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Abstract. All information-theoretically secure key agreement protocols 
(e.g. based on quantum cryptography or on noisy channels) described in 
the literature are secure only against passive adversaries in the sense that 
they assume the existence of an authenticated public channel. The goal 
of this paper is to investigate information-theoretic security even against 
active adversaries with complete control over the communication channel 
connecting the two parties who want to agree on a secret key. Several 
impossibility results are proved and some scenarios are characterized in 
which secret-key agreement secure against active adversaries is possible. 
In particular, when each of the parties, including the adversary, can ob- 
serve a sequence of random variables that are correlated between the 
parties, the rate at which key agreement against active adversaries is 
possible is characterized completely: it is either 0 or equal to the rate 
achievable against passive adversaries, and the condition for distinguish- 
ing between the two cases is given. 

1 Introduction 

One of the fundamental problems in cryptography is the generation of a shared 
secret key by two parties, Alice and Bob, not sharing a secret key initially, in the 
presence of an adversary Eve who has access to the communication channel con- 
necting Alice and Bob. Several scenarios, which differ in their assumptions about 
Eve's capabilities and possibly about the intractability of certain computational 
problems, have been considered in the literature. 

Public-key cryptography introduced by Diffie and Hell~rian [9] (see also [20]) 
solves this problem under the two assumptions that 

(1) Eve is unable to solve a certain computational problem (such as factoring 
integers or computing discrete logarithms in a certain finite group) in feasible 
time, and 
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(2) that Eve has only passive (read) access to the communication channel be- 
tween Alice and Bob, i.e., that the communication between Alice and Bob 
is authenticated. 

The purpose of this paper is t,o investigate the described key distribution prob- 
lem when neither of these assumptions is made: We consider adversaries with 
infinite computing power and complete control over the communication channel 
connecting Alice and Bob. Several impossibility results are proved and sume sce- 
narios in which secret-key agreement secure against active adversaries is possible 
axe characterized. Secret-key agreement can be possible in this scenario only if 
Alice and Bob (but possibly also Eve) have correlated information. More for- 
mally, while Alice and Bob share no secret key initially, they know some random 
variables X and Y ,  respectively, jointly distributed with a random variable 2 
known to  Eve. The joint probability distribution is denoted Pxyz ,  

One can have different opinions about whether it is reasonable to assume 
that  a specific computational problem is difficult. Furthermore, since quantum 
computation has been invented as a (at least for now) theoretical model of com- 
putation, it is not completely clear whether intractability assumptions in the 
Turing machine model of computation are still adequate. There also exist dif- 
ferent opinions about whether certain methods of authentication, like speaker 
identification on a voice channel, are strong enough to  support the second as- 
sumption above. It is not a goal of this paper to discuss these issues, but we 
believe that avoiding both assumptions is an interesting research topic. 

There exists a substantial body of results on secret-key agreement by public 
discussion secure against adversaries with infinite computing power (see Sec- 
tion 2.3 for a brief summary), but they all depend in a crucial manner on the as- 
sumption that eavesdroppers are passiiie and hence the communication between 
Alice and Bob can be assumed to  be authenticated. Of course, as is pointed out 
in these papers, the authenticity can be guaranteed, even when the channel is 
completely insecure, when Alice and Bob initially share a secret key that is used 
for authentication purposes (see Section 2.2). Hence these results cam be inter- 
preted as providing information-theoretically secure protocols for expanding a 
short initially shared secret key to an arbitrarily long secret key. 

This paper characterizes scenarios in which secret-key agreement against ac- 
tive adversaries is possible and shows that for an important class of scenarios of 
correlated random variables available to Alice, Bob and Eve, active adversaries 
are not more powerful than passive ones. 

2 Key-agreement protocols 

2.1 Scenarios and definitions 

We now formalize key-agreement protocols; the security of such protocols will 
be defined later. 
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Definition 1. A key-agreement protocol consists of three phases: 

- a (possibly missing) initialization phase’ in which Alice, Bob and an ad- 
versary Eve receive random variables X ,  Y and 2, respectively) which are 
jointly distributed according to  some probability distribution PX yz. 

- During the communication phase Alice and Bob alternate sending each other 
messages C1 , CZ, . . . where we assume that Alice sends messages C1 , Cs , CS , . . . 
and Bob sends messages Cz, Cq, CS). . . Each message depends possibly on 
the sender’s entire view of the protocol at the time it is sent and possibly on 
privately generated random bits. Let t be the total number of messages and 
let Ct = [Cl , . . . ) Ct] denote the set of exchanged messages. 

- Finally, Alice and Bob each either accepts or rejects the protocol execution, 
depending on whether they believe to be able to generate a secret key. If 
Alice accepts, she generates a key S depending on her view of the protocol. 
Similarly, if Bob accepts, he generates a key S’ depending on his view of the 
protocol. 

In general, the channel connecting Alice and Bob is completely insecure, i.e. 
Eve can see every message Ci and replace it by an arbitrary message (?i of her 
choice. She need not keep Alice and Bob synchronized and she can impersonate 
either party by fraudulently initiating a protocol execution. 

For stating impossibility results in the strongest possible form, we also con- 
sider protocols in which certain messages can be sent in a secret or authenticated 
manner (by appropriate means not specified by the protocol). 

