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Abstract. We present a simple, new paradigm for the design of collision- 
free hash functions. Any function emanating from this paradigm is incre- 
mental. (This means that if a message I which I have previously hashed 
is modified to z’ then rather than having to recompute the hash of I’ 
from scratch, I can quickly “update” the old hash value to the new one, 
in time proportional to the amount of modification made in I to get 
z’.) Also any function emanating from this paradigm is parallelizable, 
useful for hardware implementation. We derive several specific functions 
from our paradigm. All use a standard hash function, assumed ideal, and 
some algebraic operations. The first function, MuHASH, uses one modu- 
lar multiplication per block of the message, making it reasonably efficient, 
and significantly faster than previous incremental hash functions. Its se- 
curity is proven, based on the hardness of the discrete logarithm problem. 
A second function, AdHASH, is even faster, using additions instead of 
multiplications, with security proven given either that approximation of 
the length of shortest lattice vectors is hard or that the weighted subset 
sum problem is hard. A third function, LtHASH, is a practical variant of 
recent lattice based functions, with security proven based, again on the 
hardness of shortest lattice vector approximation. 

1 Introduction 

A collision-free hash function maps arbitrarily long inputs to  outputs of a fixed 
length, but in such a way that it is computationally infeasible to find a colli- 
sion, meaning two distinct messages s,y which hash to  the same point.3 These 
functions were first conceived and designed for the purpose of hashing messages 
before signing, the point being to apply the (expensive) signature operation only 
to short data. (Whence the collision-freeness requirement, which is easily seen 
to be a necessary condition for the security of the signature scheme.) Although 
this remains the most important usage for these functions, over time many other 
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The formal definition in Section 2 speaks of a family of functions, but we dispense 
with the formalities for now. 
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applications have arisen as well. Collision-free hash functions are now well rec- 
ognized as one of the important cryptographic primitives, and are in extensive 
use. 

We are interested in finding hash functions that have a particular efficiency 
feature called “incrementality” which we describe below. Motivated by this we 
present a new paradigm for the design of collision-free hash functions. We obtain 
from it some specific incremental hash functions that are significantly faster than 
previous ones. 

It turns out that even putting incrementality aside, functions resulting from 
our paradigm have attractive features, such as parallelizability. 

1.1 Incremental Hashing 

THE IDEA. The notion of incrementality was advanced by Bellare, Goldreich 
and Goldwasser [BGGl]. They point out that when we cryptographically pro- 
cess documents in bulk, these documents may be related to each other, something 
we could take advantage of to speed up the computation of the cryptographic 
transformations. Specifically, a message x’ which I want to hash may be a simple 
modification of a message z which I previously hashed. If I have already com- 
puted the hash f(x) of x then, rather than re-computing f(s‘) from scratch, I 
would like to just quickly “update” the old hash value f(z) to the new value 
f(x’). An incremental hash function is one that permits this. 

For example, suppose I want to maintain a hash value of all the files on my 
hard disk. When one file is modified, I do not want to re-hash the entire disk 
contents to get the hash value. Instead, I can apply a simple update operation 
that takes the old hash value and some description of the changes to produce 
the new hash value, in time proportional to the amount of change. 

In summary, what we want is a collision-free hash function f for which thc 
following is true. Let x = 5 1  . . . zn be some input, viewed as a sequence of 
blocks, and say block i is modified to xi. Let x’ be the new message. Then given 
f(x), i, zi,  z: it should be easy to compute f(x’). 
STANDARD CONSTRUCTIONS FAIL. Incrementality does not seem easy to achieve. 
Standard methods of hash function construction fail to achieve it because they in- 
volve some sort of iteration. This is true for constructions based on block ciphers. 
(For description of these constructions see for example the survey [PGV].) It is 
also true for the compression function based constructions that use the Merkle- 
Damgkd meta-method [Me, Da2]. The last includes popular functions like MD5 
[El, SHA-1 [SHA] and RIPEMD-160 [DBP]. The modular arithmetic based hash 
functions are in fact also iterative, and so are the bulk of number-theory based 
ones, eg. [Dal]. 

A thought that comes to mind is to use a tree structure for hashing, as 
described in [Me, Da21. (Adjacent blocks are first hashed together, yielding a 
text half the length of the original one, and then the process is repeated until a 
final hash value is obtained.) One is tempted to think this is incremental because 
if a message block is modified, work proportional only to the tree depth needs 
to be done to update. The problem is you need to store the entire tree, meaning 
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all the intermediate hash values. What we want is to store only the final hash 
value and be able to increment given only this. 
PAST WORK. To date the only incremental hash function was proposed by 
[BGGl], based on work of [CHP]. This function is based on discrete exponentia- 
tion in a group of prime order. It uses one modular exponentiation per message 
block to hash the message. This is very expensive, especially compared with 
standard hash functions. An increment operation takes time independent of the 
message size, but also involves exponentiation, so again is expensive. We want 
to do better, on both counts. 

1.2 The Randomize-then-combine Paradigm 
We introduce a new paradigm for the construction of collision-free hash func- 
tions. The high level structure is quite simple. View the message z a~ a sequence 
of blocks, z = X I  . . . zn, each block being b bits long, where b is some parameter 
to choose at will. First, each block xi  is processed, via a function h, to yield 
an outcome yi. (Specifically, yj = h((i) . zJ where (2) is a binary representation 
of the block index i and “ . ” denotes concatenation). These outcomes are then 
“combined” in some way to yield the final hash value y = y1 0 y2 0 . . . 0 yn,  
where 0 denotes the “combining operation.” 

Here h, the “randomizing” function, is derived in practice from some standard 
hash function like SHA-1, and treated in the analysis as an “ideal” hash function 
or random oracle [BR]. The combining operation 0 is typically a group operation, 
meaning that we interpret yl, . . . , y, as members of some commutative group G 
whose operation is denoted 0. 

We call this the ~ndomi%e-then-combine paradigm. It is described fully in 
Section 3. The security of this method depends of course on the choice of group, 
and we will see several choices that work. The key benefit we can observe straight 
away is that the resulting hash function is incremental. Indeed, if zi changes to 
xi, one can re-compute the new hash value as y 0 h(zi)-’ 0 h(s:)  where y is the 
old hash value and the inverse operation is in the group. Also it is easy to see 
the computation of the hash function is parallelizable. 

By choosing different groups we get various specific, incremental, collision- 
free hash functions, as we now describe. 

Notice that h needs itself to be collision-free, but applies only to fixed length 
inputs. Thus, it can be viewed as a “compression function.” Like [Me, Dd], 
our paradigm can thus be viewed as constructing variable input length hash 
functions from compression functions. However, our construction is “parallel” 
rather than iterative. It is important to note, though, that even though our 
constructions seem secure when h is a good compression function (meaning one 
that is not only collision-free but also has some randomness properties) the 
proofs of security require something much stronger, namely that h is a random 
oracle. 

1.3 MuHASH and its Features 
MUHASH. Our first function, called MuHASH for “multiplicative hash,” sets the 
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combining operation to multiplication in a group G where the discrete logarithm 
problem is hard. (For concreteness, think G = 2; for a suitable prime p .  In this 
case, hashing consists of “randomizing” the blocks via h to get elements of 2; 
and then multiplying all these modulo p) .  

EFFICIENCY. How fast is MuHASH? The cost is essentially one modular mul- 
tiplication per bbit block. Notice that one computation of h per bbit block is 
also required. However, the cost of computing h will usually be comparatively 
small. This is especially true if the block length is chosen appropriately. For ex- 
ample, if h is implemented via SHA, chosing 6 as a multiple of 512, the expensive 
padding step in computing SHA can be avoided and the total cost of computing 
h for every block is about the same as a single application of SHA on the whole 
message. The cost of h will be neglected in the rest of the paper. 

At  first glance the presence of modular operations may make one pessimistic, 
but there are two things to note. First, it is multiplications, not exponentiations. 
Second, we can make the block size b large, making the amortized per-bit cost 
of the multiplications small. Thus, MuHASH is much faster than the previous 
incremental hash function. In fact it is faster than any number-theory based 
hash function we know. Note if hardware for modular multiplication is present, 
not unlikely these days, then MuHASH becomes even more efficient to compute. 

The increment operation on a block takes one multiplication and one division, 
again much better than the previous construction. 

SECURITY. We show that as long as the discrete logarithm problem in G is hard 
and h is ideal, MuHASH is collision-free. (This may seem surprising at first glance 
since there does not seem to be any relation between discrete logarithms and 
MuHASH. In the latter we are just multiplying group elements, and no group 
generator is even present!) That is, we show that if there is any attack that 
finds collisions in MuHASH then there is a way to efficiently compute discrete 
logarithms in G. The strength of this statement is that it makes no assumptions 
about the cryptanalytic techniques used by the MuHASH attacker: no matter 
what these techniques may be, the attacker will fail as long as the discrete 
logarithm problem in G is hard. This proven security means we are obviated 
from the need to consider the effects of any specific attacks. That is, it is not 
necessary to have an exhaustive analysis of a list of possible attacks. 

