces yo and yl to 8.

We postpone to Sect. 5 the proof that this protocol is private provided y 2 2
because we shall first generalize it to permit at no extra cost the use of another
primitive called X O R Oblivious Transfer. (Informally, a protocol is private if
B cannot learn information on both wo and wl except perhaps with negligible
probability. In addition, B must not be able to obtain joint information on wo
and 2~11 except for what follows from his a priori knowledge and his learning one
of the two strings. Conversely, should learn nothing at all. See [BCSSG] for
a formal information-theoretic definition. We shall later relax the condition to
allow B an exponentially small amount of unauthorized information.)

4 XOR Oblivious Transfer

A (T)-XOT is an extension of (T)-OT that enables a sender A t o transfer to a
receiver B either one bit among bo and bl or their exclusive-orl at B's choice. More
formally,d inputs bo and bl into the protocol, B inputs c E {0,1, @}, and l3 learns
b, while A learns nothing, where for convenience we use be to denote bo CB b l .

As usual, this is done in an all-or-nothing fashion: 8 cannot get more information
about bo and b l than bo, bl or b e , however malicious or computationally powerful
he is. Note that in our application of (:)-XOT, which is to use it instead of

338

(?)-OT inside Protocol 3.1, an honest f? would never requests 6,. Therefore we
can safely use any protocol in which it is merely tolerated that f? might learn be
in cheating attempts even though A is not required to provide it upon request.

The (?)-XOT comes naturally in a specific implementation of (f)-OT: in
[BCRSSa] a protocol for (f)-OT is given under the assumption that deciding
quadratic residuosity modulo a composite number is hard. In that implementa-
tion, the possibility that 6 obtains he arises naturally and some effort is made
to prevent it. The current paper shows that this effort was unnecessary if the
final goal is to implement (H)-OTk rather than simply (:)-OT.

5 Privacy

Consider a variation of Protocol 3.1 in which the transfers at step 2 are per-
formed through (?)-XOT instead of (f)-OT. Even though this makes no differ-
ence if B follows the protocol honestly, it gives him additional opportunities for
cheating if he so desires. Our goal is to show that whatever program s is ran
by B, he is not able to obtain information on both wg and w1, except with a
probability that is exponentially small in the security parameter s. Moreover,
it is obvious from inspection of the protocol that a cheating A cannot obtain
any information about B’s secret parameter c. From now on, think of E O and 21
as column-vectors of length n, and of mo = MOZO and ml = Mlz1 as column-
vectors of length k, all over &. First, we show that immediately after Step 3 of
the protocol, whatever program a is ran by f?, he will have no information about
one of mo or ml and no information allowing him to connect rno and mi (such
as mo @ rnl for instance), except with exponentially small probability. (Formally,
there will be some bit C such that the first three steps of the protocol would give
no additional information to 6 about the pair (mo, mi) than if he were simply
told the value of mE; see [BCSSCi].) We conclude the result about wo and w1 at
the end of the protocol from the fact that mo and ml are used as one-time pads
to transfer them.

Suppose reads the bits xi, with ci E { 0 , 1 , @} at his choosing.
Let g be a non-trivial linear function of mo and ml . In other words,
g (m o , ml) = V O ~ O @ vlml for some line-vectors vo and v1 of length k over F2
such that both vo and v1 are non-zero 5 .

Theoreml. Consider the knowledge that L? has about mo and ml immediately
after Step 3 of the protocol. Provided y 2 2,

3 non-trivial g such that 8 knows g(mo, m1)

Note that by virtue of wo and n o being a line-vector and a column-vector, respec-
tively, a “matrix” multiplication such as uomo computes the scalar product; similarly,
given that 20 is also a colurnn-vector, an expression such as WOMOSO makes sense:
it is simply an element of Fz!. This notation is handy because VOMOCO can be thought
of indifferently as either the scalar product of vo with MOZO or of VOMO with EO.

339

Proof. We first describe the condition under which b learns g (m 0 , ml) at Step 3
of the protocol for some specific non-trivial linear function g. By definition

g (m 0 , m1) = womo CE Z'lrnl = voMoto e3 VlMlZl = 2020 CE 21x1
-

where zo = WOMO and z1 = q M 1 . Because z0 and z1 are random, 23 cannot learn
anything about g(rn0 , ml) at Step 3 unless he is lucky enough that his choices
ci simultaneously follow

0 when (z6 , z f) = (1 , O)
1 when (z 6 , ~ :) = (0 , l) { @ when (z:,.:) = (1,l)

ci =

in all the instances of (q)-XOT such that z6 and zf are not both 0. (The value
of ci is unimportant when (26, 2;) = (0,O) since neither xi nor xf is required in
that case to compute g (m 0 , rn l) .)