Definition 2. If a message C, is secret (by the protocol specification)) Eve learns 
nothing about it except that it exists2. However, she may replace such a message 
by a different message. If a message Ci is authenticated (by the protocol specifica- 
tion)) then the receiver will always (with probability 1) detect any modification 
to the message due to Eve, but Eve sees the message. 

Considering a passive adversary is equivalent to assuming the entire com- 
munication to be authenticated. The above definition can be made information- 
theoretically precise. 

If two parties share a secret key, they can use the one-time pad encryption to 
transmit a message in perfect secrecy over a complctely insecure channel. They 
can also use part of the secret key for authenticating messages (see Section 2 . 2 ) .  

The initialization phase summarizes the parties’ entire initial information, for in- 
stance the history of previous executions of protocols, the information resulting from 
quantum transmissions (like in quantum cryptography [2]), or information received 
from other sources like a satellite broadcasting random bits (see Section 4.3) or the 
signal of a deep-space radio source. When the initialization phase is missing, this 
means that Alice’s and Bob’s completc knowlcdgc at thc bcginning of the protocol 
is assumed to be statistically independent. 
I t  is possible that she later obtains information about C, because subsequent mes- 
sages depend on C;,  but Eve never learns anything about C, not provided by subse- 
quent messages. This will be formalized in the full paper. 
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However, in contrast to  perfect secrecy, perfect authenticity cannot be achieved 
even if a secret key of arbitrary fixed size is used because an adversary can 
always guess the key with non-zero probability of success. Authenticity and 
confidentiality are dual security properties, and the duality can be shown in 
various ways (e.g., see [16]). 

All the protocol steps proposed in this paper are polynomial-time com- 
putable, but there may generally be steps in subprotocols taken from the lit- 
erature that are not known to be computable in polynomial time. However, for 
every protocol resulting in Alice and Bob sharing a secret key mentioned here, 
there also exist efficient protocols for generating a secret key (which may be 
sorxewhat shorter). 

In general, the distribution PXYZ may be under Eve's partial control and 
may only partly be known to Alice and Bob. Two examples are the privacy 
a,mplification scenario [3] mentioned in Section 2.3, and quantum cryptography, 
where both Bob's and Eve's distributions depend on the type of measurement 
performed by Eve on the photons sent by Alice. In this paper we assume that 
P x y z  is known to all parties. 

In the sequel we assume without loss of generality that S and S' are binary 
strings of length IS/ = IS'I = k.  Clearly, the goal of a protocol is that S and S' 
agree with very high probability and that Eve has very little information about 
S.  An adversary can of course block the communication between Alice and Bob 
completely by replacing all messages by empty messages, thus preventing any 
secret-key agreement. The goal of the design of a protocol can thus only be 
to generate a (hopefully large amount of) secret key when Eve is passive, but 
to detect any tampering with very high probability. However, even when Eve's 
strategy is active, it is allowed that she goes undetected if the secret key shared 
by Alice and Bob at the end of the protocol nevertheless is secret. In other 
words, Alice and Bob should not primarily be interested in catching an active 
cheater but in making sure that whenever they believe (or at least one of them 
believes) to have agreed on a secret key, then this is indeed the case with very 
high probability. 

Definition 3. A key-agreement protocol with IS1 = k is ( E ,  &)-secureif, for every 
passive eavesdropping strategy, 

PIS # S'I 5 € 7  

I (S;C?Z) 5 F ,  
and H ( S )  2 k - €, 

and if for every active adverse strategy, with probability at least 1 - 6 ,  either 
Eve is caught by at least Alice or Bob (i.e. they do not both accept) or they 
successfully generate a secret key S (and S')  satisfying the above conditions. 

Note that one cannot require both Alice and Bob to reject. Eve could delete 
the last message from Alice to  Bob (or vice versa) that would make Bob accept 
after Alice has accepted. (Byzantine agreement is impossible between two players 
in the presence of an active adversary.) 



21 3 

Here H ( S )  denotes the entropy3 of S and I ( S ; C t Z )  = H ( S )  - H(SICtZ)  
denotes the information about S given by Eve’s total observation (consisting 
of Ct and Z ) .  The condition H ( S )  _> k - E implies that S is virtually uni- 
formly distributed and together with the condition I ( S ; C t Z )  5 6 it implies 
H(SlC‘2) 2 k - 2.5 and hence that S is also virtually uniformly distributed 
from Eve’s point of view, i.e., given Eve’s total information. Such a uniformity 
constraint could alternatively be defined in terms of any reasonable constraint on 
the deviation of a distribution from the uniform distribution, without changing 
the results of this paper. 

2.2 Unconditionally secure message authentication 

Adversaries with complete control over the communication channel have previ- 
ously been considered in message authentication scenarios where, unlike in this 
paper, a secret key is shared initially by Alice and Bob about which Eve is 
assumed to have no information a priori. 

Unconditionally secure message authentication based on a shared secret key 
was first considered in [ll] and later in a large number of papers (e.g. [22], 1231). 
One of the most recent papers on this topic is by Gemmell and Naor [lo] who 
proved the surprising result that interactive protocols for authenticating an n- 
bit message are more efficient in terms of the length of the secret key required 
to restrict an adversary’s cheating probability to  at most p .  In particular, they 
proposed a one-round protocol using on1 logn - 2 logp bits of secret key and 
showed that this can be reduced to  log(krn - 5logp in a k-round protocol. We 
will make use of these results. 