The proven security provides a strong qualitative guarantee of the strength of 
the hash function. However, we have in addition a strong quantitative guarantee. 
Namely, we have reductions that are tight. To obtain these we have to use the 
group structure more carefully. We present separate reductions, with slightly 
different characteristics, for groups of prime order and for the multiplicative 
group modulo a prime. These are Theorem 4 and Theorem 5 respectively. In 
practice this is important because it means we can work with a smaller value of 
the security parameter making the scheme more efficient. 

An interesting feature of MuHASH is that its “strength in practice” may 
greatly exceed its proven strength. MuHASH is proven secure if the discrete 
logarithm problem is hard, but it might be secure even if the discrete logarithm 
problem is easy, because we know of no attack that finds collisions even if it 
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is easy t o  compute discrete logarithms. And in practice, collision-freeness of h 
seems to suffice. 

1.4 AdHASH and its Features 

AdHASH (for “additive hash”) uses addition modulo a large enough integer M 
as the combining operation in the randomizethen-combine paradigm. In other 
words, to hash we first randomize the blocks of the message using h and then 
add all the results modulo M. 

Replacing multiplication by addition results in a significant improvement in 
efficiency. Hashing now only involves n modular additions, and the increment 
operation is just two modular additions. In fact AdHASH is competitive with 
standard hash functions in speed, with the added advantages of incrementality 
and parallelizability. 

AdHASH also has strong security guarantees. We show that it is collision-free 
as long as the “weighted knapsack problem” (which we define) is hard and h is 
ideal. But Ajtai [Aj] has given strong evidence that the weighted subset sum 
problem is hard: he has shown that this is true as long as there is no polynomial 
time approximation algorithm for the shortest vector problem in a lattice, in 
the worst case. But even if this approximation turns out to be feasible (which 
we don’t expect) the weighted subset sum problem may still be hard, so that 
AdHASH may still be secure. 

We also prove that AdHASH is a universal one-way hash function in the sense 
of Naor and Yung [NY], assuming the subset sum function of [INl, IN21 is one- 
way and h is ideal. (Thus, under a weaker assumption, we can show that a weaker 
form but still useful form of collision-freeness holds. We note our reductions here 
are tight, unlike those of [INl,  IN2]. These results are omitted form this abstract 
but can be found in [BM].) 

In summary AdHASH is quite attractive both on the efficiency and on the 
security fronts. 

1.5 Hashing from Lattice Problems 

Ajtai introduced a linear function which is provably one-way if the problem of 
approximating the (Euclidean) length of the shortest vector in a lattice is hard 
[Aj]. (The function is matrix-vector multiplication, with particular parameters). 
Goldreich, Goldwasser and Halevi [GGH] observed that Ajtai’s main lemma can 
be applied to show that the function is actually collision-free, not just one-way. 
We observe that this hash function is incremental. But we also point out some 
impracticalities. 

We then use our randomize-then-combine paradigm to derive a more practical 
version of this function. (Our function is more efficient and has smaller key size). 
It is called LtHASH (for “lattice hash”). The group is G = 2: for some integers 
p, k, meaning we interpret the randomized blocks as k-vectors over 2, and add 
them component-wise. Assuming h is ideal the security of this hash function 
can be directly related to the problem underlying the security of Ajtai’s oneway 
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function [Aj, GGH] so that it is collision-free as long as the shortest lattice vector 
approximation problem is hard. 

Note that the same assumption that guarantees the security of LtHASH 
(namely hardness of approximation of length of the shortest vector in a lattice) 
also guarantees the security of AdHASH, and the efficiency is essentially the 
same, so we may just stick with AdHASH. However it is possible that LtHASH 
has some features of additional interest, and is more directly tied to the lattice 
hardness results, so it is worth mentioning. 

1.6 Attack on XHASH 

Ideally, we would like to hash using only “conventional” cryptography (’ ie. no 
number theory.) A natural thought is thus to set the combining operation to 
bitwise XOR. But we show in Appendix A that this choice is insecure. We present 
an attack on the resulting function XHASH, which uses Gaussian elimination 
and pairwise independence. It may be useful in other contexts. 

We are loth to abandon the paradigm based on this: it is hard to imagine any 
other paradigm that yields incrementality. But we conclude that it may be hard 
to get security using only conventional cryptography to implement the combining 
operation. So we turned to arithmetic operations and found the above. 

1.7 The balance problem 

We identify a computational problem that can be defined in an arbitrary group. 
We call it the balance problem. It turns out that consideration of the balance 
problem unifies and simplifies the treatment of hash functions, not only in this 
paper but beyond. Problems underlying algebraic or combinatorid collision-free 
hash functions are often balance problems. We will see how the hardness of 
the balance problem follows from the hardness of discrete logs; how in additive 
groups it is just the weighted subset sum problem; and that it captures the 
matrix kernel problem presented in [Aj] which is the basis of latticc based hash 
functions [GGH]. 

The problem is simply that given random group elements a , .  . . ,an, find 
disjoint subsets I, J E { 1,. . . , n} ,  not both empty, such that QiE1 ai = GiEJ aj ,  

where 0 is the group operation. Having reduced the security of our hash function 
to this problem in Lemma2, our main technical effort will be in relating the 
balance problem in a group to other problems in the group. 

1.8 Related Work 

For a comprehensive survey of hashing see [MVV, Chapter 91. 
DISCRETE LOGARITHM OR FACTORING BASED FUNCTIONS. To the best of our 
knowledge, all previous discrete logarithm or factoring based hash functions 
which have a security that can be provably related to that of the underlying 
number theoretic problem use at least one multiplication per bit of the message, 
and sometimes more. (For example this is true of the functions of [Dal], which 
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are based on claw-free permutations [GMR].) In contrast, MuHASH uses one 
multiplication per b-bit block and can make b large to mitigate the cost of the 
multiplication. (But MuHASH uses a random oracle assumption which the pre- 
vious constructions do not. And of course the previous functions, barring those 
of [BGGl], are non-incremental.) 

COLLISION-FREE VERSUS UNIVERSAL ONEWAY. Collision-freeness is a stronger 
property than the property of universal one-wayness defined by Naor and Yung 
[NY]. Functions meeting their conditions are not necessarily collision-free. (But 
they do suffice for many applications.) 
SUBSET-SUM BASED HASHING. Impagliazzo and Naor [IN, IN21 define a hash 
function and prove that it is a universal one-way function (which is weaker than 
collision-free) as long as the subset-sum function is one-way. The same function 
is defined in [DaZ, Section 4.31. There it is conjectured to be collision-free as well, 
but no proof is provided. These functions have a key length as long as the input 
to be hashed (very impractical) and use one addition per bit of the message. In 
contrast, AdHASH has short key length and uses one addition per b-bit block of 
the message, and b can be made large. 
NASHING B Y  MULTIPLYING IN A GROUP. Independently of our work, Impagliazzo 
and Naor have also considered hashing by multiplying in a group. These results 
have been included in [IN2], the recent journal version of their earlier [INl]. In 
their setup, a list of random numbers a1 , .. . , a, is published, and the hash of 
message z is ny='=, ziai where zi is the i-th bit of z and the product is taken in 
the group. Thus there is one group operation per bit of the message, and also the 
key size is proportional to the input to be hashed. F'unctions resulting from our 
paradigm use one group operation per bbit block, which is faster, and have fixed 
key size. On the security side, [IN21 show that their hash function is universal 
one-way as long as any homomorphism with image the given group is one-way. 
(In particular, if the discrete logarithm problem in the group is hard.) In contrast 
we show that our functions have the stronger property of being collision-free. But 
the techniques are related and it is also important to note that we use a random 
oracle assumption and they do not. On the other hand our reductions are tight 
and theirs are not. 

The general security assumption of [IN21 and their results provide insight 
into why MuHASH may be secure even if the discrete logarithm problem is easy. 
MODULAR ARITHMETIC HASH FUNCTIONS. Several iterative modular arithmetic 
based hash functions have been proposed in the past. (These do not try to 
provably relate the ability to find collisions to any underlying hard arithmetic 
problems.) See Girault [Gi] for a list and some attacks. More recent in this vein 
are MASH-1 and MASH-2, designed by GMD (Gesellschaft fur Mathematik im 
Dataverarbeitung) and being proposed as IS0 standards. However, attacks have 
been found by Coppersmith and Preneel [CP]. 