But remember that MO and M I are picked at random and neither vo nor v1 is
zero. Therefore zo = voM0 and z1 = v lMl are random binary strings of length n
chosen independently according to the uniform distribution. In particular, a0 and
z1 are independent of a ' s choices of C ~ S . It follows that, for each i, the probability
that either (z ; , 2:) = (0,O) or L? chose ci appropriately according to the above
case analysis is exactly 1/2. Since b must be lucky for each i, 1 5 i 5 n,

Prob s learns g (r n o , rn l)) = 2-"

for each non-trivial linear function g , whatever choices L? makes for the ci's.
Finally, given that there are less than 22k such linear functions, we conclude
that

Prob 3 non-trivial g such that a learns g(mo, m~))

(

-
(< 2 2 k - n = 2 (2 - 7) k - s < 2 - 5

provided y 2 2. 0

Theorem 2. Protocol 3.1 is private even if the transfers at step 2 are performed
through (f) -XOT instead of(:)-OT.

Proof. We know from Theorem 1 that, except with probability at most 2-',
23 has not learned g(m0, rnl) by the end of Step 3 for any linear function g
that involves both r n o and rnl in a non-trivial way.6 It follows that there is a
d E (0 , l) such that B learns no non-trivial linear function of m d because if he
could learn non-trivial linear functions g o (m o) and g1 (ml) , he would have learned
g O (m 0) @ g l (r n l) , a non-trivial linear function of both mo and ml. We can say
something stronger: not only does a learn no non-trivial linear function of m d ,

but he learns no information of any kind that involves md. This is true because

Of course, it is possible for B to learn linear functions of mo or ml alone by setting
all the c, = 0 or c , = 1 as in the honest protocol.

340

mo and rnl are purely random and the only source of information that B has
about them (up until Step 3) is given by linear functions of 7 n O and ml. Since
md is used by A at Step 4 as one-time pad to transmit wd to a, it follows that

0 learns no information of any kind that involves wd.

6 Application: Reversing Oblivious Transfer

Consider that A wants to send one of two words wo or w1 to B when they
only have an (T)-OT channel running from B to A. A very efficient protocol
for sending one of two bits from A to B is given in [CSSla] provided A does
not mind the possibility that B might learn the exclusive-or of her two bits:
two instances of reversed (:)-OT are sufficient to implement (:)-XOT. No such
efficient constructions are known that would implement (f)-OT from so few
instances of reversed (f)-OT. In other words it is much easier to implement
(:)-XOT than (f)-OT from A to B given an (Y)-OT channel from B to A. This
is fine because we just showed that (:)-XOT is just as good as (f)-OT for
the purpose of implementing (:)-OTk. Therefore, (:)-OTk from A to B can be
implemented from slightly more than 4k instances of (:)-OT from l3 to A. This
is a three-fold improvement over [CSgla].

7 Generalized Oblivious Transfer

A (:)-GOT is a cryptographic protocol for two participants that enables a sender
A to transfer a one-hit function evaluated on (bo , b,) to a receiver B who chooses
secretly which one-bit function (f) he gets from her input bits. This is done in
an all-or-nothing fashion: B cannot get more information about bo and bl than
f (b 0 , b l) for some f , however malicious or computationally powerful he is, and
A finds out nothing about the choice f of B. As was the case with (;)-XOT in
Sect. 4, one may think of a (:)-GOT protocol as merely tolerating the fact that
a cheating B might learn f (b 0 , b l) for some f rather than specifying that any
such f can be learned at B’s whim.

The following table enumerates all 14 possible non-constant functions from
two bits to one. (We ignore the two constant function since they would yield no
information if used.) The symbols used refer to the common boolean functions.
Example: ii stands for 60 A b l . The notat,ions 0 and 1 are used for the projection
functions boob1 = bo and b o l b l = b l . We say that a function f (b 0 , b ,) is bzased if
the probability that f (b o , b l) = 1 is not 1/2 when bo and bl are chosen randomly
and independently according to the uniform distribution. The ordinary (f)-OT
is a special c u e of (!)-GOT where B is limited to the functions 0 and 1.