2.3 Review of the literature 

In this section some of the results on secret-key agreement by perfectly authen- 
ticated public discussion are reviewed. Shannon’s [21] famous result on perfect 
secrecy, stating that a cipher can achieve perfect secrecy only if the entropy of the 
secret key is a t  least as large as the entropy of the plaintext’ can be considered 
as a special case (for 1-round protocols) of Theorem 1 below. Although Wyner’s 
wire-tap channel scenario [25] and Csiszk and Korner’s generalization [8] thereof 
do not include a public channel between Alice and Bob, they should neverthe- 
less be mentioned here. In those scenarios, Alice can send information over a 
so-called broadcast channel where Bob and Eve can receive different outputs of 
the channel. Secret information transmission (and hence secret-key agreement) 
was shown to be possible if and only if Eve’s channel is noisier than Bob’s chan- 
nel [8], an assumption that is generally unrealistic. 

In the scenario considered in quantum cryptography (see [2] and references 
therein), Alice can send polarized light pulses of very low intensity to Bob over 

H ( S )  = - c,: P s ( a f , O  Ps(s)log, Ps(s) .  See [6] for an introduction to the basic con- 
cepts of information theory. 
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some channel (e.g. an optical fiber) controlled by Eve. The use of this quan- 
tum communication results in Alice, Bob, and Eve possessing correlated strings. 
By subsequent discussion over the authenticated public channel, Alice and Bob 
manage to generate a secret key about which Eve has arbitrarily little informa- 
tion. 

Another special case of key agreement protocols secure against passive ad- 
versaries is privacy amplification introduced in [4] and generalized in [3]. Privacy 
amplification is a protocol step that would typically be used as the last step in a 
practical key agreement protocol, but it can itself be described in the framework 
of key agreement protocols. Here Alice and Bob are assumed to know a string 
W (i.e. X = Y = W )  about which Eve has some partial information. The proto- 
col of [3] is secure even when Eve specifies an arbitrary probability distribution 
PZW unknown to Alice and Bob, subject to the only constraint that a bound 
on the second order RQnyi entropy of W ,  given Eve particular value z of 2, 
is known to Alice and Bob. In the privacy amplification literature only passive 
adversaries have been considered. It is proved in [19] that privacy amplification 
secure against active adversaries is possible when the adversary’s min-entropy 
about the string is more than half its length. 

3 The case of no common initial information 

In this section we characterize to what extent secret and/or authenticated com- 
munication between Alice and Bob can help them to agree on a secret key. 
These results demonstrate an interesting difference between computational and 
information-theoretic cryptography. In both models a secret channel from Alice 
to Bob can be transformed into an authenticated channel from Bob to Alice. 
This is achieved by Alice sending a secret key to Bob and Bob using the key in a 
message authentication techniques (see Section 2.2) for authenticating a message 
to be sent to Alice. 

In sharp contrast, only the computational model allows to transform an au- 
thenticated channel from Alice to Bob into a secret channel from Bob to Alice. 
This is achieved by Alice sending her public key for a public-key cryptosystem 
to Bob who uses it to encrypt the message to be sent secretly to Alice. The secu- 
rity of public-key cryptosystems is inherently bound to be computational rather 
than information-theoretic. (Actually, this follows from Theorem 1 below.) See 
also [16] for a discussion of the described and other security transformations. It 
is hence not surprising that in the information-theoretic model, when Alice and 
Bob have no common information initially, authenticated channels are of no use, 
in contrast to secret channels. 

Theorem 1. Consider key agreement protocols without initialization phase which 
allow some of the exchanged messages to be either secret or authenticated. For 
c 5 1 - 3/(lSl + 2 )  there exists no  such protocol that is (c,d)-secure, even when 
all messages are authenticated (or, equivalently, when Eve is passive.) Moreover, 
even if all messages from Alice to Bob are secret and all messages from Bob to 
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Alice are authenticated, there exists no such protocol that is ( E ,  d)-secure against 
active adversaries for any 6 < 1. 

Proof. To prove the first part we make use of Theorem 1 of [14] which implies 
that 

H ( S )  5 H(S1S’) + I ( S ;  Ct)  (1) 

for all such protocols. Note that the random variables X ,  Y do not exist in our 
context and hence I ( X ; Y )  = 0 in Theorem 1 of [14] . Fano’s Lemma (see [S]) 
states that the error probability p of guessing a random variable U when given 
a correlated random variable U‘ satisfies 

where U is the set of possible values that U can take on4. Therefore the condition 
P[S # S‘] 5 E implies 

H(Y1S‘) < h ( ~ )  + ck  

which together with inequality (1) and the second and third conditions of Defi- 
nition 3 gives 

k - E 5 H ( S )  < h ( ~ )  + ~k + E .  

Using h ( ~ )  5 1, this implies k - 1 5 e ( k  + 2) and hence E > 1 - 3 / ( k  + 2). 
To prove the second part, notice that from Bob’s point of view, Alice has 

no advantage compared to  Eve. When Eve performs the same protocol as Alice 
would, pretenting to be Alice, Bob accepts with the same probability as he would 
accept a protocol execution with Alice which according to  the definition is 1. 0 

Note again that the first statement of the theorem is in sharp contrast to the 
public-key cryptographic scenario where, under a suitable intractability assump- 
tion, secret-key agreement secure against computationally bounded adversaries 
is possible when a single authenticated message in each direction cam be sent. A 
public-key cryptosystem can be interpreted [16] as a means for transforming an 
authenticated channel into a secret channel in the other direction. The following 
well-known result is an observation following from Theorem 1. 

