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Abstract. We introduce the notion of a black box field and present
several algorithms for manipulating such fields. Black box fields arise
naturally in cryptography and our algorithms have several cryptographic
implications. First, our results show that any algebraically homomorphic
cryptosystem can be broken in sub-exponential time. The existence of
such cryptosystems was posed as an open problem in [12]. Second we
show that over elliptic (or hyperelliptic) curves the hardness of com-
puting discrete-log implies the security of the Diffie-Hellman protocol.
This provable security of the Diffie-Hellman protocol over elliptic curves
demonstrates an additional advantage of elliptic curve cryptosystems
over conventional ones. Finally, we prove that manipulating black box
fields over the rationals is as hard as factoring integers.

1 Introduction

An algebraic structure is often defined as a sct of operators acting on some
universe. Usually there is no reference as to how the elements in the universe are
represented . One can design algorithms for such an abstract algebraic structure
by providing the algorithm with oracles for the various operators. We refer to
such a representation of an algebraic structure as a black box representation. The
most widely studied structure given in this fashion is the black box group [3].

In this paper we study fields given in a black box representation. We refer to
such fields as black box fields, or BBF for short. The definition of black box fields
will be given in Section 2. For now we give a high level description. Let K be a
BBF. Intuitively speaking, the elements of I are represented as arbitrary binary
strings. For an element z € K we denote by [r] the binary string representing
the element x. We refer to [z] as the black box representaiion of z. A black box
field algorithm has access to oracles that given [z] and [y] compute the black box
representation of the sum [z + y] and product [zy]. Similarly, there is an oracle
that given [z], [y] will output “true” if and only if # = y. Finally, the algorithm
is provided with an oracle that given » € & will output [z].

We will be most interested in the following problem: let p be a prime and
K = [, be a finite field given as a BBF. Find an algorithm that takes as
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input the black box representation of a field element [a] and outputs an integer
0 < a < p such that a = & (mod p). We refer to this problem as the black box
field problem, or BBFP for short. A trivial algorithm for this problem is to test
all elements of IF, one by one by using the equality test oracle. The running
time of this algorithm is O(p). We are interested in finding algorithms for BBFP
whose running time is substantially less than p.

Our main results will be randomized algorithms for BBFP whose expected
running time is sub-exponential in log p. Our algorithms are based on a technigue
due to Maurer [18]. The existence of sub-exponential algorithms for BBFP is
surprising when contrasted with a result of Nechaev [25] and Shoup [27]. They
considered the equivalent problem to BBFP over groups, i.e. where elements can
be added, but not multiplied. They show that for the group G = Z/pZ the best
algorithm for finding a hidden element must take time Q(/|G]).

Sub-exponential algorithms for BBFP have several consequences to cryp-
tography. The first application shows that any elgebraically homomorphic cryp-
tosystem can be broken in sub-exponential time. Such cryptosystems are desir-
able since they enable non-interactive two-player sccure function evaluation [1].
These concepts will be defined in Section 3.1. One may view this result as a
general cryptanalytic tool: to show that a cryptosystem can be broken in sub-
exponential time it suffices to show that it is algebraically homomorphic.

An important motivation for studying the black box field problem is that
algorithms for BBFP can be used to prove the security of the Diffie-Hellman se-
cret key exchange protocol [11]. Proving the equivalence of breaking the Diffie-
Hellman protocol and computing discrete-log is one of the oldest problems in
public key cryptography. In Section 3.2 we show that the sub-exponential al-
gorithm for BBFT has the following consequence: let G be a group in which
the discrete log problem can not be solved in sub-exponential time. Then in the
group G the Diffie-Hellman protocol can not be broken in sub-exponential time.
The group generated by the points of an elliptic curve over a finite field is an
example of a group for which there is no known? sub-exponential algorithm for
computing discrete log (this is the main motivation for using elliptic curve cryp-
tosystems [14, 23]). Hence, our results show that if computing discrete log in the
group of points of an elliptic curve is hard then the Diffie-Hellman protocol in
such groups is secure. The existence of such a reduction demonstrates another
advantage of elliptic curve cryptosystems.

Finally in Section 6 we consider an equivalent of BBFP over the rationals.
We show that solving BBFP over the rationals is as hard as factoring integers.
This negative result suggests that performing computations over rational black
box fields is much harder than over finite black box fields.

2 A sub-exponential algorithm is known for the rare event when the curve is supersin-
gular [22].
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2 Black-box fields

A black box field is an abstract algebraic construct motivated by cryptographic
applications. We begin by giving a precise definition of black box fields (BBF)
and the black box field problem (BBFP).

