
Lower Bounds for Discrete Logarithms and
Related Problems

Victor Shoup

IBM Research-Zurich, Saumerstr. 4 , 8803 Ruschlikon, Switzerland
shoQzurich.ibm.com

Abstract. This paper considers the computational complexity of the
discrete logarithm and related problems in the context of “generic
algorithms”-that is, algorithms which do not exploit any special prop-
erties of the encodings of group elements, other than the property that
each group element is encoded as a unique binary string. Lower bounds
on the complexity of these problems are proved that match the known
upper bounds: any generic algorithm must perform Q(p1’*) group oper-
ations, where p is the largest prime dividing the order of the group. Also,
a new method for correcting a faulty Diffie-Hellman oracle is presented.

1 Introduction

The discrete logarithm problem plays an important role in cryptography. The
problem is this: given a generator g of a cyclic group G, and an element g x in
G, determine z. A related problem is the Diffie-Hellman problem: given gZ and
g y , determine g”Y.

In this paper, we study the computational power of “generic algorithms”-
that is, algorithms which do not exploit any special properties of the encodings
of group elements, other than the property that each group element is encoded
as a unique binary string. For the discrete logarithm problem, as well as several
other related problems, including the Diffie-Hellman problem, we present lower
bounds that match the known upper bounds for these problems. We also give a
new method for correcting a faulty Diffie-Hellman oracle.

Gener ic Algorithms

Let Z / n be the additive group of integers mod n, and let S be a set of bit strings
of cardinality a t least n . An encoding f u n c t i o n of Z / n on S is an injective map
cr from Z j n into S.

A generic algorithm A for Z / n on S is a probabilistic algorithm that behaves
as follows. It takes as input an encoding l is t (.(.I), . . . , ~ (z k)) , where each zi is
in Z / n , and u is an encoding function of Z / n on S. As the algorithm executes, it
may from time to time consult an oracle, specifying two indices i and j into the
encoding list, and a sign bit. The oracle computes cr(z, & zj), according to the
specified sign bit, and this bit string is appended to the encoding list (to which
A always has access). The output of A is a bit string denoted A(cr; z1,. . . , zk).

W. Fumy (Ed.): Advances in Cryptology - EUROCRYPT ’97, LNCS 1233, pp. 256-266, 1997.
0 Springer-Verlag Berlin Heidelberg 1997

257

Note that the algorithm A depends on n and S, but not on a; information
about a is only available to A through the oracle.

To measure the running time of such an algorithm, we count both the number
of bit operations, and the number of group operations (i.e., oracle queries).

It is readily seen that the classical Pohlig-Hellman algorithm [S] is a generic
algorithm. Let p denote the largest prime divisor of n. Assuming the strings
in S have a length that is polynomial in logn, this algorithm has a running
time of p1/2(logn)0(1), and this bound holds uniformly for all possible encoding
functions. Note that this algorithm makes essential use of the fact that group
elements are uniquely encoded as bit strings, which facilitates the use of fast
sorting-and-searching techniques.

Pollard’s discrete logarithm algorithm [9] also falls into this generic class.
This algorithm is much more space efficient than the Pohlig-Hellman algorithm,
but its efficiency relies on the heuristic assumption that the encoding function
behaves like a random mapping.

As an example, consider the multiplicative group (Z/p)* for a prime q , to-
gether with a generator g for this group. Here, n = q - 1, and the relevant
encoding function sends a E Z/n to the binary encoding of ga mod q .

Of course, not all algorithms for the discrete logarithm problem are generic.
Index-calculus methods for (Z / q) * , for example, do not fall in this category,
and our results have no bearing on such algorithms. For groups associated with
elliptic curves, however, the only known algorithms for discrete logarithms are
generic. Our results imply that for elliptic curves, one cannot substantially im-
prove upon the Pohlig-Hellman algorithm using generic algorithms: some method
must be devised to exploit the particular representation of group elements.

Summary of Results

In 92 we consider the discrete logarithm problem. Theorem 1 says that any
generic algorithm that solves (with high probability) the discrete logarithm prob-
lem on Z/n must perform at least R(p1/2) group operations, where p is the largest
prime dividing n. The theorem shows that for any algorithm, there must be an
encoding function for which it makes queries to the group oracle; we
do this by showing that this must hold for a random encoding function, and a
random input.