341

It has been shown in [BCR86] that (:)-GOT is a sufficient primitive to
implement (;)-OT. The reduction they presented uses O(s) runs of (:)-GOT
to achieve a single (;)-OT in such a way that the reduction may fail and give
both bits to B with probability 2-'. If this protocol is combined with a standard
reduction of (:)-OTk we obtain a global cost of O(ks) runs of (:)-GOT per
(f)-OTk. Contrary to reductions to (:)-OT, reductions to (:)-GOT must involve
a failure probability since it is always possible to get all the information sent by
A by selecting the appropriate biased function at each transfer by sheer luck.
For example, if B requests xi A at step 2 of Protocol 3.1 for some i, and if he
obtains the value 1, then he knows that both xi and zi are equal to 1. Using
the new privacy amplification method we obtain a direct reduction of (i)-OTk
at a cost of only O(lc + s) instances of (;?)-GOT.

Consider a variation of Protocol 3.1 in which the transfers of step 2 are per-
formed through (?)-GOT instead of (f)-OT. Our goal is to show that whatever
program l? is ran by B , he is not able to obtain non-negligible information on
both wo and wl , except with a probability that is exponentially small in the se-
curity parameter s. Contrary to the analysis in Sect. 5, it will no longer suffice to
take n = yk + s for some y, but n will nevertheless remain in Q (k + s)-see the
proof of Theorem 3 for details. First we show that immediately after Step 3 of
the protocol, whatever program r? is ran by a, he will have negligible information
about one of mo or ml , and negligible information allowing him to connect mo
and ml. We conclude a similar result about wo and w1 at the end of the protocol
from the fact that mo and ml are used as one-time pads to transfer them.

obtains bits z:, with ci E {V, f, 1, =F,O, @,X, A , G, 0, -+, 1, t, V }
at his choosing. As before, let g be a non-trivial linear function of mo and ml,
that is g(m0, ml) = vOmO @ vlml for some non-zero binary line-vectors vo and
vl of length k . We say that B can a-bias a bit if he can guess it with probability
better than $ + a of being correct.

Suppose

Theorem3. Consider the knowledge that
after Step 3 of the protocol.

has about m o and ml immediately

Prob 3 non-trivial g such that can 2-k-1-J/2-bi as g(mo, m l)) < 2 - 5 (
provided n is chosen appropriately in Q (k + s) .

342

Proof. Let 7 and a be constants to be determined later and let n = (a+l)(yk+s).
Let Biased = {i I ci E {V,F,=F,K] A, +, t, V}}, the set of positions where B
uses a biased function. If #Biased < a(yk+s) then Theorem 1 applies with y 2 2
and n = y k + s. We thus get the desired result. Otherwise #Biased 2 a(7k + s)
is the more interesting case to consider. Consider the set of positions where B
has used a biased function. As before, L? would have learned g(rn0,rnl) exactly
if he had simultaneously ohtained

xb when (z6,z. i) = (1,O)
xi when (z ; , 22) = (0 , l)
xb when (26, zf) = (I I 1)

for all i for which 26 and z i are not both 0.

Remember that Mo, M I , 20 and 2 1 are picked at random. Thus zo and ZI

are random binary words of length 11. Since 8 has used a biased function in
position i, wit,h probability 1/4 he will have learned both z6 and 21, and with
probability 3/4 he will be able to l / b b i a s x2,, xi and xi. (This is because each
biased function has one output that uniquely defines a specific pair of inputs,
while the other output leaves three pairs of inputs equally likely.) This means
that in each such position i, b has obtained the bit he needs with probability
7/16 and with probability 9/16 he can only l/6-bias the bit he needs. Of the
a(ylc+s) such values of i, less than cs(7k+s)/4 of them will fall in the second case
with probability at most 2e-25a(yk+s)11024 M 2-(yk++”) according to Bernstein’s
law of large numbers [RCn70, Chap. VII, Sect. 4, Theorem 21, for a w 28. When
7 (7 k + s) of the bits involved in the calculation of g (r n 0 , rnl) are 1/6-biased, even
if all the other hits are exactly known, B can only (1/3)7(rk+s)/2-bias the value
of g(mo, ml) . (In general, S-biasing each of x1,22, ..., 1 1 allows to (26)‘/2-bias
xi Cq 2 2 @ ... @XI [Cre90].) It follows that for any set of choices { c i } , and any

. .

V 0 , V l # ok
Prob a can 3-7(yk+s)/2-bias g(m0, m1)) < 2 - (y k + s) .