XOR MACS. Our paradigm for hashing is somewhat inspired by, and related 
to, the XOR MACs of [BGR]. There, XOR worked as a combining operation. 
But the goal and assumptions were different. Those schemes were for message 
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authentication, which is a private key based primitive. In particular, the function 
playing the role of h was secret, computable only by the legitimate parties and not 
the adversary. (So in particular, the attack of Appendix A does not apply to the 
schemes of [BGR].) However, hash functions have to have a public description, 
and what we see is that in such a case the security vanishes if the combining 
operation is XOR. 
INCREMENTALITY. Other work on incremental cryptography includes [BGGZ, 
Mi]. The former consider primitives other than hashing, and also more general 
incremental operations than block replacement, such as block insertion and dele- 
tion. (Finding collision-free hash functions supporting these operations is an open 
problem.) The latter explores issues like privacy in the presence of incremental 
operations. 

2 Definitions 

2.1 Collision-free Hash Functions 

FAMILIES OF HASH FUNCTIONS. A family of hash functions F has a key space 
Keys(F).  Each key K E Keys(F) specifies a particular function mapping Dom(F) 
to Range(F), where Dom(F) is a domain common to all functions in the family, 
and Range(F) is a range also common to all functions in the family. Formally, 
we view the family F as a function F: Keys(F) x Dom(F) + Range(F), where 
the function specified by K is F ( K ,  .). 

The key space Keys(F) has an associated probability distribution. When we 
want to pick a particular hash function from the family F we pick K at random 
from this distribution, thereby specifying F ( K ,  .). The key K then becomes pub- 
lic, available to all parties including the adversary: these hash functions involve 
no hidden randomness. 

In our constructions an “ideal hash function” h is also present. We follow the 
paradigm of [BR]: In practice, h is derived from a standard cryptographic hash 
function like SHA, while formally it is modeled as a “random oracle.” The latter 
means h is initially drawn at random from some family of functions, and then 
made public. Parties have oracle access to h, meaning they are provided with a 
box which, being queried with a point z, replies with h(z) .  This is the only way 
h can be accessed. We stress the oracle is public: the adversary too can access 
h. 

Formally, h will be viewed as part of the key defining a hash function, and 
the random choice of a key includes the choice of h. Typically a key will have 
two parts, one being some short string r~ and the other being h, so that formally 
K = (u,h). (For example, u may be a prime p, to specify that we are working 
over 2,‘). We treat them differently in the notation, writing F,h for the function 
F(K, . ) .  This is to indicate that although both u and h are public, they are 
accessed differently: everyone has the complete string u, but to h only oracle 
access is provided. It is to be understood in what follows that the families we 
discuss might involve a random oracle treated in this way, and when the key is 
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chosen at random the oracle is specified too. For more information about random 
oracles the reader is referred to [BR]. 

We want hash functions that compress their data. A typical desired choice is 
that Dorn(P) = {0,1}’ and Range(F) is some finite set, for example (0, l}k for 
some integer k. But other choices are possible too. 
COLLISION-RESISTANCE. A coZZision for F ( K ,  .) is a pair of strings x, y E Dorn(F) 
such that x # y but F(K,x) = F(K,  y). When Dom(F) is larger than Range(F), 
each F ( K ,  .) will have many collisions. What we want, however, is that these are 
difficult to find. To formalize this, say a collision-finder is an algorithm C that 
given a key K 6 Keys(F) tries to output a collision for F(K, . ) .  (When K 
includes a random oracle, this of course means the collision-finder gets oracle 
access to this same random oracle). We are interested in the probability that 
it is successful. This probability depends on the time t that is allowed C. (For 
convenience the “time” is the actual running time, on some fixed RAM model 
of computation, plus the size of the description of the algorithm C. In general 
we would also measure the amount of memory used, but for simplicity we only 
measure time. The model of computation is that used in any standard text on 
algorithms, for example [CLR], and we analyze the running time of algorithms 
in the same way as in any algorithms course). If a random oracle h is present, we 
consider the number of h-computations (formally, the number of oracle queries) 
as a separate resource of the collision-finder, and denote it by q. In this case we 
have the following. 

Definition 1. We say that collision-finder C (t,  q, €)-breaks a hash family F if 
given a key K it runs in time t ,  makes at most q oracle queries, and finds a 
collision in F ( K ,  a )  with probability at least c. We say that F is ( t ,  q, €)-collision- 
free if there is no collision-finder which ( t ,  q, €)-breaks F .  
The probability above is over the choice of the key K from Keys(F) (which 
includes the choice of the random oracle h) and the coins of C. If the random 
oracle is not present, we simply drop the “q ” ,  and have (t, €)-breaking and (t ,  E ) -  

security. 

2.2 Incrementality 

We follow [BGGl]. Suppose we have computed the hash value y = F(K,x) of 
a message 2 = XI . . . x,,. Now x is modified: block i is replaced by a new block 
xi. We want to update y to y‘ = F(K,x’), where xi is the message resulting 
from replacing block i of x by xi. We want to do it in some way faster than 
recomputing F(K,x’) from scratch. The job will be done by an incremental 
algorithm. It takes as input K ,  x, a / ,  i ,  xi and outputs y’. Ideally it runs in time 
that is independent of the number of blocks in the messages. 

2.3 Classes of groups 

We will consider groups in which computational problem (example, computing 
discrete logarithms or solving weighted knapsacks) is hard. Formally, we must 
treat families (classes) of groups. 
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CLASSES OF GROUPS. Formally, a class of groups is some finite collection Of 

groups such that given a description (G) of a group from the class, one can com- 
pute all the group operations. Also, there is some distribution on 6 according to 
which we can draw a (description of a) group. Finally we assume a representa- 
tion of group elements under which any group element of any group is a L-bit 
string for some L ,  meaning G g (0, l } L  for all G E Q. This L is called the output 
length. For example Q = ( 2; : p is prime and Ipl = k }, for some large enough 
k, is a class of groups. Here (G) = p is the prime describing a particular group, 
and it is drawn at random from all k-bit primes. The output length is L = k. 
TIMING. In the security analyses we need to estimate running times of the al- 
gorithms in the reductions. The timing estimates depend on the groups. Ac- 
cordingly given a class of groups Q we let Trand(~),Tmult(~),Texp(~) denote, 
respectively, the time to pick a random element of G ,  the time to multiply two 
elements in G and the time to do an exponentiation in G, for G E G. 

2.4 The balance problem in a group 

For the purpose of analyzing the security of our hash functions we introduce a 
new computational problem, called the balance problem in a group. Lemma 2 
will relate the security of our hash function to the assumed hardness of this 
problem. (Our task will then be reduced to finding groups with a hard balance 
problem. Typically we will do this by further reducing the balance problem to 
a conventional hard problem like discrete log finding or (weighted) subset sum.) 
Here we define the balance problem. 

Let 6 be some family of groups and n an integer. In the (G, n)-balance prob- 
lem we are given (the description (G) of) a group G E Q and a sequence a1 , . . . , an 
of elements of G. We must find weights w1,. . . , w,, E { - l , O ,  +1} not all zero, 
such that 

a y ' @ . . . @ a F  = e 

where 0 is the group operation and e is the identity element in the group.4 In 
other words we are asked to find two disjoint subsets I, J C (1 , .  . . ,n} ,  not both 
empty, such that oiEI ai = OjEJ aj. We say that the @,la)-balance problem 
is (t,c)-hard if no algorithm, limited to run in time t, can find a solution to an 
istance G, a1 , . . . , an of the problem with probability more than E ,  the probability 
computed over a random choice of G from 9, a choice of al, . . . , a, selected 
uniformly and independently at random in G, and the coins of the algorithm. 

3 The Paradigm 

We suggest a new paradigm for the construction of collision-free hash functions. 

= 1. For an additive group it For a multiplicative group, this means fly=, uy' 
would mean Ch, wiai = 0. 
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3.1 The Construction 

The construction is depicted in Figure 1. We fix a block size b and let B = (0, l}b. 
Think of the input x = 2 1 .  . . xn as a sequence of blocks, meaning xi E B for each 
i = 1,. . . , n. Let N be larger than the number of blocks in any message we plan 
to hash, and let I = lg(N) + b. We are given a set G on which some operation, 
which we call the combining operation and denote by 0, has been defined. (The 
operation is at the very least associative, but, as we will see later, we prefer it 
be a full-fledged group operation.) We are also given a function h: (0,l)' + G 
which we call the mndomizer or compression function. Now what we do is: 

1. For each block i = 1,. . . ,n, concatenate a lg(N)-bit binary encoding (i) of 
the block index i to the block content xi to get an augmented block xi = 

2. For each i = 1,. . . ,n, apply h to zi to get a hash value yi = h(z:) 
3. Combine yl, . . . , yn via the combining operation to get the final hash value 

More succinctly we can write the function as 

(i) . zj 

y = y l  0 y2 0 * * 0 Yn. 

where (G) denotes some indication of the group G which enables computation 
of the group operation. (For example if G = 2; then (G) = p ) .  We call this the 
mndomize then combine construction. 