Theorem 2 deals with the analog for the discrete logarithm problem in non-
cyclic groups, which was suggested to the author by Buchmann [3]. Suppose G
is the product of T cyclic groups of prime order p . Then any generic algorithm
that (with high probability) expresses a given element on a given basis for G
must perform at least R(prl2) group operations.

In 93 we consider the Diffie-Hellman problem. Theorem 3 proves the analog
of Theorem 1 for the Diffie-Hellman problem.

Theorem 4 shows that if the group order is divisible by only large primes,
then it is hard to simply determine which of two possible solutions is correct.

Theorem 5 deals with the problem of solving the Diffie-Hellman problem
in subgroups. Suppose we are given an oracle for solving the Diffie-Hellman

problem in a group G, and now want to solve the Diffie-Hellman problem in
a proper subgroup H . This problem is interesting, as it plays an important
role in Maurer’s [5] and Boneh and Lipton’s [2] reductions from the discrete
logarithm problem to the Diffie-Hellman problem: they require Diffie-Hellman
oracles for prime-order subgroups. Theorem 5 implies that in the context of
generic algorithms, there are situations where the oracle for G does not help at
all in solving the problem in N.

In 54 we consider the security of an identification scheme due to Schnorr
[lo] based on the discrete logarithm problem. While this scheme is known to be
secure against “passive” attacks, its security against “active” attacks is not well
understood. Theorem 6 shows that this scheme is indeed secure against active
attacks when the adversary is a generic algorithm.

In $5 we consider a quite different problem: given a faulty oracle for the Diffie-
Hellman problem, how to make it highly reliable? One reason that this problem is
interesting is that the reductions of Maurer and BonehILipton mentioned above
require reliable oracles. That is, these reductions say that if Diffie-Hellman is
“easy,” then the discrete logarithm is “easy.” However, in proving the security of
a cryptosystem based on the Diffie-Hellman problem, one normally assumes that
this problem is “hard.” The above reductions do not allow one to directly weaken
this to an assumption that the discrete logarithm is “hard”: that a problem is
not “hard” does not imply that it is “easy”. For this, one must solve precisely
the problem we address: making a faulty oracle reliable.

In light of our Theorem 4, standard techniques for amplifying correctness do
not apply to the Diffie-Hellman problem. Theorem 7 and its corollary show how
to efficiently turn an oracle that is occasionally correct into one that is almost
always correct. The theorem is also useful in the application of the Goldreich-
Levin theorem to hard bits of the Diffie-Hellman problem.

Related Work

Babai and SzemerCdi [l] proved lower bounds in a “black box” model in which
the encoding of group elements is not necessarily unique, and the group oracle
must be consulted to test for equality. For a cyclic group of order n, if p is the
largest prime divisor of TI, their results give an R(p) lower bound. Note that the
Pohlig-Hellman algorithm does not work in this model.

More recently, Nechaev [7] considered algorithms for the discrete logarithm
problem in the following computational model: an algorithm is allowed to per-
form group operations and equality tests, but no other operations on group
elements are allowed-the notion of encodings of elements does not enter into
this model at all. While the above R(p) lower bound still applies to the total
running time, Nechaev proves an R(p1I2) lower bound on the number of group
operations alone. These bounds match a variant of the Pohlig-Hellman algorithm
in which only linear searching techniques are used.

One can view our results as an extension of Nechaev’s results to a broader
and more natural class of algorithms, and to a wider range of problems related
to the discrete logarithm problem.

259

For the problem of correcting a faulty Diffie-Hellman oracle, Maurer and Wolf
[6] independently devised a scheme based on techniques quite different from ours.
It seems that our scheme is substantially simpler and more efficient than theirs.

2 The Discrete Logarithm Problem

The main result of this section is the following.

Theorem 1 Let n be a positive integer whose largest prime divisor is p . Let
s C (0,l)' be a set of cardinality at least n. Let A be a generic algorithm for
Z / n on S that makes at most rn oracle queries. If x E Z / n and an encoding
function u are chosen at random, then the probabilaty that A(u; 1,s) = z is
O W / P) .