Corollary 2. A public-key cryptosystem can be computationally secure but not 
information-theoretically (Le. unconditionally) secure. 

Theorem 3. Assume that one secret (but not necessarily authenticated) mes- 
sage can be sent from Alice to Bob. Then, for any 6 > 0,  key agreement (0,s)- 
secure against active adversaries is possible if, in addition, either an authenti- 
cated message can be sent from Alice to Bob or a secret message can be sent 
from Bob to Alice. 

h(p) = -plog,p - (1 - p)log,(l - p )  denotes the binary entropy function which 
measures the entropy of a binary random variable that takes on the two values with 
probabilities p and 1 - p .  
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Proof. Note that when the same message from Alice to Bob is both secret and 
authenticated, then Alice can simply send a secret key as the message. When two 
messages can be sent from Alice to  Bob, one secret and one authenticated, then 
Alice can send a random n-bit string R to  Bob (71 2 -2 log, 6) over the secret 
channel and the description of a function f in a universal class hash functions 
from (0, 1)" to (0, l}" [7] over the authenticated channel, together with the first 
n/2 bits of f(R). The other half of f(R) is kept by Alice and Bob as their secret 
key. If Eve's capability to interfere with the secret channel is limited to sending 
fraudulent messages (but she is assumed to be unable to  modify a message sent 
from Alice to Bob), then no universal hash function is needed; it could instead 
be replaced by the identity function. 

The proof for the case of a secret channel from Bob to Alice is based on the 
following protocol. Bob (secretly) sends Alice a random string U of sufficient 
length (R(log6)). Then they use the above protocol where the authenticated 
channel is obtained by Alice by using an authentication scheme [lo] using R as 
the secret key. 0 

Theorem 1 is pessimistic: it demonstrates that information-theoretically se- 
cure secret-key agreement against active or passive adversaries is impossible to 
achieve when the channel between Alice and Bob is completely insecure. How- 
ever, if Alice and Bob have correlated information initially (not necessarily a 
secret key, but possibly only two bitstrings that are somehow correlated), about 
which also Eve has partial knowledge, then secret-key agreement can be possible. 

In the following WE consider such scenarios. One of our general goals is to 
achieve secret-key agreement under mild conditions on such an initialization 
phase, for instance conditions that can be argued to occur (or can be made to  
occur) in a realistic communications scenario. 

4 Protocols with initialization phase 

4.1 Impossibility results 

The following theorem on authenticated public discussion follows from Corol- 
lary 1 in [14]. Recall from Section 2 that X, Y ,  and 2 are the random variables 
obtained by Alice, Bob, and Eve, respectively, during the initialization phase. 

Theorem 4. For every probability distribution P X Y Z ,  a key agreement protocol 
that is ( E ,  6)-secure against passive (or active) adversaries satisfies 

H ( S )  5 min[l(X; Y ) , I ( X ;  Y l Z ) ]  + h(e) + t (k  + 1). 

In particular, f o r  E = 0,  we have H ( S )  5 min[l(X; Y ) ,  I ( X ;  Y l Z ) ] .  

Note that by definition, I ( X ; Y )  = H ( X )  - H ( X I Y )  and I ( X ; Y I Z )  = 
H ( X I Z ) - H ( X I Y Z )  and that I ( X ;  YIZ) 2 I ( X ;  Y )  is possible. It will be demon- 
strated in the following section that this theorem is not as pessimistic as it looks 
at first sight. 
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Theorem 4 states that secret-key agreement is possible and only if Y gives 
a substantial amount of information about X, both when 2 is given or when it 
is not. In other words, X and Y must be correlated, and this correlation must 
to some extent be independent of 2. The bound min[I(X;Y),I(X;YIZ)]  can 
be replaced by the stronger bound derived in [18], called the intrinsic mutual 
information between X and Y given 2. It is the minimum of I(X;YIZ') over 
conditional probability distributions Pzl I Z .  

Definition 4. We call the distribution Pxyz X-simulatable b y  Eve if Eve can 
generate from 2 a random variable 2 such that the pairs [X, Y] and [X, Y ]  have 
the same distribution, i.e. if there exists a conditional probability distribution 
PxlZ such that 

P*yb ,Y )  = PXY(~,Y) 
for all z and y ,  where P*y is the marginal distribution of Pxxyz = Pxyz.PxlZ, 
i.e., 

x' z 

Similarly, the distribution Pxyz is called Y -sinadatable by Eve if the symmetric 
condition with respect to Bob, with X replaced by Y and X replaced by E, is 
satisfied. 

More intuitively, PXYZ is X-simulatable by Eve if she can send 2 through 
a (simulated) channel (characterized by P2,z)  whose output X has the same 
joint distribution with Y as X. (An example of such a distribution is given 
in Section 4.3.) Therefore, when Pxyz is X-simulatable by Eve, then there is 
no way Bob can distinguish between a correct message sent by Alice and an 
appropriately generated fraudulent message sent by Eve. Similarly, when Pxyz  
is Y-simulatable by Eve, then there is no way Alice can distinguish between a 
correct message sent by Bob or a fraudulent message sent by Eve. We obtain the 
following generalization of Theorem 1. 

Theorem 5 .  When PXYZ is X-simulatable (or Y-sirnulatable) by Eve, then no 
key agreement protocol can be ( E ,  6)-secure against active adversaries for any E 

and 6 < 1, even if all messages from Alice to Bob (Bob to Alice) are perfectly 
secret and all messages from Rob to Alice (Alice to Bob) are authenticated. 