If the output of our hash function (which is an element of G) is too long then 
optionally we can hash it to a shorter length by applying a standard collision-free 
hash function such as SHA-1. 

... 

h ... h 

Fig. 1. Our paradigm for hashing message 3: = z1. . . xn: Process individual blocks via 
a function h and then combine the results via some operation 0. 
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Notice that padding the blocks with (a representation of) their indexes before 
applying h is important for security. Without this, reordering of the blocks in 
a message would leave the hash value unchanged, leading to collisions. 
THE HASH FAMILY. Equation (1) specifies an individual function, depending on 
the group G. Formally, we actually have a family of hash functions, because we 
will want to draw G from some class of groups for which some computational 
problem (example, computing discrete logarithms or solving weighted knapsacks) 
is hard. 

Let G be a class of groups, as defined in Section 2.3. The associated family of 
hash functions is denoted HASH(8,b). An individual function HASH?,) of this 
family, as defined in Equation (1), is specified by a random oracle h: { 0,l)’  3 G 
and a description (G) of a group G E G. Here 1 = b + lg(N) as above. We can 
set N to a constant like 2B0. (We will never need to hash a message with more 
than 280 blocks!). Thus 1 = b + O(1). So think of 1 as O(6). This is assumed 
in estimates. The key defining HASH?,) consists, formally, of (G) and h. (See 
Section 2.1). The domain of this hash family is B I N  = B U B2 U . . . U BN where 
B = {O, 1)*, namely all strings over B of length at most N .  The range of this 
family is { O ,  l}L where L is the output length of 8. 

3.2 Incrementality and parallelizability 

Since the combining operation is associative, the computation is parallelizable. In 
order to get an incremental hash function we will work in a commutative group, 
so that 0 is also commutative and invertible. In such a case, increments are 
done as follows. If block xi changes to z: then the new hash is y 0 h((i)  . z i ) - lO 
h((i)  .xi) where (-)-l denotes the inverse operation in the group and y is the old 
hash, namely the hash of 2. 

3.3 Choosing the randomizer 

For security the randomizer h must definitely be collision-free: it is easy to see 
that the entire construction fails to be collision-free otherwise. In practice h 
is derived from a standard hash function. (We suggest that the derivation be 
keyed. For example, h ( d )  = H ( K  . 5’. K) where IC is a random string viewed as 
part of the key specifying the hash function and H(y) is an apprporiate length 
prefix of SHA-1(0. y) . SHA-1(1 . y) . . ..) In the analyses, we in fact assume much 
more, namely that it is an “ideal“ hash function or random oracle PR].) Its 
computation is assumed fast. 

3.4 Choosing the Combining Operation 

Making the right choice of combining operation is crucial for security and effi- 
ciency. 
COMBINING BY XORING DOESN’T WORK. Ideally, we would like to hash using 
only “conventional” cryptography. (Ie. no number theory.) A natural thought 
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towards this end is to set the combining operation to bitwise XOR. But this 
choice is insecure. Let us look at this a bit more closely. 

Let G = {0, l}k for some fixed length k, like k = 128. If we set the combining 
operation to bitwise XOR, denoted @, the resulting function is 

The incrementality is particularly efficient in this case since it takes just a couple 
of XORS. The question is whether XHASHh is collision-free. At first glance, it 
may seem so. However XHASH is in fact not collision-free. Indeed, it is not even 
one-way. (One-wayness is necessary, but not sufficient, for collision-resistance) . 
The attack is interesting, and may be useful in other contexts, so we present it 
in Appendix A. Given a string z E (0, l}k we show there how to find a message 
z = 51 . . .Zn such that XHASHh(z) = z. (The attack succeeds with probability 
at least 1/2, the probability being over the choice of h, and works for n 2 k + 1.) 
The attack makes 2n h-computations, sets up a certain linear system, and then 
uses Gaussian elimination to solve it. The proof that it works exploits pairwise 
independence arguments. 
OTHER COMBINING OPERATIONS. Thus we see that the choice of combining 
operation is important, and the most tempting choice, XOR, doesn't work. We 
are loth to abandon the paradigm based on this: it is hard to imagine any other 
paradigm that yields incrementality. But we conclude that it may be hard to 
get security using only conventional cryptography to implement the combining 
operation. So we turn to arithmetic operations. 

We consider two: multiplication in a group where the discrete logarithm 
problem is hard, and addition modulo an integer of appropriate size. It turns 
out they work. But we need to be careful about security given the experience 
with XOR. 

To this end, we begin below by relating the security of the hash function to 
the balance problem in the underlying group. A reader interested more in the 
constructions should skip to Section 4. 

3.5 The balance lemma 

The security of the hash functions obtained from our paradigm can be related to 
the balance problem in the underlying class of groups, as defined in Section 2.4. 
Specifically, in order to prove the security of a particular hash function family 
HASH(G,b), it will be sufficient to show that the balance problem associated 
with the corresponding group family is hard. To understand the theorem below, 
it may be helpful to refer to the definitions in Section 2. Recall that q refers 
to the number of computations of h and the theorem assumes h is ideal, ie. a 
random function of (0,1}' to G .  The theorem says that if the balance problem 
is hard over then the corresponding family of hash functions is collision-free. 
Moreover it tells us precisely how the parameters describing the security in the 
two c-8 relate to each other. Below c > 1 is a small constant, depending on 
the model of computation, which can be derived from the proof. 
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Lemma2. Let G and q be such that the (G,q)-balance problem is (t',e')-hard. 
Then HASH(4,6) is a ( t ,  q, e)-collision-free famdy of hash functions where e = c' 
and t = t ' / c  - q ' b. 

Proof. We are given a collision-finder C, which takes (G) and an oracle for h, 
and eventually outputs a pair of distinct strings, x = 2 1  . . .xn and y = y 1 .  . . Ym, 
such that HASHh,,(z) = HASHhG,(y). We want to construct an algorithm K 
that solves the (d, q)-balance problem. It takes as input (G) and a list of values 
al l .  . . , uq selected uniformly at random in G. K runs C on input (G), answer- 
ing its oracle queries with the values a1 , a2,. . . , ap in order. (We assume oracle 
queries are not repeated.) Notice the answers to oracle queries are uniformly 
and independently distributed over G, as they would be if h: {0,1}' + G were 
a random function. We will let Qi denote the i-th oracle query of C, namely the 
one answered by ai,  so that h(Q,) = ail and we let Q = (01,. . . , Qp}. 

Finally, C outputs two strings x = x1 . . . xn and y = yl . . .y,, such that 
x # y but HASHZG,(z) = HASH!,,(y). We know this means 

h((1) .XI) 0.. . O h((n) .s,) = h((1) . ~ 1 )  0.. . 0 h((m) .urn) , (2) 

the operations being in G. (Note that the strings x and y are not necessarily of the 
same size; that is, rn may not be equal to n.) We will construct a solution to the 
balance problem from z and y. Let xi = ( 2 )  .xi for i = 1, .  . . ,n  and y: = (i) . yi 

for i = 1,. . . ,m .  We can assume wlog that xi,.. . ,xn,yl , .  . . ,& E Q. We let 
fz(i) be the (unique) value j E [q] such that x: = qj and we let f,(i) be the 
(unique) j E [q] such that y: = qj.  We then let I = { f z ( i )  : i = 1, .  . . , n } and 
J = { fy(i) : i = 1,. . . , m }  be, respectively, the indices of queries corresponding 
to x and y. Equation (2) can be rewritten as 

# I  

We know that x # y, and so I # J .  Now for i = 1,. . . , q let us define 

-1 if i E J - I 

+ l i f i E I - J .  

Then the fact that I # J means that not all w1,. . . , wq are 0, and Equation (3) 
implies a?' Q - . a 0  a? = e. The probability that we find a solution to the 
balance problem is exactly that with which C outputs a collision, and the time 
estimates can be checked. I 

4 MuHASH: The Multiplicative Hash 

Here we present our first concrete construction, the multiplicative hash function 
(MuHASH), and analyze its efficiency and security. 
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4.1 Construction and efficiency 

We set the combining operation in our paradigm to multiplication in a group 
where the discrete logarithm problem is hard. (For example G = 2; for an 
appropriate prime p ,  or some subgroup theoreof.) To emphasize multiplication, 
we call the function MuHASH rather than the general HASH of Section 3. SO 
the function is 

MUHASHZ,) (zl . . . z,) = n;=l h((i)  . zi) . (4) 

The product is taken in the group G over which we are working. (Thus if we 
are working in Z;, it is just multiplication modulo p .  In this case (G) = p 
describes G.) Here all the notation and conventions are as in Section 3.1. A class 
of groups Q gives rise to a family MuHASH(Q, b) of hash functions as described 
in Section 2.3. 