Note that the above probability is taken over the random choices of u and 2,
as well as the coin flips of A . The theorem implies that for any algorithm, there
exists an encoding function c for which it succeeds with probability O(m2/p) ,
taking the probability over z and the coin flips of A . If we insist that A succeed
with probability bounded away from 0 by a constant, this translates into a lower
bound of R(pl/') on the number of group operations.

TO prove this and several other theorems, we need the following lemma.

Lemma 1 Let p be prime and let t > - 1. Let F(X1,. . . , xk) E Z / p t [X 1 , . . . , xk]
be a nonzero polynomzal of total degree d . Then for random 21,. . . , x k E Z / p t ,
the probability that F(x1,. . . , zk) = 0 is at most d / p .

P T O O f . For t = 1, this is proved in Schwartz [ll]. For t > 1, one divides the
equation F = 0 by the highest possible power of p , and obtains a nonzero
equation of no greater degree that holds modulo p . If 21 , . . . , Zk are chosen from
Z / p t at random, then their images in Z / p are random as well, and so we can
apply the result for t = 1. CI

We now sketch the proof of Theorem 1. Let n = p t s , where (p , s) = 1. Instead
of letting the algorithm interact with the actual oracle, we play the following
game. Let X be an indeterminant. At any step in the game, the algorithm has
computed a list F1,. . . , Fk of h e a r polynomials in Z / p t [XI, along with a list
21, . . . , zk of values in z / s , and a list ulr . . . , uk of distinct values in s. At the
beginning of the game, k = 2; F1 = 1 and F2 = X ; z1 = 1 and 22 is chosen
at random; 01 and u2 are chosen at random, subject to u1 # uz. When the
oracle is given two indices z and j , we append new values Fk+l,zk+l,(Tk+l to
the appropriate lists as follows. We compute F k + l = Fi f Fj E Z / p ' [X] and
zk+l = z; f zj E z / s . If Fk+l = 4 and zk+l = zl for some 1 with 1 5 1 5 k, we
Set Ck+l = ui; otherwise, we set uk+l to a random element in s distinct from

When the algorithm terminates, it outputs some y E Z / n . Let y' be the
image of y in Z / p t . Now we choose a random x E Z / p t . We say the algorithm
wins the game if Fi(z) = Fj(x) for any Fi # Fj or if z = y'.

Ul,...,flk.

260

Fix i , j with F, # F j , and set F = Fi-Fj. Now, since F # 0, a n d d e g F 5 1,
then by Lemma 1, the probability that F (z) = 0 is a t most l / p . Likewise, the
probability that z = y' is at most l / p . It follows that the probability that the
algorithm wins the above game is O (m 2 / p) .

To finish the proof, one must only observe that the behavior of this game
differs from an actual interaction between the algorithm and oracle only when
the algorithm wins the above game. Therefore, the probability that the algorithm
outputs the correct answer is bounded by the probability that the algorithm wins
the above game.

To make the above argument completely rigorous, one can easily construct
a single probability space that is shared by both the actual interaction and the
above game, such that

(1) the shared probability space does not change the behavior of either the actual
interaction or the above game, and

(2) in this shared space, the event that A outputs the correct answer in the
actual interaction is contained in the event that A wins the above game.

The details of this are quite straightforward, and are omitted. That completes
the proof of Theorem 1.

We now consider a variation of the discrete logarithm problem that applies
to non-cyclic groups.

Suppose that G = Z / p x . . . x Z / p is the product of T cyclic groups of order
p , where p is prime. The input consists of the encodings of the unit vectors
e l , . . . , e,, along with the encoding of an element (11 , . . . , I,) E G. The output
should be (21, . . . , z T) . Here, an encoding function is an injective map u from G
into some set S of at least p' bit strings. The following theorem establishes an
f2(prI2) lower bound for this problem with respect to generic algorithms. Note
that a simple generalization of the Pohlig-Hellman algorithm gives a matching
upper bound.

Theorem 2 Let A be a generzc algorzthm for G on S for the above problem that
makes at most m oracle queries. If (X I , . . . , x,) E G and an encodang frrnction u
are chosen at random, then the probability that

A(c; e l , . . . , e r r (~ 1 , . . ' I 5,)) (.I,. . ' 1 G)
2s O(m2/p').