Finally, given that there are less than 22k pairs V O , v1, taking 7 2 2, and using
the fact that 3-7 (rk+s) /2 5 2-k-1-8 /2 , we conclude as desired that

(

Prob 3 non-trivial g such that b can 2-k-1--s/2-b’

-
(< 229-(7k+*) < 2-3 .

0

To conclude that, except with probability 2-*, B has no more than 2-’ bit of
information on at least one of mo or ml immediately after Step 3, and therefore
no more than 2-+” bit of information on at least one of wo or w1 at the end of
the protocol (even if he is given the other string-see the Appendix for formal
definitions)] it suffices to apply the following theorem with E = 1/2k+1Ss/2.

343

Theorem4. Let k be an integer and E 5 1/2k+1. Consider a k-bit string m so
that 23 cannot &-bias any non-trivial linear function of the bits of m. Then B's
information on m in the sense of Shannon is less than (2"'~)' bit.

Proof sketch. Let X be the random variable over the binary strings of length k
that corresponds to B's probability distribution on m. Consider the set G of
all non-trivial linear functions on k-bit strings: there are exactly 2k - 1 such
functions. For any g E G, let p , be the probability that g(X) = 0. We have
- E < p , < f + E for all g E G by assumption that B cannot &-bias non-trivial

linear functions of the bits of m.
It is easily shown that the probability that X = x for any given string 2 is

given by
1

Prob(X = x) = 2-k t -
2" s(g,x) x (2 p , - 1)

!3E G

for some function s : G x (0, l}k + {-1,l) whose detail does not concern us.
It follows that Prob (3- = x) differs from 2-" by less than the largest value of
2p , - 1 in absolute value, which is less than 2 ~ . The random variable X that
would give the most information to 23, yet respect the above constraint, would
have half the strings with probability 2-k - 2~ and the other half with proba-
bility 2-k + 2 ~ . Therefore,

H(X) 5 - 2 k - 1 (2 - k - 2 ~) lg(2-k - 2 ~) - 2 k - 1 (2 - k + 2 ~) lg(2-k + 2 ~)

8 Open Problems

The value of n used in our proof of Theorem 3 is in O(k + s) but we conjecture
that it could be made significantly smaller in terms of the hidden constant,
perhaps as small as 2k + s.

As a further generalization, consider any a < 2. An a-(f)-UOT is a cryp-
tographic protocol for two participants that enables a sender A to trans-
fer cr bits of information, in the sense of Shannon, about two bits (b o , b ~)
to a receiver f3 who chooses secretly which information fi(bo,bl) he gets
from her input bits. Werequire that fi(c,y) be a random variable such that
H ((Bo, B1)1fi(~~,~~)) 2 2 - cr when Bo and B1 are uniformly distributed over
(0 , l) . This is done in an all-or-nothing fashion: B cannot get more information
about bo and 61 than a sample from f2(bo,b,) for some f2, however malicious or
computationally powerful he is, and that A finds out nothing about the choice fi

344

of B. To see that this is genuinely more general t,han (:)-GOT, consider the case
in which l? would request to see both bits through a binary symmetric channel
with error rate 11%. Because Ha(ll%) x 0.5, this would give B one bit of in-
formation about the two bits of A. However, this scenario cannot be simulated
with (:)-GOT.

Conjecture5. For aEl cly < 2 (or perhaps merely f o r all CY 5 I?), Protocol 3.1
remains private even if occurrences of (!)-OT are replaced with cly-(f)-UOT,
provided n 2 Pa(k + s) f o r an appropriate constant pa t o be determined, where
s i s the safety parameter.

Conjecture6. If conjecture 5 fails as stated, i t works i f Shannon entropy i s
replaced with Re‘nyi entropy of o r d e r p in the definition of(~-(?)-UoT for all
p > 1 [Cac97] or perhaps merely f o r p = 2 [BBCM95].

Acknowledgements

We thank Dominic Mayers and Louis Salvail for their help, comments, sugges-
tions and support.

References

[BBCM95] C. H. Bennett, G. Brassard, C. Crkpeau and U. M. Maurer, “Generalized
privacy amplification”, IEEE Transactaon on Information Theory, Vol. 41,
no. 6, November 1995, pp. 1915 - 1933.
C. H. Bennett, G. Brassard and J.-M. Robert, “Privacy amplification by
public discussion”, SIAM Journal on Computing, Vol. 17, no. 2, April 1988,

G. Brassard, C. Crkpeau and J.-M. Robert, “Information theoretic re-
ductions among disclosure problems”, Proceedings of 27th Annual IEEE
Symposium on Foundations of Computer Science, 1986, pp. 168 - 173.