If G = Zp’ then for security k = lpl should be at least 512 or even 1024, 
making the final hash value of the same length. A hash of this size may be 
directly useful, for example for signatures, where the message is hashed before 
signing. (For RSA we want a string in ,Z& where N is the modulus, and this 
may be 1024 bits.) In other cases, we may want a smaller hash value, say 160 
bits. In such cases, we allow a final application of a standard collision-free hash 
function to the above output. For example, apply SHA-1 to MuHASHtG)(z) and 
get a 160 bit string. 

Computing our hash function takes one multiplication per block, ie. one mul- 
tiplication per b bits of input. (This is in contrast to previous methods which 
required one multiplication per bit.) To minimize the cost, one can increase the 
block size. The increment operation is performed as per Section 3.2, and takes 
one inverse and two multiplication operations in the group, plus two applications 
of h. Thus it is cheap compared to re-computing the hash function. 

Note that the computation of MU HASH^^) is entirely parallelizable. The 
applications of h on the augmented blocks can be done in parallel, and the 
multiplications can also be done in parallel, for example via a tree. This is useful 
when we have hardware for the group operation, as well might be the case. 

4.2 The discrete logarithm problem 

The security of MuHASH depends on the discrete logarithm problem in the 
underlying group. Let us begin by defining it. 

Let Q be a class of groups, for example G = { 2; : p is a prime with Ipl = k}. 
Let G E 8, g a generator of G, and 9 E G. A discrete log finder is an algorithm 
I that takes g,  y, (G) and tries to output log,(y). Its success probability is taken 
over a random choice of G from Q (for the example Q above, this means we 
choose a random k-bit prime p )  and a random choice of y E G. We say that the 
discrete logarithm problem in E is (t’,c’)-hard if any discrete logarithm finder 
that runs in time t’ has success probability at most E’.  
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4.3 Security of MuHASH 

The attack on XHASH we saw above indicates that we should be careful about 
security. Moving from XOR to multiplication as the “combining” operation kills 
that attack in the case of MuHASH. Are there other attacks? 

We indicate there are not in a very strong way. We show that as long as 
the discrete logarithm problem in G is hard and h is ideal, MuHASHTG) is 
collision-free. That is, we show that if there is any attack that finds collisions 
in MuHASHZ~) then there is a way to efficiently compute discrete logarithms in 
G. This proven security obviates us from the need to consider the effects of any 
specific attacks. 

At first glance this relation of the security of MuHASH to the discrete loga- 
rithm problem in G may seem surprising. Indeed, the description of MUHASH~G) 
makes no mention of a generator 9, nor is there even any exponentiation: we are 
just multiplying group elements. Our proofs illustrate how the relationship is 
made. 

We look first at general groups, then, to get better quantitative results 
(ie. better reductions) we look at special classes of groups. 
APPROACH. All our proofs have the same structure. First it is shown that if the 
discrete log problem is hard in G then also the balance problem is hard in E. The 
security of the hash function is then derived from Lemma 2. The main technical 
question is thus relating the balance and discrete logarithm problems in groups. 

Notice this is a question just about computational problems in groups: it 
has nothing to do with our hash functions. Accordingly, we have separated the 
materiel on this subject, putting it in Appendix B. There we prove a sequence 
of lemmas, showing how the quality of the reduction changes with the group. 
These lemmas could be of independent interest. We now proceed to apply these 
lemmas to derive the security of MuHASH for various groups. 
SECURITY IN GENERAL GROUPS. The following theorem says that the only way to 
find collisions in MuHASH (assuming h is ideal) is to solve the discrete logarithm 
problem in the underlying group. The result holds for any class of groups with 
hard discrete logarithm problem. Refer to Sections 4.1, 4.2 and 2.3 for notation. 
Below c > 1 is a small constant, depending on the model of computation, which 
can be derived from the proof. 

Theorem3. Let G be a class of groups with output length L. Assume the dis- 
crete logarithm problem in G i s  (t‘,d)-hard. Then for any q, MuHASH(G,b) is 
a ( t ,  q, E)-collision-fiee family of hash functions, where e = qr’ and t = t ‘ / c  - q . 
[xand(G) + T.xp(G) -k L + 61. 

Proof. Follows from Lemma 2 and Lemma 9. 

In the above reduction, if the probability one can compute discrete logarithms is 
E’ then the probability of breaking the hash function may be as high as e = qd .  
A typical choice of q is about 250. This means the discrete logarithm problem 
in G must be very hard in order to make finding collisions in the hash function 
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quite hard. To make c appreciably small, we must make e' very small, meaning 
we must use a larger value of the security parameter, meaning it takes longer to 
do multiplications and the hash function is less efficient. It is preferable to have 
a stronger reduction in which c is closer to c'. (And we want to do this while 
maintaining the running time t' of the discrete logarithm finder to be within 
an additive amount of the running time t of the collision-finder, as it is above. 
Reducing the error by repetition does not solve our problem.) 

We now present better reductions. They exploit the group structure to some 
extent. We look first at groups of prime order (where we have an essentially 
optimal redution), then at multiplicative p u p s  modulo a prime (where we do a 
little worse, but still very well, and much better than the naive reduction above). 
SECURITY IN GROUPS OF PRIME ORDER. The recommended group G in which 
to implement MuHASH~G) is a group of prime order. (For example, pick a large 
prime p of the form p = 2p' + 1 where p' is also prime, and let G be a subgroup 
of order p' in 2;. The order of Zp' is p - 1 which is not prime, but the order of 
G is p' which is prime.) The reason is that the reduction is tight here. As usual 
c > 1 is a small constant, depending on the model of computation, which can be 
derived from the proof. 

Theorem4. Let G be a class of groups of prime order with output length L.  
Assume the discrete logarithm problem in 6 is (t',c')-hard. Then  f o r  any q, 
MuHASH(B, b) is a (t,  q, c)-collision-free famiry of hash functions, where E = 2c' 
and t = t ' /c - q [Trand(6) + Tm,lt(6) + Texp(6) + L + b] - L2. 

Proof. Follows from Lemma 2 and Lemma 10. 1 
The form of the theorem statement here is the same as in Theorem 3, but this 
time the probability e of breaking the hash function is no more than twice the 
probability e' of computing discrete logarithms, for an attacker who runs in time 
which is comparable in the two cases. 
SECURITY IN 2;. The most popular group in which to work is probably 2; for a 
prime p. Since its order is p - 1 which is not prime, the above theorem does not 
apply. What we can show is that an analogous statement holds. The probability 
e of breaking the hash function may now be a little more than the probability c' 
of computing discrete logarithms, but only by a small factor which is logarithmic 
in the size k of the prime p. As usual c > 1 is a small constant, depending on 
the model of computation, which can be derived from the proof. 

Theorem 5. Let k 2 6 and let G = { 2; : p is a prime with Ipl = k }. Suppose 
the discrete logarithm problem in &7 is (t',  €')-hard. Then for any q, MuHASH(C7, b) 
is a ( t , q ,  c)-collision-free family of hash functions, where c = 41n(0.694k).e1 and 
t = t ' / c  - qk3 - qb. 

Proof. Follows from Lemma 2 and Lemma 11. 1 
The factor multiplying c' will not be too large: for example if k = 512 it is about 
24. 



180 

SECURITY IN PRACTICE. We have shown that computation of discrete loga- 
rithms is necessary to break MuHASH as long as h is ideal. Yet, it could be 
that MuHASH is even stronger. The reason is that even computation of discrete 
logarithms does not seem suficient to find collisions in MuHASH. That is, we 
suspect that finding collisions in MU HASH?^) remains hard even if we can com- 
pute discrete logarithms. In particular, we know of no attacks that find collisions 
in MuHASH even if discrete logarithm computation is easy. In this light it may 
be worth noting that the natural attempt at a discrete logarithm computation 
based attack is to try to “reduce” the problem to finding additive collisions in 
the exponents and then apply the techniques of Section A. But this does not 
work. The underlying problem is a kind of knapsack problem which is proba- 
bly hard. In fact this suggests that the hash function obtained by setting the 
combining operation in our paradigm to addition might be already collision-free. 
This function and its security are discussed in Section 5. 

Some evidence that breaking MuHASH is harder than computing discrete 
logarithms comes from the results of [IN21 who indicate that multiplication in G 
is a one-way hash as long as any homomorphism with image G is hard. We can 
extend their proofs, with added conditions, to our setting. This indicates that un- 
less all such homomorphisms are invertible via discrete logarithm computation, 
MuHASH will be collision-free. 

Also, although the proofs make very strong assumptions about the function 
h, it would appear that in practice, the main thing is that h is collision-free. In 
particular if h is set to SHA-1 then given the modular arithmetic being done on 
top of the h applications, it is hard to see how to attack the function. 

5 AdHASH: Hashing by Adding 

AdHASH is the function obtained by setting the combining operation in our 
paradigm to addition modulo a sufficiently large integer. Let us give the definition 
more precisely and then go on to look at security. 