The proof is similar to that of Theorem 1. We sketch the differences. Let
X I , . . . , X , be indeterminants. We play the same game as before, but instead of
a list of polynomials, we maintain a list of r-tuples, each of which has the form

(a X 1 + b l , a X z + b2, . . . 9 + b T) ,

where a , b l , . . . , b, E Z / p . The key observation is that when we add or subtract
(component-wise) two r-tuples of this form, we get an r-tuple of the same form.

261

Also, by Lemma 1, the probability that a nonzero r-tuple of this form vanishes
when XI,. . . , X, are substituted with random values is at most l/p". The rest
of the proof goes as before.

One can easily extend the above theorem to an arbitrary finite abelian group
G = Z / n l x . . . x Z/n , , obtaining a lower bound of R (P ~ / ~) , where p is a prime
and k is the number of moduli ni divisible by p.

3 The Diffie-Hellman Problem

In this section, we prove a lower bound for the Diffie-Hellman problem

Theorem 3 Let n be a positive integer whose largest prime divisor is p . Let
S C { O , 1}* be a set of cardinality at least n. Let A be a generic algorithm f o r
Z / n on S that makes at most m oracle querzes. If x , y E Z / n and an encoding
function u are chosen at random, then the probabzlity that A(u; 1, a, y) = ~ (z Y)
is O(rn2lp) .

The proof of this is similar to that of Theorem 1. We may assume that the
output of A is one of the encodings obtained from the oracle, since otherwise
the success probability is bounded by l / (p - m). We play precisely the same
game as there, except that we maintain a list of polynomials F, in the variables
X , Y over Z / p t , where each polynomial has total degree 1. When the algorithm
terminates, we pick a , y E Z / p t at random, and we say that the algorithm wins
the game if F i (a , y) = F j (s , y) for some F, # F j , or if F i (x , y) = x y for some
z . Applying Lemma 1, for fixed i , j , the probability that Fi - Fj vanishes is a t
most l /p, and for fixed i, the probability that F, - XY vanishes is at most 2 / p .
It follows that the probability that the algorithm wins this game is O (m 2 / p) .

That completes the proof of Theorem 3.

When n is divisible by only small primes, just determining which of two
possible answers is the correct one is hard.

Theorem 4 Let n be a posztzve znteger whose smallest przme dzvzsor zs p. Let
S c (0 , l) ' be a set of cardznalzty at least n. Let A be a generzc algorithm for
Z / n on S that makes at most m oracle querzes. Let x , y , z E Z / n be chosen at
random, let u be a random encodzng functzon, and let b be a random bat. Also,
l e t wo = x y and w1 = z . Then the probabzlzty that A(u; l 1x , y ,wb ,w1-b) = b zs
1/2 + 0 (m 2 / p) .

We sketch the proof. We play a similar game as before, this time maintain-
ing a list of polynomials F,(X, Y, U, V) over Z / n of total degree 1, assigning
to each distinct polynomial a distinct random encoding. We say the algorithm
wins the game if for any Fi # F j , we have F ; (x , y , x y , z) = F j (x , y , x y , z), or
F i (x , y , z, x y) = Fj (z , y, z, a y) . For a fixed Fi # F j , the polynomial Fi - Fj must

262

be nonzero modulo some prime power qt that exactly divides n. Since the im-
ages x, y, and z in Z / q t are also uniformly distributed, by Lemma 1, the above
condition holds with probability at most 4 / q 5 4 / p . Thus, the probability that
the algorithm wins the game is O (m 2 / p) . Moreover, it is clear that in the actual
interaction between the algorithm and the oracle, the probability that the algo-
rithm determines b is bounded by 1/2 plus the probability that the algorithm
wins the above game.

We close this section with a look at the following question. Suppose we have
a cyclic group G, and we have an oracle for the Diffie-Hellman problem in G.
Can we use this oracle to solve the Diffie-Hellman problem efficiently in a proper
subgroup H? It is not difficult to see that if (/ H I , lGl/lHl) is divisible only by
small primes, then this problem can be solved efficiently. More specifically, if p
is the largest prime dividing (IHl , lGl/lHl), the problem can be solved in time
p1/2(logn)0(1). The following theorem shows that this bound is essentially tight,
and thus for large p the problem can not be solved efficiently using a generic
algorithm.