[BCRSSa] G. Brassard, C. CrCpeau and J.-M. Robert, “All-or-nothing disclosure of se-
crets”, Advances in Cryptology: Proceedings of Crypto ’86, Springer-Verlag,

G. Brassard, C. CrCpeau and M. SAntha, “Oblivious transfers and inter-
secting codes”, IEEE Transactions on Information Theory, Vol. 42, no. 6,
November 1996, pp. 1769- 1780.
C. Cachin, “Smooth entropy and RCnyi entropy”, Advances in Cryptology:
Proceedings of Eurocrypt ’97, Springer-Verlag, 1997.
J. L. Carter and M. N. Wegman, “New hash functions and their use in au-
thentication and set equality”, Journal of Computer and System Sciences,

G. D. Cohen and A. Lempel, “Linear intersecting codes”, Discrete Mathe-
matics, vol. 56, 1985, pp. 35 - 43.

[BBR88]

pp. 210-229.
[BCR86]

1987, pp. 234 - 238.
[BCS96]

[Cac97]

[CW79]

V O ~ . 22, 1981, pp. 265 - 279.
[CLSS]

345

[CZ94]

[CrC89]

[CrCgO]

[CGT95]

[CSgla]

[CSSlb]

[EGL83]

[GMR89]

[Ki188]

[Rabgl]

[RCn70]
[Sti97]
[Wiei’o]

G . D. Cohen and G. Zbmor, “Intersecting codes and independent families”,
IEEE Transactions on Information Theory, Vol. 40, no. 6, November 1994,

C. CrCpeau, “Verifiable disclosure of secrets and application”, Advances
in Cryptology: Proceedings of Eurocrypt ’89, Springer-Verlag, 1990,

C. Crkpeau, Correct and Private Reductions Among Oblivious Transfers,
PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 1990. Supervised by Silvio Micab.
C. Crkpeau, J . van de Graaf and A. Tapp, ‘Committed oblivious transfer
and private multi-party computations”, Advances in Crglptology: Proceed-
ings of Crypto ’95, Springer-Verlag, 1995, pp. 110 - 123.
C. Crkpeau and M. S h t h a , “On the reversibility of oblivious transfer”,
Advances in Cryptology: Proceedings of Eurocrypt ’91, Springer-Verlag,

C. CrCpeau and M. S h t h a , “Efficient reductions among oblivious transfer
protocols based on new self-intersecting codes”, Sequences II , Methods in
Communications, Security and Computer Science, Springer-Verlag, 1991,

S. Even, 0. Goldreich and A. Lempel, “A randomized protocol for sign-
ing contracts”, Proceedings of Crypto 82, Plenum Press, New York, 1983,

S. Goldwasser, S. Micali and C . Rackoff, “The knowledge complexity of
interactive proof-systems”, SIAM Journal on Computing, Vol. 18, 1989,

J. Kilian, “Founding cryptography on oblivious transfer”, Proceedings of
20th Annual A CM Symposium on Theory of Computing, 1988, pp. 20 - 31.
M. 0. b b i n , “How to exchange secrets by oblivious transfer”, Technical
Memo TR-81, Aiken Computation Laboratory, Harvard University, 1981.
A. RCnyi, Probability Theory, North Holland, 1970.
D. R. Stinson, Private communication, 12 February 1997.
S. Wiesner, “Conjugate coding”, Sigact News, Vol. 15, no. 1, 1983,
pp. 78 - 88. Original manuscript written circa 1970.

pp. 1872 - 1881.

pp. 181 - 191.

1991, pp. 106- 113.

pp. 360 - 368.

pp. 205-210.

pp. 186-208.

346

A
Generalized 0 blivious Transfer

Appendix: Information Theoretic Definition of

A cryptographic protocol is a multi-party synchronous program that describes
for each party the computations to be performed or the messages to be sent to
some other party at each point in time. The protocol terminates when no party
has any message to send or information to compute. The protocols we describe
in this paper all take place between two parties A and B. We denote by d and a
the honest programs to be executed by A and B: honest parties behave according
to A and 8 and no other program. In the following definitions of correctness and
privacy we also consider alternative dishonest programs 2 and executed by
A or B in a effort to obtain unauthorized information from one another. The
definitions specify the result of honest parties interacting together through a
specific protocol as well as the possible information leakage of an honest party
facing a dishonest party. We are not, concerned with the situation where both
parties may be dishonest as they can do anything they like in that case; we
are only concerned with protecting an honest party against a dishonest party.
At the end of each execution of a protocol, each party will issue an “accept”
or “reject” verdict regarding their satisfaction with the behaviour of the other
party. Two honest parties should always issue “accept” verdicts at the end of
their interactions. An honcst party will issue a “reject” verdict at the end of a
protocol if he received some message from the other party of improper format or
some message not satisfying certain conditions specified by the protocol. We also
implicitly assume certain time limits for each party to issue messages to each
other: after a specified amount of time a party will give up interacting with the
other party and issue a “reject” verdict.