5.1 Construction and EfEciency 

We let M be a k-bit integer. As usual let z = x1 . . . xn be the data to be hashed, 
let b denote the block size, let N be such that all messages we will hash have 
length at most N and let I = b + lg(N). We let h: (0,l)’ -+ ZM be a hash 
function, assumed ideal. The function is- 

AdHASHL(z1 . . . %,) = C21 h((i )  . xi) mod M . 

Thus, the “key” of the function is the integer M .  We let AdHASH(k, b) denote 
the corresponding family, consisting of the functions AdHASHb as M ranges 
over all h-bit integers and h ranges over all functions of (0,l)’ to ZM. The 
distribution on the key space is uniform, meaning we draw M at random from 
all k-bit integers and h at random from all functions of (0,l)’ to Z M ,  in order 
to define a particular hash function from the family. 
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AdHASH is much faster than MuHASH since we are only adding, not multi- 
plying. Furthermore, it would seem k can be quite small, like a few hundred, as 
compared to the sizes we need for MuHASH to make sure the discrete logarithm 
problem is hard, making the gain in efficiency even greater. In fact the speed of 
AdHASH starts approaching that of standard hash functions. And of course it 
is incremental, with the cost of incrementality also now reduced to just adding 
and subtracting. Thus it is a very tempting function to use. Next we look at 
security. 

5.2 

The security of AdHASH can be related to the difficulty of a certain modular 
subset-sum or knapsack type problems which we now define. 
WEIGHTED KNAPSACK PROBLEM. In the (k, q)-weighted-knapsack problem we 
are given a k-bit integer M, and q numbers a l ,  . . . , u4 E ZM. We must find 
weights w1,. . . , wq E { - l , O ,  +l}, not all zero, such that 

The Weighted Subset Sum Problem 

We say that the (k, 9)-weighted-knapsack problem is (t',  €')-hard if no algorithm, 
limited to run in time t', can find a solution to an instance M, ul ,  . . . , aq of the 
(k, q)-weighted-knapsack problem with probability more than d, the probability 
computed over a random choice of k-bit integer M, a choice of al,  . . . , aq selected 
uniformly and independently at random in ZM, and the coins of the algorithm. 

Notice this is just the (G,q)-balance problem for the class of groups G = 
{ ZM : IMI = k }. But it is worth re-stating it for this case. 

If we did not allow weights -1, and additionally asked that rather than be 0 
the sum must hit some given target T, we would have the subset sum problem 
as used in PN 1, IN21. 

We must be careful how we choose the parameters: it is well known that for 
certain values of k and q, even the standard problem is not hard. Specifically, 
make sure that R(1og q) < k < q. It turns out this choice will not be a restriction 
for us anyway. Nice discussions of what is known are available in [Od] and [IN2, 
Section 1.21. 

The hardness of the weighted problem is a stronger assumption than the 
hardness of the standard problem, but beyond that the relation between the 
problems is not known. However, there is important evidence about the hardness 
of the weighted knapsack problems that we discuss next. 
RELATION TO LATTICE PROBLEMS. A well-known hard problem is to approxi- 
mate the length of the shortest vector in a lattice. The best known polynomial 
time algorithms [LLL, SH] achieve only an exponential approximation factor. It 
has been suggested that there is no polynomial time algorithm which achieves 
a polynomial approximation factor. Under this assumption, Ajtai showed that 
both the standard and the weighted subset-sum problems are hard [Aj]. (Actu- 
ally he allows any small integer weights, not just - l , O ,  +1 like we do). That is, 
there is no polynomial time algorithm to solve these problems. 
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This is important evidence in favor of both the knapsack assumptions dis- 
cussed above. As long as approximating the length of a shortest lattice vector is 
hard, even in the worst case, the knapsack problems are hard. This increases the 
confidence we can have in cryptosystems based on these knapsack assumptions. 

Values of t ‘ ,d  for which the standard and weighted knapsack problems are 
(t‘,e’)-hard can be derived from Ajtai’s proof, as a function of the concrete 
parameters for which one assumes shortest vector length approximation is hard. 
Since Ajtai’s proof is quite complex we do not know exactly what the relation 
is. 

We note however that even more is true. Even if the assumption about lattices 
fails (meaning an efficient approximation algorithm for the shortest lattice vector 
problem emerges), the knapsack problems may still be hard. Thus, we present 
all our results in terms of the knapsack assumptions. 

5.3 Security of AdHASH 

We relate the collision-freeness of AdHASH to the weighted knapsack problem. 
Below c > 1 is a small constant, depending on the model of computation, which 
can be derived from the proof. 

Theorem 6. Let k and q be integers such that the ( k ,  9)-weighted-knapsack prob- 
lem is (t’, d)-hard. Then AdHASH(k, b )  i s  a ( t ,  q, E)-collision-free family of hash 
functions where E = d and t = t ’ / c  - q M .  

Proof. Follows from Lemma 2 and the observation that weighted knapsack is a 
particular case of the balance problem, as mentioned in Section 5.2. 1 

6 

Ajtai introduced a function which he showed was one-way if the problem of 
approximating the shortest vector in a lattice to polynomial factors is hard [Aj]. 
Goldreich, Goldwasser and Halevi observed that Ajtai’s main lemma could be 
applied to show that the same function is in fact collision-free [GGH]. Here 
we observe this hash function is incremental, and consider its practicality. We 
then use our paradigm to derive a more practical version of this function whose 
security is based on the same assumption as in [Aj, GGH] plus the assumption 
that our h is ideal. Let us begin by recalling the problem shown hard by Ajtai’s 
main lemma. 

Incremental Hashing via Lattice Problems 

8.1 The Matrix Kernel Problem 

In the (k, n, s)-matrix-kernel problem we are given p, M where p is an s-bit 
integer and M is a k by n matrix with entries in 2,. We must find a non-zero 
n-vector w with entries in {- l ,O,  +1} such that Mw = 0 mod p .  (The operation 
here is matrix-vector multiplication, with the operations done modulo p ) .  We 
say this problem is (t’, €’)-hard if no algorithm, limited to run in time t’, can 
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find a solution to an instance p , M  of the (k,n,a)-matrix-kernel problem with 
probability more than E ’ ,  the probability computed over a random choice of p ,  a 
random choice of matrix M ,  and the coins of the algorithm. 

Suppose ks < n < 2”/(2k4). Ajtai showed that with these parameters the 
matrix-kernel problem is hard under the assumption that there is no polynomial 
time algorithm to approximate the length of a shortest vector in a lattice within 
a polynomial factor. (Ajtai’s result was actually stronger, since he allowed entries 
in w to be any integers of “small” absolute value. However [GGH] observed that 
weights of -1,0,+l are what is important in the context of hashing and we 
restrict our attention to these). 

A close examination of Ajtai’s proof will reveal specific values of t’ ,~’ for 
which we can assume the matrix kernel problem is (t‘, €‘)-hard, as a function of 
the assumed hardness of the shortest vector approximation problem. Since the 
proof is quite complex we don’t know what exactly these values are. 

Notice that the matrix kernel problem is just an instance of our general 
balance problem: it is the (g, n)-balance problem for = { 2; : Ipl = s }. This 
shows how the balance problem unifies so many hash functions. 

6.2 The Ajtai-GGH Function 

THE FUNCTION. Let M be a random k by n matrix with entries in 2, and let z 
be an n vector with entries in (0 , l ) .  The function of [Aj, GGH] is- 

HMJz) = M x m o d p .  

Note M x  mod p is a k-vector over Z,, meaning it is k lg(p) bits long. Since the 
parameters must obey the restriction klg(p) < n < p / ( 2 k 4 ) ,  the function is 
compressing: the length n of the input 2 is more than the length klog(p) of the 
output Mx mod p .  Thus it is a hash function. Now, if the matrix kernel problem 
is hard this function is one-way [Aj]. Moreover, under the same assumption it 
is collision-free [GGH]. It follows from [Aj] that the function is collision-free as 
long as shortest vector approximation is hard. 
INCREMENTALITY. We observe the above function is incremental. Let Mi denote 
the i-th column of M ,  for i = 1, ..., n. This is a k-vector over 2,. Let z = 
z1. . . z, with xi  E (0 , l )  for i = 1,. . . ,n. Now we can write the function as- 

In other words, we are summing a subset of the columns, namely those corre- 
sponding to bits of x that are 1. Now suppose bit xi  changes to xi. If y (a k-vector 
over 2,) is the old hash value then the new hash value is y + (z: - q ) M i  mod p .  
Computing this takes k additions modulo p ,  or O(klog(p)) time, a time which 
does not depend on the length n of z. 