4.2 Independent repetition of a random experiment  

In order to be able to derive interesting results on secret-key agreement against 
active or passive adversaries, we must consider specific types of probability dis- 
tributions of the random variables given to Alice, Bob, and Eve. 

One natural assumption is that the random experiment generating the triple 
[ X ,  Y, 21 is repeated many times independently. Hence we assume that Alice, 
Bob and Eve receive strings X n  = [XI,. . . , X,], Y n  = [Yl,. . . , Yn], and 2" = 
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[Z,, . . . , Zn], respectively, where 

n 

px-y-zn ( 2 1 ,  . . . , 2n, 91 , . . . , ~ n ,  ~ 1 ,  . . . ,zn) = I'I ~ x u ~ ( ~ i ,  ~ i ,  zi). 
i= 1 

Note that we have changed the notation here and for the rest of the paper: 
Pxyz now denotes the distribution of one of several random experiments while 
it previously denoted the distribution of the overall experiment. 

This particular scenario is motivated by the well-known models for discrete 
memoryless sources and channels of communication theory. Many concrete prac- 
tical scenarios can be modeled in this way, for instance the one discussed below 
in which Alice, Bob, and Eve receive noisy versions of a random string broadcast 
by a satellite or of the signal emitted by a deep space radio source. 

For such a scenario of independent repetitions of a random experiment, the 
quantity that is of most interest is the maximal rate at which Alice and Bob 
can generate secret key bits, where rate is to be understood per execution of the 
random experiment generating a triple [ X ,  Y,  21. 

Definition 5.  The secret key rate of PXYZ for passive adversaries, denoted 
S(Pxyz) ,  is the maximum rate at which Alice and Bob can agree on a secret 
key S while keeping a passive adversary's information about S arbitrarily small. 
More formally, it is the maximal R such that for all E > 0, for all R' < R, and for 
all sufficiently large n there exists a protocol with IS1 = LR'n) that is (E, 0)-secure 
against passive adversaries5. The secret key rate of Pxyz for active adversaries, 
denoted S*(Pxyz), is defined in thc same way, except that the adversary is 
allowed to  be active, and for any given 6 > 0, ( E ,  6)-security is required instead 
of ( E ,  0)-security. 

The first part of this definition is given in [15] as a considerably strengthened 
definition of that given in [14] , and the second part is new. In particular, in [14] it 
was only required that the rate at which Eve obtains information, I ( S ;  C t Z n ) / n  
be arbitrarily small for large n, and proving results for the much stronger def- 
inition involves some technical steps, including privacy amplification [3]. The 
following result was proved in [15] (and in [14] using the weaker definition). 

Theorem 6. S(Pxyz) is lower and upper bounded by 

max[O, I ( Y ; X ) - - I ( Z ; X ) ,  I ( X ; Y ) - I ( Z ; Y ) ]  5 S(Pxuz) 

and 
~ ( P x Y z )  5 min[I(X; Y ) ,  I ( X ;  Ylz)]. 

The lower bound is not tight in general. In particular, for the binary scenario 
discussed in Section 4.3, if Eve's channels is less noisy than both Alice's and 
Bob's channel, the lower bound vanishes while the secret-key rate is actually 
strictly positive. 

' For the case of passive adversaries, S = 0 can trivially be achieved. 
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We are primarily interested in investigating the relation between S(Pxyz) 
and S* (PxYz ) ,  i.e., the power of authenticated versus non-authenticated com- 
munication. Quite surprisingly, it turns out that S*(Pxyz)  = 0 or S*(Pxyz) = 
S(Pxyz) .  However, before treating the general case, we consider the case of 
binary symmetric random variables which is of particular interest. 

4.3 The binary case 

In this section we consider the natural special case where the random variables 
known to Alice, Bob and Eve are noisy versions of a random string (e.g. broadcast 
by a satellite) received over binary symmetric channels CA, CB and CE with bit 
error probabilities E A ,  CB and E E ,  respectively (see Figure 1). Without loss of 
generality we assume that these channels are independent because any scenario 
of dependent channels can be transformed [14] into an equivalent scenario of 
independent channels (with different bit error probabilities). In other words, 
when U denotes the random bit generated by the source (Pr~(0)  = Pu(1) = 1/2), 
we have 

where P ~ J ~ ( z ,  T )  = 1 - EA if x = u and €A else, Pyl~(y,r) = 1 - E B  if y = u and 
E B  else and Pzlu(z,r) = 1 - C E  if z = u and E E  else. 

P X Y Z ( U  = pxp . PYlU . PZ(U 

Fig. 1. The scenario of three independent channels 

It is easy to  verify that Pxvz is X-simulatable by Eve if and only if E E  5 
E A  and it is Y-simulatable by Eve if and only if E E  5 E B .  Such a simulation 
can be achieved by Eve by sending 2 through an additional (simulated) binary 
symmetric channel of appropriate bit error probability. Therefore, when either 
c~ 5 E B  or EE 5 E A  in the described scenario, then S*(Pxyz)  = 0 by Theorem 5. 
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Let 
C A B  = € A  + C B  - ~ A C B  

be the bit error probability between corresponding bits of Alice's and Bob's 
strings, and let similarly 

and 
E B E  = C B  + C E  - € B E E  

be the bit error probabilities between corresponding bits of Alice's and Eve's 
and between Bob's and Eve's strings, respectively. 