Definition 1. A black boz field is a six-tuple: (p,n, b, F, G, T) where p is a prime
and n is a positive integer representing the encoding length. The functions
h, F,G,T are defined as follows:

1. The function h : {0,1}"* — F, associates a field element with every n-
bit binary string. The function A is surjective, i.e. every field element is
represented by at least one binary string.

2. The functions F, G : {0,1}* x {0,1}" - {0, 1}" perform addition and multi-
plication. They satisfy the following relations: A( F(z,y)) = h(z) + h(y) and
h(G(z,y)) = h(z)h(y).

3. The function T : {0,1}" x {0,1}" — {true,false} tests equality of two
black box elements: T(x,y) = true if and only if h(z) = h(y).

Notice that an element z € F, can be represented by many different n-bit
binary strings since A~!{z) is a set of arbitrary cardinality. Throughout the
paper we will use [z] to denote some binary string representing the field element
z,i.e. h([z]) = z. The functions F and G compute {z + y] and [zy] given [z] and
[y]- This is consistent with the notation used in the introduction. We usually
refrain from mentioning the functions h, F, G, T explicitly. When we say that F,
is given as a black box field we assume that these functions have already been
agreed upon. As an abuse of notation we occasionally write [¢] € F, which is
to be understood as saying that [z] is a black box representation of the field
element & € IF,,.

In Section 3 we give examples where black box fields arise naturally. To
familiarize the reader with the concept of a black box field we present a few simple
algorithms for such fields. The first is computing the inverse: given [z] € F, we
wish to compute [z~!]. This can easily be done by observing that [z~1] = [zP~%].
Using repeated squaring this requires O(log p) applications of the multiplication
function. Another example is that of computing [/z] given [z] if it exists. An
algorithm due to Shanks {6, pp. 32-33] can find square roots in finite fields using
only operations which are supported in black box fields. Hence, the algorithm
can be applied to [z] and it will output [/z].

Definition 2. Let (p,n,h, F,G,T) be a black box field for some prime p. We
denote the map sending z to some [z] by {]. The black boz field problem is the
following: find an algorithm A that given p and oracles for F,G,7,[] and an
element [a] € [, finds « explicitly. Formally, AF%Tl([a]) = a where a = o
(mod p). The algorithm is satd to run in polynomial time if it runs in time
p. The algorithm is sub-exponential if it runs in sub-exponential time in
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The main goal of this paper is to provide algorithms for solving the black
box field problem. We first show that it is possible to obtain a small number of
bits that uniquely define elements of the finite field .

Conjecture 3. Let p be a prime and set k = [2log” p]. For an element z € Ty
define the signature of x as the vector:

soter = () (22 o (225)

where (1—)) is the Legendre symbol of x over p. Then we conjecture that for

sufficiently large p, any two distinct elements z,y in F, satisfy sig{z) # sig(y)-

Problems similar to Conjecture 3 were studied by Davenport [8]. The identity

(i—) =5 (mod p) shows that given [z] one can compute sig(z) in a black

box field using O(log® p) applications of the oracles. Assuming the conjecture is
true, sig(x) provides enough information to recover z. Unfortunately, there is no
known polynomial time algorithm for finding ¢ given sig(x). In fact, Damgard [7]
suggested using this sequence as a pseudo-random sequence.

The argument above shows that one can not hope to obtain an information
theoretic lower bound on the number of oracle calls needed to solve BBFP.
Assuming conjecture 3 holds, a polynomial number of oracle calls are sufficient
to completely constrain the hidden element [2]. We note that for the equivalent
problem in the black box group Z/pZ there is an information theoretic lower
bound showing that Q(,/p) oracle calls are needed to obtain enough information
about a hidden element (see [27]).

3 Applications

The black box field problem arises naturally in cryptography. In this section we
discuss two applications of algorithms for BBFP to cryptography.

3.1 Algebraically homomorphic encryption schemes

Informally a cryptosystem is algebraically homomorphic if given the encryption
of two plain-texts z,y one can construct the encryption of the plain-texts z + y
and zy in polynomial time. This is captured in the following definition.

Definition4. Let d e,k be positive integers dencting the plain-text length,
cipher-text length and key-length respectively. Let Z, be the ring of integers
modulo n where {log, n| = d. The ring Z, constitutes the set of plain-texts. Let
(E,D) be an encryption scheme, i.e.