To study this problem, we extend the notion of a generic algorithm so as
to include a Diffie-Hellman oracle: given indices i and j , the oracle computes
u (z i . xj). The output of such an algorithm A is denoted by ADH(V; 21,. . . , z k) .

Theorem 5 Let n be a positrve anteger, and let 1 be a divisor of n such that for
some p r i m e p , 1 = l t p s , n = n’pt , and t > s > 0. Let 5’ c {0,1}* be a set of
cardinality a t least n . Let A be a generic algorithm for Z/n o n S that makes a t
m o s t m oracle querzes. If x E Z/n and a n encoding func t ion u are chosen a t
random, then the probability that A D H (U ; 1, lx, l y) = a (1 z y) i s O((t / s) . m 2 / p) .

We sketch the proof in the case 1’ = n’ = 1. The more general case is dealt
with as in Theorem 1. Let d = r t / s] - 1. We play the usual game, this time
maintaining a list of polynomials F i (X , Y) in the variables X and Y over Z / p t ,
each of which has the form

d

The key observation is that when we add, subtract, or even mult iply two poly-
nomials of this form, we get a polynomial that is also of this form. When the
algorithm terminates, we select x, y E Z / p t at random, and the algorithm wins
the game if for some Fi # 8’3, Fi(x, y) = F j (z , y) or for some i, Fi(x, y) = p’zy.
By Lemma 1, this happens with probability a t most O (d m 2 / p) .

4 Analysis of an Identification Scheme

An identification scheme is an interactive protocol that allows one party P to
prove its identity to another party V. To do this, P has a public key, which is
known to all parties, and a private key, which is known only to himself.

263

Such a scheme is considered secure if an adversary can not feasibly make V
believe it is conducting the protocol with P . One can allow the adversary to
first interact with P , pretending to be V (but not not necessarily following V’s
protocol), in order to gain some information about P’s secret key that will be of
use in its impersonation attempt. Such an attack is called “active.” An attack
where no prior interaction with P is allowed is called “passive.” Clearly, security
against active attacks is preferable to security against passive attacks.

An identification scheme due to Schnorr [lo] runs as follows. Let G be a
cyclic group of order n, with a publicly known generator g. P’s private key is an
element x E Z / n , and its public key is h = 9”. The value I is randomly chosen.
In the first step of the protocol, P generates T E Z / n at random, computes
h‘ = gr , and sends h’ to V . Upon receiving h‘, V chooses e E Z / n at random,
and sends e to P . Upon receiving e , P computes y = T + x e E Z / n and sends
y to V . Upon receiving y, V checks that g y = h’he. If this identity holds, V
accepts; otherwise, V rejects.

In his paper, Schnorr shows that this protocol is secure against passive at-
tacks, assuming the discrete logarithm is hard. We prove that the scheme is
secure against a active adversary that behaves as a generic algorithm.

Theorem 6 Consader the above zdentzficatzon scheme zn a generzc settzng; that
zs, there zs an encodzng functzon u mappzng elements of Z/n znto a set S of bzt
strzngs. suppose that the adversary makes no more than m antemctzons wzth P
or querzes to the group oracle, and that u zs chosen at random. Suppose also that
the przvate key x 2s chosen at random Then the probabzlzty that the adversary
successfully zmpersonates P zs O (m 2 / p) , where p zs the largest przme dzvadzng n.

The above probability is taken over u, x, and the coin tosses of all of the
players. In proving this theorem, we allow the adversary to interact with several
instances of P in parallel-we do not require that one interaction ends before
the next one begins.

We sketch the proof for n = p ; the more general case is dealt with as in
Theorem 1.

We use the same type of game argument that we used in proving the other
theorems, but with a few changes. In this game, we maintain a list of degree 1
polynomials F i (X , R1, R2, . . . , Rm) in m + 1 variables over Z / p , corresponding
to the group elements the adversary has seen so far, along with a corresponding
list of random encodings.

Initially, the list of polynomials contains the two polynomials 1 and X . When-
ever the adversary starts an interaction with P for the Ieth time, we add the
polynomial & to the polynomial list, and a distinct random encoding to the list
of encodings. Whenever the adversary consults the group oracle, we add to the
polynomial list the sum of the appropriate polynomials; we either either re-use
an encoding or generate a distinct random encoding, as appropriate.