Assuming that Alice and Bob share no secret key initially, authentication for 
messages transmitted from Alice to Bob can nevertheless be achieved when Eve's 
channel is noisier than Alice's channel ( e ~  > E A ) .  This implies that EBE: > CAB, 
i.e. that Alice's bits agree with Bob's bits with higher probability than Eve's 
bits agree with Bob's bits. 

To demonstrate this fact, consider the following (very wasteful) authenti- 
cation method6 A more efficient scheme will be considered below. In order to 
authenticate a single bit ( k  = 1) sent from Alice to Bob, Alice appends a sub- 
string of X" of length 1 .  The two substrings of X" appended to  authenticate 
a 0 or a 1 are disjoint. For instance, a 0 or a 1 is authenticated by sppcnding 
(for some q)  the string [X,, . . . , X,+I-I] or [Xq+ml..  . , X,+zl-1], respectively, as 
the authenticator, and these m = 21 bits of X" are never used again for any 
other purpose. Bob expects to  receive as an authenticator either a version of 
[Y,, . . . , Yq+,-l] or of [Yq+m,. . . Y,+~l--l] with a fraction of close to CAB bit er- 
rors. Informally, Bob hence accepts the received bit if and only if the fraction 
of bits in the authenticator that agree with his noisy version of the authentica- 
tor ([Yq,. . . I Y,+i-l] or [Yq+ml.. . , Yq+21-1]) is not much smaller than 1 - E A B .  
It is easy to see that for any fixed E S E  > C A B ,  the probability that Eve can 
successfully deceive Bob i s  exponentially small in 1 .  

The described scheme is quite inefficient in terms of the number of bits used 
from the sequence. A much better approach is described in the proof of the 
following theorem. 

Theorem 7. When E B E  > C A B  in the described binary scenario, a k-bit message 
sent from Alice to Bob can be authenticclted by an I-bit authenticator with 1 = 2k 
using m = 4k bits of the random string X" and achieving an arbitrarily small 
deception probability for  suficiently large k .  

Proof sketch. A scheme for authenticating a k-bit message sent from Alice to 
Bob using rn bits of X" (e.g. [X,, . . . , X,+,-1] for some q) can be derived as 
follows. Every message is authenticated by appending a particular subset of bits 
in [X,, . . . , X,+,-I]. These subsets should be sufficiently disjoint to  avoid that 

In the following we consider schemes for authenticating a k-bit message by an I-bit 
authenticator using m > I bits of the common sequence. 
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such an authenticator can be guessed by Eve from an observed one. Bob checks 
whether his version of the authenticator (i.e. his subset of [I.’,, . . . , Yq+,,+l]) 
agrees with the received authenticator on a fraction roughly 1 - CAB of the bits, 
as expected when Alice sends the authenticator. Security requires that given 
one of these sets, it should be impossible for Eve to approximate a different 
authenticator of Alice with a bit error fraction close to CAB.  

When Eve has intercepted a message together with its authenticator, her 
best strategy for creating an authenticator for a different message (hoping that 
it will be accepted by Bob) is to copy those bits from the received authenticator 
that are also contained in the new authenticator and to take as guesses for 
the remaining bits her copies of the bits (in [Z,, . . . , Zq+m-~]), introducing bit 
errors in those bits with probability E B E .  The maximal probability of successful 
deception is hence determined by the number d of bits that Eve must guess and 
the total number 1 of bits in the forged authenticator. 

The expected value and the standard deviation of the number of bits in the 
correct autenticator that agree with Bob’s corresponding bits are 

P 1 l ( 1 -  CAB) 

and 
= JleAB(1- e A B ) ,  

respectively. When Eve tries to deceive Bob, the expected value and the standard 
deviation of the fraction of bits in the forged autenticator that agree with Bob’s 
corresponding bits are 

and 

p’ = ( 1  - d ) t ~ ~  4- d&BE 

respectively. Bob accepts an authenticator if and only if the number of his bits 
that agree with the corresponding authenticator bits is within q standard devia- 
tions of p,  where q is a security parameter that grows with 1. The difference be- 
tween the two expected values is d e B E  and the standard deviation is r~ = ll(&). 
When d grows substantially faster than d one can let q = O ( d / & ) .  The law 
of large numbers implies that Eve’s cheating probability decreases exponentially 
in q. 

We now investigate how this can be achieved. An appropriate set of such 
subsets of bit positions (i.e., subsets of { 1, . . . , m } )  can be interpreted as a code: 
each subset corresponds to a codeword of length m, where a 1 (or a 0) indicates 
that the bit at the corresponding position is (is not) contained in the subset. The 
weight of a codeword is equal to the length of the corresponding authenticator. 

The desired distance property of the code differs from the Hamming dis- 
tance considered in the theory of error-correcting codes. Instead, we define the 
0-1 distance from a codeword c1 to a codeword c2, denoted d ( q  + cz), as the 
number of bits that Eve must guess when trying to convert the authenticator 
corresponding to  c1 into the authenticator corresponding to c2. The distance 
d ( c l  + c ~ )  is hence defined as the number of transitions from 0 to 1 when going 
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from c1 to CZ, hence not counting the transitions from 1 to 0. Note that this 
distance is not symmetric, i.e. d(c1 -+ CZ) # d(c2 + cl) in general. It is required 
that the 0-1 distance from any codeword to any other codeword be large, say 
at least d. A conventional linear code cannot be used because the 0 - 1 distance 
from any codeword to the zero-codeword is zero. 