D:Z, x {0,1}* — {0,1})* and £ :{0,1}*x {0,1}* - Z,
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where E, D are deterministic polynomial time computable functions. Further-
more, D(E(z,K.), K;) = z for some key pair (K., K4) generated by a prob-
abilistic polynomial time key generation algorithm. The encryption scheme 1s
said to be algebraically homomorphic if there exist two probabilistic expected
polynomial time algorithms A, M : {0,1}¢ x {0,1}¢ — {0,1}* such that for all
z,y € Zp, and encryption keys K,:

A(E(z,K.),E(y,K.)) = E(z+y, K.} and M{E(z,K.), E(y, K.)) = E(zy, k)

As an example we note that for the RSA cryptosystem, given the encryption
of two plain-texts x and y onc can easily construct the encryption of zy by simply
multiplying the two given cipher-texts. RSA is not known to be algebraically
homomorphic even though it supports one of the required operations.

Algebraically homomorphic encryption schemes have several applications
which make them desirable. Most importantly, they enable two players two per-
form non-interactive secure function evaluation. See [1] for the appropriate def-
initions. The existence of such functions was posed as an open question in [12,
pp. 6-7]. Unfortunately our sub-exponential algorithm for BBFP shows that any
algebraically homomorphic encryption scheme can be broken in sub-exponential
time.

Theorem 5. Suppose that BBFP in a finite field of size p can be solved in time
Teer(p). Then any algebraically homomorphic encryption scheme (D, E) over
a plain-text ring of size n can be broken in expected time

O(Tgper(n) + exp((1+ o{1)){/log nlog? log n)

Proof. Tosimplify the exposition we assume that n is square free. This restriction
can be easily lifted using methods of Pohlig and Hellman [24]. Since one can
factor integers in expected exp((1 + o(1))y/lognlog’ logn) time (see [16]) it
is possible to factor the plain-text ring into a direct product of finite fields:
Zn = [1;—, Fp, where the p; are distinct primes.

Let K., Ky be some encryption/decryption key pair. Given F(z, K.) we wish
to find z in the required time bound. For each p; we define the black box field
(pi,e, b, A, M, T) as follows: h(z) = D(z, K;) (mod p;). Notice that for e €
[Fp; the string [a] can be any string w satisfying w = E(d’, K.) where a =
a’ (mod p;). The addition and multiplication functions A, M are simply the
corresponding functions used in Definition 4. Hence A, M can be computed in
expected polynomial time. To unplement the equality testing oracle T' observe
that ¢/ = ¥ (mod p;) if and only if (o' - ') * n/p; B 0 (mod n). Thus, for
a,b € Iy, given [a] = E(d’, K.) and [b] = E(¥, K.) testing if a = b is done by
testing if E((a’ —b')xn/p;, K.) = E(0, K.). The string E((a’ =0 )xn/pi, K.) can
be computed from {a], [b] in expected polynomial time. We have thus shown that
(pi,e, h, A, M, T} is a black box ficld and the functions A, M, T can be computed
in probabilistic polynomial time.

Given E(z, K,) we use the algorithm for BBFP in each of the black box fields
Fp, to recover x mod p;. Using chinese remaindering we can now recover . The
total expected running time is Y., O(Tppr(p:)) < O(Tgar(n)). D
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Theorem 5 can be generalized to work for more general finite commuta-
tive rings. We do not pursue these generalizations here. An immediate corollary
of Theorem 5 is that the sub-exponential algorithm for BBFP (Theorem 8)
enables one to break any algebraically homomorphic encryption scheme in sub-
exponential time. This fact may also be viewed as a general tool for eryptanalysis.
A cryptanalyst which is faced with a new cryptosystemn might try to prove that
it is algebraically homomeorphic. If he succeeds then cur techniques immediately
give a method for breaking the system®.

3.2 The Dilie-Hellman protocol

The Diffie-Hellman secret key exchange protocol [11] is one of the oldest public
key protocols. The protocol enables two parties to perform a secret key exchange.
We briefly describe the protocol using an arbitrary finite cyclic groups G. Say
Alice and Bob wish to perform a secret key exchange. ‘They agree ahead of time
ou some generator g € G of the group . The generator g is made public. Both
Alice and Bob secretly pick random integers 0 < a,b < |G|. Alice sends to Bob
the value g® and Bob sends to Alice the value g*. Both Alice and Bob can now
compute the value g** = (%)% = (g*)® which is used as their secret key.