As discussed in Sect. 7, a (:)-GOT is a cryptographic protocol for two par-
ticipants that enables a sender d to transfer a one-bit function of two bits bo or
61 to a receiver B who chooses secretly which function f (b o , 61) he gets. This is
done in an all-or-nothing fashion, which means that B cannot get partial infor-
mation about bo and bl at the same time, however malicious or computationally
powerful he is, and that A finds out nothing about the choice f of B.

Formally speaking we describe a two-party protocol that satisfies the follow-
ing constraints of correctness and privacy, similar to those introduced for (:)-OT
in [BCSSG].

Let [Po,Pl](a)(b) be the random variable (since Po and PI may be proba-
bilistic programs) that describes the outputs obtained by A and B when they
execute together the programs Po and PI on respective inputs a and b. Similarly,
let [PO, P~]*(a)(b) be the random variable that describes the total information
(including not only messages received and issued by the parties but also the
result of any local random sampling they may have performed) acquired dur-
ing the execution of protocol [PO, PI] on inputs a and b. Let [Po, P1Ip(a)(b) and
[PO, Pl]>(a) (b) be the marginal random variables obtained by restricting the
above to only one party P . The latter is often called the view of P [GMR89].

347

In the following definition, the equality sign (=) means that the distributions on
the 1.h.s. and the r.h.s. are the same. When required, we shall use more flexi-
ble definitions that would allow an exponentially small probability of failure or
amount of unauthorized information leakage. Details are left to the reader.

Definition 7 (Correctness). Protocol [d, B] is correct for (:)-GOT if

- V b o , b i E (0, I}, f : {0,1}’ + {0,1}

[A, m b o , b l) (f) = (€ 1 f (b 0 , bl)) (1)

- for any program d there exists a probabilistic program A’ s.t.
Vbo, bl E (0, I}, f : (0, + (0,1}

[j, ElIs (bo , b l) (f) I fi accepts = [d, (d ’ (b 0 , bl))(f) I a accepts . (2)

Intuitively, condition (1) means that if the protocol is executed as described,
it will accomplish the task it was designed for: D receives bit f (b o , b l) and A
receives nothing. Condition (2) means that in situations in which B does not
abort, A cannot induce a distribution on B’s output using a dishonest A that
she could not induce simply by changing the input words and then being honest.

Let Bo, B1 and F be the random variables taking values over (0 , l) and
(0,l)’ -+ (0,1} that describe A’s and a’s inputs. Weassume that both A
and B are aware of the joint probability distribution of these random variables
P B ~ , B ~ , F . A sample b o , b l , f is generated from that distribution and b o , b l is
provided as A’s secret input while f is provided as D’s secret input.

Definition8 (Privacy). Protocol [d R] is private for (:)-GOT if
VBo,Bi E{O, l} ,F : {0,1}’+{0,1}

- V b o , bl E (0,1} and for any program A

I (F ; [.&B]l(Bo,&)(F) I (Bo,Bi) = (b o , b i)) = O (3)

- Vf : (0,l)’ + {0,1} and for any program r? there exists a random variable
P = R(F) : (0, 1}2 + (0,1} s.t.

The above two conditions are designed to guarantee that each party is limited
to the information he or she should get according to the honest task definition.
Condition (3) means that d cannot acquire any information about F through the
protocol. On the other hand, condition (4) means that may acquire only one
bit of deterministic information about Bo, B1 through the protocol. We do not
require that b be given F (B o , B1) because there is no way to prevent him from
obtaining any other F(B0, B1) through otherwise honest use of the protocol.

	Oblivious Transfers and Privacy Amplification
	1 Introduction
	2 Privacy Amplification Method
	3 The New Protocol
	4 XOR Oblivious Transfer
	5 Privacy
	6 Application: Reversing Oblivious Transfer
	7 Generalized Oblivious Transfer
	8 Open Problems
	Acknowledgements
	References