We now give a simple construction of codes that are good with respect to this 
distance measure. One can convert any code of length 1 and minimum distance 
d into a (non-linear) code of length m = 21 and minimum 0-1 distance d, where 
each codeword has weight 1. This is achieved by replacing every bit in the original 
code by pair of bits, namely by replacing 0 by 01 and 1 by 10. 

In the context of this proof, a possible code to  be used for the construction 
is an extended Reed-Solomon code over a finite field GF(2') [5]. For any K 
there exists such a code encoding K information digits into codewords of length 
N = 2' and with minimum distance N - K + 1. By interpreting elements of 
GF(2") as binary substrings of length r ,  we obtain a binary code with 2'K 
codewords of length 2rN and with minimum 0-1 distance at  least d. 

By taking r as a security parameter and letting N = 2', K = N / 2  and 
k = rK we obtain 1 = 2k = r N  and m = 21 = 2rN. This is sufficient to 
complete the proof. 0 

By symmetry, the same technique can be used to authenticate messages sent 
from Bob to  Alice, provided that E E  > E B .  This theorem shows that the rate at 
which random bits are needed for authentication is a constant factor times the 
bit rate at which Alice sends messages to Bob. Therefore, the secret key rate of 
P.XYZ for active adversaries is a constant (5  1) times the secret key rate of Pxyz  
for passive adversaries. In the proof of the following theorem we need to show 
that the number of bits needed for authentication is asymptotically negligible 
compared to the number of bits needed for secret-key agreement (in the passive 
case). 

Theorem 8.  When both FF: > e~ and E E  > in the descrihed scenario, then 
S* (Pxyz )  = S(Pxyz), ie., an active adversary is not more powerful than a 
passive adversary. Otherwise, if either E E  > E B  or c~ > E A ,  then S*(Pxyz)  = 0.  

Proof. The fact that S* ( P x y z )  = 0 when either CE < E B  or EE < E A  follows from 
Theorem 5 because Pxyz  is either X-simulatable or Y-simulatable by Eve. The 
fact that S*(Pxyz)  = S(Pxyz )  when E E  > c g  and E E  > E A  can be proved as 
follows. A suboptimal protocol based on the authent,ication method of Theorem 7 
can be used to generate a relatively small t-bit secret key K ,  using O(t )  bits 
of the random string. This key can then be used, similar to  a bootstrapping 
process, for instance based on the protocols of [lo], to authenticate the messages 
exchanged in an optimal passive-adversary protocol P achieving S(Pxyz ) .  The 
size of K must only be logarithmic in the maximal size of a message exchanged 
in P [lo] and linear in the number of rounds of P .  No matter what amount of 
secret key must be generated by P ,  this can be achieved by using messages of 
size proportional to the key size in a constant number of rounds. Therefore, the 
ratio of size of K and the size of the generated key vanishes asymptotically. Cl 
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It is known from [14] that 

It was recently proved that S(Pxyz )  > 0 unless E E  = 0 [17], even when both 
C E  < CB and E E  < E A ,  i.e., even when the above lower bound vanishes (or is 
negative). 

4.4 A completeness result for the general case 

Let Pxyz  be an arbitrary probability distribution of a random experiment that 
is repeated many times. In general, only lower and upper bounds on S(P<yyz) 
are known and S(Pxyz )  is known exactly only for special cases. The following 
theorem characterizes S*(Pxyz)  completely in terms of PXYZ and ~ ( P x Y z )  
and characterizes the power of active adversaries in comparison to  passive ones 
for the described noisy-channel initialization scenario. Determining the exact 
power of a passive adversary remains an open problem. 

Theorem 9. When Pxyz  is either X-sirnulatable or Y-sirnulatable by Eve, 
then S* (Pxyz )  = 0.  Otherwise, S*(Pxyz)  = ~ ( P x Y z ) .  

Proof sketch. The proof of this theorem relies on the theory of typical sequences7 
and is similar to the proof of Theorem 8, which is a special case of this theorem, 
but the technical details are omitted from this extended abstract. In order to 
authenticate a k-bit message by an 1 = 2k-bit authenticator using m = 4k 
bits of X" (or of Y" when Bob is the sender), the described approach based 
on error correcting codes can be used to select the positions of a subsequence 
[Xi,, . . . , Xi,] of X " .  The receiver accepts the message if and only if the sequence 
of pairs [(Xi,, El),  . . . , ( X i , ,  x,)] is y-typical for the distribution Pxy for some 
suitable small y. One can prove that for every distribution PXYZ that is neither 
X-simulatable nor Y-simulatable by Eve, there exists a positive y such that 
for sufficiently large k Eve's cheating probability is arbitrarily small. The same 
argument as in the proof of Theorem 8 can be used to  prove that the ratio of 
bits needed for authentication and of bits used for secret-key agreement vanishes 
asymptotically. 0 
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Loosely speaking, a sequence U1, . . . , U,. of digits of an alphabet U is y-typical for a 
given distribution Pu over U if for every u E U the fraction of occurrences of u in 
U I ,  . . . , U,. deviates by at most y from PIJ (u) (see for instance [6]). 