A passive eavesdropper, Eve, who listens in on the conversation hears g°
and ¢°. To discover the secret key, Eve has to compute ¢2°. Thus, we define the
Diffie-Hellman function as:

DHg(ga,{/b) —_ gab )

Note that the cyclic group & is implicit in this notation. In their original paper,
Diffie and Hellman claimed that for G = Z; computing the function DH,(z,y)
is hard. Many other types of groups have been suggested by various authors.
Examples include the multiplicative group of residues modulo a composite num-
ber [20, 19], elliptic curves over finite ficlds [14, 23], the Jacobian of a hyperelliptic
curve over a finite field [13] and the class group of imaginary quadratic fields [4].
In all these groups the function DH4(x, y) is believed to be hard to compute.
A long standing open problem in cryptography is the question of whether
computing DIl («, y) is as hard as computing discrete-log for the group G. The
discrete log-function is defined as Dlogg(g") = @ where a is an integer In the
range 0 to |G| — 1. It is not difficult to see that an oracle for Dlog,(z) enables
one to compute DH,(z,y) in polynomial time. The hard question is whether
the converse holds: given an oracle for computing DH,(z,y) can one compute
Dlog, (=) in polynomial time (in log [G'])? Surprisingly, there have been very few
results on this problem [10, 18, 30]. Recently Maurer [18] obtained a beautiful
result showing that given a polynomial number of advice bits which depend
only on |G| one can compute Dlog,(z) in polynomial time given an oracle for
DH,(z,y). Unfortunately, computing these advice bits takes exponential time.

® This does not hold for probabilistic encryption schemes, The reason is that given
two cipher-texts one can not test if they are the encryption of the same plain-text.
As a result, the equality testing oracle can not be implemented.
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We show how algorithms for BBFP can be used to reduce Dlog,(z) to
DH,y(z,y). First we state an observation due to Pohlig and Hellman [24] which
shows that the ability to compute discrete log in groups of prime order is suffi-
cient for computing discrete log in arbitrary groups.

Lemma 6. Lel G be a finile cyclic group for which the factorization of |G| is
known. Suppose thal for any element g € G of prime order p one can compute
Dlog,(x) in time T(p). Then one can compute Dlog,(x) for any element h € G

in time T(|G|) log® |G,

The main connection between BBFP and the security of the Diffie-Hellman
protocol is explained in the following theorem. The theorem shows that if BBFP
can be solved quickly then an algorithm for breaking Diffie-Hellman will give an
algorithm for computing discrete-log.

Theorem 7. Suppose BBFP over the field F, can be solved in time Tgpp(p).
Let G be some finite cyclic group for which the fuctorization of |G| s known.
Suppose that DHy(x,y) can be evaluated in tume Tpy(|G|) for any g € G of
prime order. Then for any g € G the function Dlog,(x) can be computed in time

Tepr(IG) - Tou(JG) - 1og M |G)

Proof. Let g be a generator of G and & = g“. We wish to compute Dlog,(z). First
we show that when G has prime order p the theorem is immediate. The ability
to evaluate DH,(x,y) transforms G into the black box field F,. An element
b € F, is represented as [b] = ¢*. Two elements can be added [b + c] = ¢°y° and
multiplied [be] = DH, (g%, ¢°). Since [a] = = the algorithm for BBFP will output
a on input z. The algorithm for solving BBFP runs in time Tppr({G|) and
therefore makes at most Tgpp(|G|) calls to the multiplication oracle. Each call
requires a calculation of the Diffie-Hellman function which takes time Tp g (|G]).
The total running time is O(Tppr(IG|) - Tou(|G])).

When |G| is not prime we make use of Lemma 6. Let p be a prime dividing ||
and let A = ¢l¢!/?_ The group generated by h has prime order. By assumption,
DHy(z, y) can be evaluated in time Tpg(p). Hence, by the previous paragraph,
Dlogy(y) can be computed in time Tupp(p) - Tpg(p). Lemma 6 can now be
applied to show that Dlog,(z) can be computed in time Tepr(GD) - Tou(|G)) -
logo(’) |G| for any g € G. ]

We note that when |G| is square free the theorem can be strengthened to
obtain a more direct reduction from computing discrete-log to breaking Diffie-
Hellman. Namely, for a fixed g an algorithm for DH,(z, y) can be converted to
an algorithm for Dlog,(x).

Theorem 7 shows that algorithms for BBFP can be used to reduce computing
discrete-log to breaking Diffie-Hellman. We present two algorithms for BBFP in
the next section. In Section 5 we show several groups for which these algorithms
imply the security of the Diflie-Hellman protocol. These results are summarized
in Theorem 13.
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4 Algorithms for black-box fields

In this section we describe two sub-exponential algorithms for BBFP. The results
depend on an assumption which is often used in computational number theory:
Smoothness assumption

Let Lo (p) be the function L,(p) = exp (log” p log logl~°‘p). For an integer z
let d(z) be the largest prime divisor of z. If d(z) < o we say that = is o-
smooth. The assumption we need is that intcgers chosen uniformly in the range

[p+1—2/B,p+ 1+ 2,/p) satisfy

1

Prid(x) < La(p)] > T a(p)i-atom

for any fixed a > 0. When the integer z is chosen in the range {1, p] this assump-

tion is known to be true (see [5, 9]). The assumption when a = 1 is necessary for

the running time analysis of the elliptic curve factoring method of Lenstra [15].