Now suppose the adversary sends a challenge e to the lth instance of P . In
our game, we do the following: we choose y E Z / p at random, and send y to the
adversary as the response from P; we also go through our list of polynomials

264

and substitute y - eX for the variable Ri wherever it appears. If upon making
this substitution any two distinct polynomials in the list become equal, we quit
and we say the adversary wins. Otherwise, we continue the game.

Now suppose the adversary attempts an impersonation. Without loss of gen-
erality, we may assume the adversary has completed all interactions with P that
it started. So it has collected a list F1, . , . , Fm+2 E Z / p [X] of polynomials along
with a list of encodings. In the first step of the protocol, the adversary presents
the encoding of some group element corresponding to one of these polynomials,
say Fi. Next V chooses e E Z l p a t random. If Fl + eX is a constant polynomial,
we quit and say the adversary wins. Otherwise, the adversary chooses y E Z I P .
Finally, we choose x E Z l p at random, and we say that the adversary wins if
y = F i (z) + e x or if F;(x) = F j (z) for any Fi # Fj.

That completes the description of the game. First observe that the behavior
of this game deviates from that of the actual interaction only if the adversary
wins the game. So it suffices to bound the probability that the adversary wins
the game. It is relatively straightforward to show that this is O (m 2 / p) . One
observation to bear in mind is the following. When making a substitution y - e X
for a variable Rk, one need only count pairs of polynomials Fi # Fj such that
Fi - Fj E Z / p [X , Rk] and the coefficient of Rk is nonzero. But note that if we
count this pair when substituting for Rk, we will not count this pair when we
later make a substitution for some other Rl, Thus, the total number of pairs we
need to count is O(rn2).

5 A Diffie-Hellman Self-Corrector

In this section, we consider the following problem. Let G be a cyclic group
of order n with generator g. Suppose we have a “faulty” oracle for the Diffie-
Hellman problem; that is, given g n and gb, the oracle outputs gc, such that
c ab (mod n) with probability at least E . We take this probability to be over the
random choice of a and b mod n, and any coin tosses of the oracle. Here, E is small,
but nonnegligible. The problem is to use this oracle to build an efficient algorithm
for the Diffie-Hellman problem whose output is almost certainly correct for all
inputs. One motivation for this problem is again the reductions of [5] and [2] from
the discrete logarithm problem to the Diffie-Hellman problem; these reductions
require a nearly-perfect oracle-a faulty oracle will simply not do.

Given such an oracle, using the standard random self-reduction, we can run it
0(1/~) times so that with high probability one of its outputs is correct. However,
as we have seen, in the generic model we have no hope of determining which
output is correct.

We consider the following, more general, problem. We define a (k, 6) D@e-
Hellman oracle as follows: for all inputs g a , g b , it produces a list of Ic elements
in G such that this list contains gab with probability at least 6. The problem is
to use this oracle to solve the Diffie-Hellman problem.

Another situation in which this type of oracle arises is in the hard-bit con-
struction of Goldreich and Levin [4] , where a bit-predicting oracle can be turned
into this type of oracle.

265

Theorem 7 Given a (k , 6) Difie-Hellman oracle with S > 7/8, we can construct
a probabilistic (generzc) algorithm for the Difie-Hellman problem wzth the fol-
lowing properties. For given a , with 0 < a < 1, the algorzthm makes O(log(l / a))
querzes to the (k,S) oracle, and performs an additional O(log(l/a)klogn +
(logn)2) group operations. For all inputs, the output of the algorithm is cor-
rect with probability at least 1 - a .

As an immediate corollary, we have:

Corollary 1 Given a faulty Diftie-Hellman oracle that has a success probabil-
z ty of E , we can construct a probabilzstic algorithm for the Difie-Hellman prob-
lem with the following properties. For given a , wzth 0 < cr < 1, the algorithm
makes O(6-I log(l/a)) queries to the faulty oracle, and performs an additional
O (E - ~ log(l/a) logn + (logn)2) group operations. For all inputs, the output of
the algorithm is correct with probabzlity at least 1 - a .

TO prove Theorem 7, we assume that n is known, and that for all prime
factors p of n, k 2 / p < 1/8. If this does not hold, we can partially factor n, and
apply the Pohlig-Hellman algorithm to the “smooth” part. A straightforward
calculation shows that this takes O(,k log n + (log n>’) group operations. So we
can assume that n is of the desired form.