224 

References 

1. R. Ahlswede and I. Csiszk, Common Randomness in information theory and 
cryptography - part I: secret sharing, IEEE !Z’ransactions on Information Theory, 

2. C.H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, “Experimental 
quantum cryptography”, Journal of Cryptology, Vol. 5, no. 1, 1992, pp. 3-28. 

3. C.H. Bennett, G. Brassard, C. CrCpeau, and U.M. Maurer, “Generalized privacy 
amplification”, to appear in IEEE Transactions on Information Theory, Nov. 1995. 

4. C.H. Bennett, G. Brassard and J.-M. Robert, “Privacy amplification by public 
discussion”, SIAM Journal on Computing, Vol. 17, no. 2, April 1988, pp. 210-229. 

5. R. E. Blahut, Theory and Practice of Error Control Codes, Reading, MA: Addison- 
Wesley, 1983. 

6. R.E. Blahut, Principles and Practice of Information Theory, Reading, MA: 
Addison- Wesley, 1987. 

7. J. L. Carter and M. N. Wegman, “Universal classes of hash functions”, Journal of 
Computer and System Sciences, Vol. 18, 1979, pp. 143--154. 

8. I. Csiszk and J. Korner, “Broadcast channels with confidential messages”, IEEE 
Transactions on Information Theory, Vol. IT-24, no. 3, 1978, pp. 339-348. 

9. W. Diffie and M. E. Hellman, “New directions in cryptography”, IEEE Transac- 
tions on Information Theory, Vol. IT-22, 1976, pp. 644-654. 

10. P. Gemmell and M. Naor, Codes for interactive authentication Advances in Cryp- 
tology -- Proceedings of Crypto ’93, Lecture Notes in Computer Science, Vol. 773, 
Springer-Verlag, Berlin, 1994, pp. 355-367. 

11. E. N. Gilbert, F. J. MacWilliams, and N. J. A. Sloane, Codes which detect decep- 
tion, Bell Syst. Tech. J., Vol. 53, No. 3, 1974, pp. 405-424. 

12. R. L. Graham, D. E. Knuth and 0. Patashnik, Concrete mathematics, Reading, 
MA: Addison-Wesley, 1990. 

13. U.M. Maurer, Protocols for secret key agreement by public discussion based on 
common information, Advances in Cryptology - C R Y P T 0  ’92, Lecture Notes in 
Computer Science, Berlin: Springer-Verlag, vol. 740, pp. 461--470, 1993. 

14. U. M. Maurer, Secret key agreement by public discussion from common informa- 
tion, IEEE Transactions on Information Theorg, vol. IT-39, 1993, pp. 733-742. 

15. U. M. Maurer, The strong secret key rate of discrete random triples, Communzca- 
tions and Cryptography, Two Sides of one Tapestry, R.E. Blahut et al. (editors), 
Kluwer Academic Publishers, 1994, pp. 271-285. 

16. U. M. Maurer and P.E. Schmid, A calculus for security bootstrapping in distributed 
systems, Journal of Computer Security, vol. 4, no. 1, pp. 55-80, 1996. 

17. U. M. Maurer and S. Wolf, Towards characterizing when information-theoretic se- 
cret key agreement is possible, Advances in Cryptology - ASIACRYPT ’96, K. Kim 
and T. Matsumoto (Eds.), Lecture Notes in Computer Science, Berlin: Springer- 
Verlag, vol. 1163, pp. 145-158, 1996. 

18. U. M. Maurer and S. Wolf, The intrinsic conditional mutual information and per- 
fect secrecy, to appear in Proc. 1997 IEEE Symposium on Information Theory, 
(Abstracts), Ulm, Germany, June 29-July 4, 1997. 

19. U. M. Maurer and S. Wolf, Privacy amplification secure against active adversaries, 
preprint, 1997. 

20. R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures 
and public-key cryptosystems, Communications of the ACM, Vol. 21, No. 2, 1978, 

VOl. IT-39, 1993, pp. 1121-1132. 

pp. 120-126. 



225 

21. C. E. Shannon, Communication theory of secrecy systems, Bell System Technical 
Journal, Vol. 28, October 1949, pp. 656-715. 

22. G. J. Simmons, Authentication theoryfcoding theory, in Advances in Cryptology 
- CRYPT0 84, G.R. Blakley and D. Chaum (Eds.), Lecture Notes in Computer 
Science, No. 196, Berlin: Springer Verlag, 1985, pp. 411-431. 

23. D. R. Stinson, Universal hashing and authentication codes, Advances in Cryptol- 
ogy - Proceedings of Crypto '91, Lecture Notes in Computer Science, Vol. 576, 
Springer-Verlag, Berlin, 1994, pp. 74 - 85. 

24. M. N. Wegman and J. L. Carter, New hash functions and their use in authentica- 
tion and set equality, Journal of Computer and System Sciences, Vol. 22, 1981, 

25. A. D. Wyner, The wire-tap channel, Bell  System Technical Journal, Vol. 54, no. 8, 
pp. 265-279. 

1975, pp. 1355-1387. 


	Information-Theoretically Secure Secret-KeyAgreement by NOT AuthenticatedPublic Discussion'
	1 Introduction
	2 Key-agreement protocols
	2.1 Scenarios and definitions
	2.2 Unconditionally secure message authentication
	2.3 Review of the literature

	3 The case of no common initial information
	4 Protocols with initialization phase
	4.1 Impossibility results
	4.2 Independent repetition of a random experiment
	4.3 The binary case
	4.4 A completeness result for the general case

	Acknowledgement
	References