DRAWBACKS OF THIS FUNCTION. A serious drawback of H is that the description 
of the function is very large: (nk + 1) lg(p) bits. In particular, the description 
size of the function grows with the number of bits to be hashed. This means we 



184 

must set an a priori limit on the number of bits to be hashed and use a function 
of size proportional to this. This is not feasible in practice. 

One way to partially overcome this problem is to specify the matrix entries 
via an ideal hash function. For example if h: [k] x [n] -+ 2, is such a function, 
set M [ i , j ]  = h(z,j) .  But we can do better. The function we describe next not 
only has small key size and no limit on input length, but is also more eff i~ient .~ 

6.3 LtHASH 

Our function is called LtHASH for “lattice based hash.” 
THE CONSTRUCTION. We apply the randomize-then-combine paradigm with the 
group G set to 2:. That is, as usual let z = z1. . . zn be the data to be hashed, 
let b denote the block size, let N be such that all messages we will hash have 
length at most N and let I = b + Ig(N). We let h: (0,l)’ + 2; be a hash 
function, assumed ideal. Think of its output as a k-entry column vector over 2,. 
Our hash function is- 

h(( i )  . xi) mod p . LtHASH,h(z, . . . zn) = n 

Namely, each application of h yields a column vector, and these are added, 
componentwise modulo p, to get a final column vector which is the hash value. 

Notice that there is no longer any matrix M in the function description. This 
is why the key size is small: the key is just the s-bit integer p. Also LtHASH; 
is more efficient than the function described above because it does one vector 
addition per bbit input block rather than per input bit, and b can be made 

We let LtHASH(k, s, b) denote the corresponding family, consisting of the 
functions LtHASH; asp ranges over s-bit integers and h ranges over all functions 
of (0,l)’ to 2;. The key defining any particular function is the integer p, and 
the distribution on the key space is uniform, meaning we draw p at random from 
all s-bit integers in order to define a particular hash function from the family. 

Notice that AdHASH is the special case of LtHASH in which k = 1 and 
p = M .  

SECURITY. We relate the collision-freeness of LtHASH to the hardness of the 
matrix-kernel problem. The relation may not be evident a priori because LtHASH 
does not explicitly involve any matrix. But, intuitively, there is an “implicit” k 
by q matrix M being defined, where q is the number of oracle queries allowed to 
the collision-finder. This matrix is not “fixed:” i t  depends on the input. But find- 
ing collisions in LtHASHk relates to solving the matrix kernel problem for this 
matrix. Below c > 1 is a small constant, depending on the model of computation, 
which can be derived from the proof. 

large. 

Another way to reduce the key size is define H M , ~  only on relatively short data, and 
then, viewing it as a compression function, apply Damghd’s iteration method [Da.2]. 
But then incrementality is lost. Also, the key sizes, although no longer proportional 
to the data length, are still larger than for the construction we will describe. 
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Theorem 7 .  Let k ,  q, s be integers such that the ( k ,  q ,  s)-matk-kernel problem 
is (t',d)-hurd. Then LtHASH(k,s,b) is u ( t , q ,  e)-collision-free furnily of hash 
functions where e = e' and t = t l / c  - qks. 

Proof. Follows from Lemma 2 and the observation, made in Section 6.1, that 
the matrix kernel problem is a particular case of the balance problen when the 
group is 2;. I 

We will choose the parameters so that ks < q < Y / ( 2 k 4 ) .  (Recall s = IpI). In 
this case, we know that the required matrix kernel problem is hard as long a~ 
shortest lattice vector approximation is hard. 

To actually implement the function we must have some idea of what Val- 
ues to assign to the various security parameters. Opinions as to the concrete 
complexity of the shortest lattice vector approximation problem vary across the 
community: it is not clear how high must be the dimension of the lattice to get a 
specific desired security level. (Although the best known algorithm for shortest 
vector approximation is only proven to achieve an exponential factor [LLL], its 
in practice performance is often much better. And Schnorr and Horner [SH] have 
found heuristics that do better still). In particular, it does not seem clear how 
big we need take k (which corresponds to the dimension of the lattice) before we 
can be sure of security. One must also take into account the exact security of the 
reductions, which are far from tight. (Some discussion is in [GGH, Section 31). 

Keeping all this in mind let us look at our case. It seems safe to set k = 500. 
(Less will probably suffice). We want to allow q, the number of oracle queries, to 
be quite large, say q = 2'O. To ensure q < 2"/(2k4) we must take s about 110. 
Namely p is 110 bits long. This is longer than what the function of [Aj, GGH] 
needs, making operations modulo p slower for LtHASH, but this is compensated 
for by having much fewer such operations to do, since we can make the block 
size b large. 

Of course LtHASH is still incremental. Incrementing takes one addition and 
one subtraction over 2;. 

COMPARISON WITH OUR OTHER PROPOSALS. LtHASH is very similar to Ad- 
HASH. In fact it is just AdHASH implemented over a different domain, and the 
security can be proven based on the same underlying problem of hardness of 
shortest lattice vector approximation. Notice also that AdHASH can be consid- 
ered a special w e  of LtHASH, namely, the case k = 1. However the proof of 
security of LtHASH does not immediatly carry over to AdHASH because the 
shortest lattice vector problem in dimension k = 1 is easily solved by the Eu- 
clidean algorithm. So, the concrete security of LtHASH might be better because 
the relation to shortest lattice vector approximation is more direct. 

Comparison with MuHASH is difficult, depending much on how parameters 
are set in both functions, but AdHASH and LtHASH are likely to be more 
efficient, especially because we can make the block size 6 large. 
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A Attack on XHASH 
In Section 3 we presented XHASH as a plausible candidate for a incremental 
collision-free hash function but indicated that it was in fact insecure. Here we 
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present the attack showing this. Recall that the function is XHASHh(x1 . . . zn) = 
h( (1) . z~)@ * * @h((n) . z,,). Here each zi is a b-bit block, and 1 = 6 + lg(N) is 
large enough to accommodate the block plus an encoding of its index, by dint of 
making N larger than the number of blocks in any message to be hashed. Our 
assumption is that h: (0,l)l + (0, l)k is ideal, ie. a random function of (0,1}' 

Our claim is that there is an attack that easily finds collisions in XHASHh. 
We will in fact show something stronger, namely that XHASHh is not even a 
one-way function. Given any k bit string z ,  we can efficiently compute a string 
x such that XHASHh(z) = z. (To see that this means XHASHh is not collision- 
free, let z = XHASHh(y) for some random y and then apply the algorithm to 
produce 2. With high probability z # y so we have a collision). 

We reduce the problem to solving linear equations. See [Co] for other attacks 
that exploit linear equations. 
THE ATTACK. Given z E (0, l}k we now show how to find x so that XHASHh(z) = 
t. Fix two messages zo = zy . . . z: and z1 = xi . . . x i  with the property that 
z: # xi for all a = 1,. . . , n. (We will see later how to set n. In fact n = k + 1 
will suffice.) For any n-bit string y = y[l] . . . y[n] we let z Y  = z$ll . . . x $ ~ ] .  We 
claim that we can find a y such that XHASH*(zY) = I. Let us first say how to 
find such a y, then see why the method works. 

We compute the 2n values 4 = h((i) .d)  for j = 0 , l  and i = 1 , .  . . ,n .  We 
want to find y[l], . . . ,y[n] E GF(2) such that 

to (0,l)k. 

ap$a,y[2] . . . $ . . . a$"] = 2 . 

$;=lcY3/[i]e3crf(l - y[i]) = 2 . 
Let us now regard y[l], . . . , y[n] as variables. We want to solve the equation 

To solve this, we turn it into a system of equations over GF(2). We first introduce 
new variables g[l], . . . , g[n]. We will force g[ i ]  = 1 - y[i]. Then we turn the above 
into k equations, one for each bit. The resulting system is: 

y[i]@g[i] = 1 (i = 1, .  . . ,n)  
c~![j]y[i]$c~f[j]g[i] = z [ j ]  ( j  = 1, .  . . , k) 

Here we have n + k equations in 2n unknowns, over the field GF(2). Below we 
show that if n = k + 1 then there exists a solution with probability 112. We now 
set n = k+l and solve the set of equations, for example via Gaussian elimination, 
to get values for y[l], . . . , y[n] E GF(2). (The system is slightly under-determined 
in that there are n + k = 2k + 1 equations in 2n = 2k + 2 unknowns. It can 
be solved by setting one unknown arbitrarily.) This completes the description of 
the attack. Now we have to see why it works. 
ANALYSIS. There are two main claims. The first is that a solution y to the above 
does exist (with reasonable probability as long as n is sufficiently large). The 
second is that given that some y exists, the algorithm finds such a y. The latter 
is clear from the procedure, so we concentrate on the first. The following lemma 
implies that with n = k + 1 a solution exists with probability at least one-half. 
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Lemma8. Fix z E {O, l}&. Fix two messages xo = xy . . . z i  and x1 = xi.. . X: 
with the property that x4 # xi for all i = 1, .  . . ) n.  For any n-bit string y = 
y[l] . . . y[n] let ZY = z;[l1 . . . x$". Then 

2k 
Pr[ 3y E {0,1}" : XHASHh(zY) = .] 2 1 - - 2" 

The probability here is ouer a random choice of h j h m  the set of all functions 
mapping {O,1} '  + (0, I}k. 
Proof. See [BM]. I 

B The balance problem and discrete logs 

In this section we show how the intractability of the discrete logarithm in a group 
implies the intractability of the balance problem in the same group. These are the 
technical lemmas underlying the theorems on the security of MuHASH presented 
in Section 4.3. 