For given go, gb, the following algorithm either reports failure, or outputs a
single value gc. The algorithm makes two queries to the (k , 6) oracle and performs
an additional O(k log n) group operations. The probability that it reports failure
is at most 3/8. The conditional probability that gc # gab, given that it does not
report failure, is 2/7. The Diffie-Hellman algorithm then simply runs the above
algorithm O(log(l / a)) times, taking the majority of the non-failure outputs.

We call the (k,d) oracle twice, first with ga,gb, obtaining a list 91,. . . ,gk
of group elements. Next, we choose z , y E (0, , . . , n - 1) at random, and send
(ga)=gY, g b to the (k, a) oracle, obtaining a list 9: , . . . , gb of group elements. Next,
for all 15 i 5 k and 15 j 5 k, we test if

If (1) is satisfied for a unique pair (gi,gg), we output gi; otherwise, we report
failure. Note that standard sorting-and-searching techniques can be used to make
this last step efficient.

The claimed running-time bound is easily verified. We now analyze its cor-
rectness. Let z = ar + y . Fix i and j, and suppose gi = gc and gl = gd. Suppose
c 5 ab (mod n). Then (1) is satisfied if and only if and d z zb (mod n) . Now SUP-

pose c $ ab (mod n). Then for some prime power pt that exactly divides n, we
must have c $ ab (mod p t) . In this case, the probability that (1) holds is at most
the conditional probability that for random r , y mod p t , cz + by c d (mod p‘),
given that ar + y = z (mod p t) . This is equal to the probability that for fixed z
and random r , (c - ab)z + 6z - d 0 (mod p t) , which is by Lemma 1 at most
l / P .

266

There are three mutually exclusive events of interest: the algorithm either
(F) reports failure, (I) produces an incorrect output, or (C) produces a correct
out put.

Pr[F] + Pr[l] is bounded by the probability that one of the lists does not
contain a correct output, or that any extraneous relations (1) hold. This happens
with probability at most 1/8 + 1/8 + k2/p 5 3/8.

Pr[l] is bounded by the probability that one of the lists does not contain
a correct output. This is because if both lists contain a correct output, any
extraneous relations (1) that hold will cause the algorithm to report failure.
This probability is thus bounded by 1/8 + 1/8 = 1/4.

It trivially follows that Pr[F] is bounded by 3/8. Moreover, by a simple
calculation, Pr[l]/(Pr[l] + Pr[C]) is bounded by 2/7.

References

1. L. Babai and E. SzemerCdi. On the complexity of matrix group problems I. In 25th
Annual Symposium on Foundations of Computer Science, pages 229-240, 1984.

2. D. Boneh and R. J. Lipton. Algorithms for black-box fields and their application
to cryptography. In Advances in Cryptology-Crypto '96, pages 283-297, 1996.

3. J. Buchmann, 1995. Personal communication.
4. 0. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In

2 l s t Annual ACM Symposium on Theory of Computing, pages 25-32, 1989.
5. U. Maurer. Towards the equivalence of breaking the Diffie-Hellman protocol and

computing discrete logarithms. In Advances in Cryptology-Crypto '94, pages 271-
281, 1994.

6. U. Maurer and S. Wolf. Diffie-Hellman oracles. In Advances in Cryptology-Crypt0
'96, pages 268-282, 1596.

7. V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes, 55(2):165-172, 1994. Translated from Maternaticheskie Za-
metki, 55(2):91-101, 1994.

8. s. Pohlig and M. Hellman. An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance. IEEE Trans. Inf. Theory, 24:106-110,
1978.

5. J. M. Pollard. Monte Carlo methods for index computation mod p . Mathematics
of Computation, 32:918-524, 1978.

10. c. Schnorr. Efficient signature generation by smart cards. J . Cryptology, 4:161-
174, 1991.

11. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identi-
ties. J . ACM, 27(4):701-717, 1980.

	Lower Bounds for Discrete Logarithms andRelated Problems
	1 Introduction
	2 The Discrete Logarithm Problem
	3 The Diffie-Hellman Problem
	4 Analysis of an Identification Scheme
	5 A Diffie-Hellman Self-Corrector
	References