We stress that the question here is purely about computational problems in 
groups, having nothing to do with our hash functions. We first prove a very gen- 
eral, but quantitatively weak result for arbitrary groups. Then we prove strong 
results for groups of prime order and the group of integers modulo a prime. Re- 
fer to Section 2.4 for a definition of the balance problem and Section 4.2 for a 
definition of the discrete logarithm problem. 
GENERAL GROUPS. The following says that if computing discrete logs in some 
class of groups is hard, then so is the balance problem. As usual c > 1 is a small 
constant, depending on the model of computation, which can be derived from 
the proof. 

Lemma% Let 5 be a class of groups with output length L .  Assume the discrete 
logarithm problem in Cj is ( t ' ,  €')-hard. Then for any q, the (G, q)-balance problem 
is (t,c)-hard, where e = g d  and t = t ' /c  - q . [Trand(G) + Tex,(G) + L] .  

Proof. We are given an algorithm A, which takes (G) and a sequence of elements 
al, . . . , a, in G and outputs weights w1,.  . . , wq E {- l ,O,  +l}, not all zero, such 
that lIfP,luy' = 1. Let g be a generator of the group G. We want to construct a 
discrete logarithm finding algorithm I. It takes as input (G), 9 ,  and y E G, the 
last randomly chosen, and returns log,(y). 

We let p = IGl be the order of G. We will use A to build I. I first picks 
at random an integer q* in the range 1,. . . , q. 1 then computes elements ai 
(i = 1 , .  . . ,g) as follows. If i = q* then ai = y. Otherwise it chooses at random 
Ti E 2, and sets ui = 9''. (Notice that since y is random and g is a generator, all 
ai are uniformly distributed over G.) Finally, I runs A on input (G), a l , .  . . ,a, 
and gets a sequence of weights w l ,  . . . , wq,  not all zero, such that uyl --a? = 1. 
Let i* be such that wi. # 0. Since the choice of q* was random and unknown 
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to A,  with probability at least l / q  it will be the case that the q' = i'. For 
notational convenience, assume q' = a' = 1 .  Now, substituting, we have 

ywi . gwarz . . . gwp'q = 1 , 

Re-arranging the temrs and noticing that w;' = wl (in 2,) gives us 

= 9-w~(wara+-.+w,rq) mod P 

Thus, r = -wl (wzrz + a * +w,r,) mod p is the discrete logarithm of y and I can 
output it and halt. The probability that I is successful is 6 times the probability 
that wq. # 0, and we saw the latter was at least l /q .  That is, d = e/q.  

Since I runs A it incurs time t .  Computing each ai takes one random choice 
and one exponentiation (except for up* which only needs to be copied), meaning 
Trmd(G) + T e x p ( G )  steps per element. The output of C may be up to t bits long 
so reading it is another investment of time upto t .  The final modular additions 
take O(qL) time. The total time for the algorithm is thus t f  = t + q - [Trand(G) i- 
Texp(G) + L]. I 
This is a very general result, but quantitatively not the best. We now tighten 
the relationship between the parameters for special classes of groups. 
GROUPS OF PRIME ORDER. Let G be some class of groups of prime order for 
which the discrete logarithm problem is hard, as discussed in Section 4.3. Below 
we see that e = 2d rather than c = qE' as before, which is quite an improvement. 
As usual c > 1 is a small constant, depending on the model of computation, 
which can be derived from the proof. 

Lemmalo. Let B be a class of groups of prime order with output length L .  
Assume the disyete logarithm problem in G as (t',d)-hard. Then for any q, the 
(G, q)-balance problem i s  (t,c)-hard, where E = 2d and t = t'/c - q * [TrWd(G) + 
T!n"lt(G) + T x , ( G )  + L] - La.  

Proof. We follow and modify the proof of Lemma 9. By assumption G has prime 
order. We let p = IGl be this order. So G = {gi  : i E Z,,}, Note that computation 
in the exponents is modulo p and takes place in a field, namely 2,. We will make 
use of this. 

Given A we are constructing I. I takes as input (G), g, and y E G, the last 
randomly chosen. If y = 1 (the "1" here standing for the identity element of G), 
then I can immediately answer log,(y) = 0. So, we can assume that a, # 1. The 
key point where we differ from the previous proof is in how the input to A is 
computed. For each i = 1 , .  . . , q, algorithm I chooses at random ri E 2, and also 
chooses at random di E {0 ,1 }  and sets ai = gdiyri. (Notice that gd+ is either 1 or 
g and we don't need to perform a modular exponentiation to compute it. Notice 
also that since G has prime order every element of G except 1 is a generator. In 
particular y is a generator and hence ai is uniformly distributed over G.) NOW 
we continue to follow the proof of Theorem 3. We run A on input (G), a1 , . . . , a, 
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and get weights w1, .  . . , wq, not all zero, such that 
the values for ai we have 

..a? = 1. Substituting 

%arranging terms gives us 

Now let 

T = w l r l  + . - + wqrg mod p 

d = -wid1 - * * * - Wqdq modp,  

so that our equation is y' = gd. Now, observe that T # 0 with probability at 
least 1/2. (This is because the value of dl remains equi-probably 0 or 1 from 
the point of view of A,  and is independent of other di values. At most one of 
the two possible values of dl can make d = 0 and hence T = 0.) If it is the case 
that r # 0 then, since p is a prime, T has an inverse modulo p .  I computes the 
inverse of r modulo p and denotes it by r-l. I outputs r - ld  mod p. We have 
gdr-' = y"-l = y so the output is indeed log,(y). 

To show the algorithm outputs log,(y) with the claimed probability d ,  we 
just need to observe that the input distribution to A is that required by the 
balance problem. A solves this problem with probability e and we get log,(y) 
with probability at least one half of that. I 

THE GROUP 2;. Finally we look at the group 2; where p is prime. This group 
has order p - 1, which is not prime, so Lemma 10 does not apply, but we can still 
do much better than Lemma 9. As usual c > 1 is a small constant, depending 
on the model of computation, which can be derived from the proof. 

Lemma 11. Let k 1 6 and let G = { 2,. : p as a prime with lpl = k }. Suppose 
the discrete logarithm problem in G is (t ' ,d)-hard. Then for any q, the ( G , q ) -  
balance problem is (t, €)-hard, where E = 41n(0.694k) E' and t = t ' / c  - qk3 - b .  

The following, which we will use in the proof, can be derived from inequalities 
in hsser  and Schoenfeld [RS]. 

Lemma12. For any integer N 2 23 it is the case that 

cpo 1 
N ' 4.1nlnN ' 

We will have N = p - 1, and it is to guarantee N 2 23 that we let the length k 
of p be at least 6 in Lemma 11. 
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Proof of Lemma 11. We let G = 2; and let p = IGl = p - 1. Thus (G) = p. We 
now follow and modify the proofs of Lemma 9 and Lemma 10. Given A we are 
constructing I. 

The key point where we differ from the previous proof is in how the input to 
A is computed. For each i = 1, . . . , q,  algorithm I chooses at random ri E 2, and 
also chooses at random di E 2,. It sets ai = gdiyri. (Notice that ai is uniformly 
distributed in G because di is random and g is a generator.) 

Finally, we run A on input (G), a1 , . . . , up. We define T and d as in the previous 
proof and get to the equation y' = gd. We would like to compute r-' mod p. The 
problem is that since p is no longer prime, this inverse may not exist. However, 
we claim (to be justified later) that r is uniformly distributed in 2,. This means 
that gcd(r,p) = 1 with probability 

- V(P) 1 l >  I >  1 
P ' 4lnln(p) ' 41nln(2k) - 41n(kln(2)) - 4ln(0.694k) ' 

having used Lemma 12 and the fact that p = p - 1 5 2k. We can compute 
gcd(r,p), and, if it is one, compute r-' mod p, in which case we can output 
log,(y) as before, and the probability we succeed is the above. 

Now we must justify the claim that T is uniformly distributed in Z,-I. Note 
A has no information on the ri values, since the ai d u e s  are uniformly and inde- 
pendently distributed of the ri values, thanks to the di values. So we are adding 
a non-zero number of uniformly distributed values. So the result is uniformly 
distributed. 1 
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