4.1 A sub-exponential algorithm for BBFP

Thearem 8. Let K be a finite field of size p given as a black boz field. Under the
smoothness assumption, BBFP can be solved using O(logp) space and expected

time
L%(p)”‘”“) = exp ((2 +o(1)/logp log logp)

The proof of Theorem 8 uses a technique similar to the one used by Mau-
rer [18]. Before proving Theorem 8 we state some simple facts regarding ellip-
tic curves. We denote by FE,3(p) the set of points (z,y) € F2 on the curve
y? = 2% 4+ az + b plus a point O called the point at infinity. It is well known [28]
that there is a natural Abelian group structure defined on the points in Eq »(p).

Given two points Py, Py € E, ,(p) we denote their sum in this group by P, + Ps.

Fact 9. Let Eqy be an elliptic curve over the black boz field IF,. Let Py = (x1,41)
and Py = (x3,y3) be two poinis on E, . Let Ps = Py+ Py = (3, y3). Then given
[z1], {w1], [22], [ya] 2t is possible to compute [x3)], [ys] in polynomial time in logp.

Proof. The values z3,ys are algebraic expressions in &, y1, T2, Y2, a,b. See [28,
pp. 58-59] for a list of these expressions. Thus, [z3], [y3] can be computed from
(1], [t1], [z2], [y2] using the addition and multiplication oracles. O

Throughout the section we use [P] to denote the point P = (z,y) € Eqs(p)
whose coordinates are given as black box eclements, i.e. [P] = ([z],[y]). Fact 9
shows that given points [P1] = ([z], [1]) and [Ps] = ([23)], [y2]) it is possible to
construct [Py + P»] = ([23],[ys]) In polynomial time. Similarly, using repeated
doubling one can construct the point [kP] given a point [P] and an integer k.

Fact 10. Let E,y be an elliptic curve over W,. Then the group F,; can be
generated by two points. Furthermore, two random poinis Py, P> generale the
group Eqp with probability at least Q(1/ log2 p).
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Proof. The structure of the group K, is known to be K, =~ Zp X Zmy for
some m, n where m|n (see [28]). Thus E,; can be generated by two points. The
number of pairs which generate Z, x Z,, is lower bounded by Q(@(nm)?). The
result now follows since always p(x)/z > Q(1/logz). 0

Proof of Theorem & The basic idea 1s to generate random elliptic curves F, 3
over F, until a curve with a smooth order is found. It is well known that the
number of points on a random elliptic curve over F, is approximately uniformly
distributed in the range [p+1— 2,/p, p+ | + 2,/p] {see [15]). Hence, by the
smoothness assumption, after an expected exp ((1 + o(1))y/Tog p Toglogp) tries
we will have generated a curve £, ; such that the largest prime divisor of [Eq |
is less than exp (\/logp loglogp).

Let E, 5 be an elliptic curve over F, for which the largest prime divisor of
|Eq 3] is less than d for some d > 0. The number of points on the curve Fy,
can be found in polynomial time using Schoof’s algorithm [26]. We show that
using this curve it is possible to solve the black box field problem over ¥, in
time O(d? log p). This will prove the theorem. Note that since the prime factors
of {E, | are small, they can be found in the required time bound.

By Fact 10 we can find a pair of points Py, P; which generate the group E, ;
by picking them at random. If it so happens that P;, Py do not generate E, ; then
the algorithm will fail and we will know that P;, P, were poorly chosen. Fact 10
shows that in an expected polynomial number of attempts the pair P;, Pe will
work.

Let Py = (x1,y1), P» = (x2,y2) be two points which generate F, ;. Given
a black box representation [z} of some field element 2z € [, we construct z
explicitly, i.e. find an integer w such that w = z (mod p). This is done in three
steps:

1. Embed [2] in the curve E, , i.e. find [y] € F, so that the point [P] = ([z], {¢])
ison £y

2. Find integers o and 8 such that {P] = [a P + 3F:]. Such integers exist since
Py, Py generate E, 3.

3. Calculate aP; +8P> explicitly. The z coordinate of the resulting point, which
is an explicit field element, is the required value.

We now explain how to carry out steps 1 and 2. In step 1 we are looking
for [y] € F, such that y?> = 23 4 az + b. Given [z] one can clearly construct
[#3 + az + b]. The required [y] can be found by taking the square root of the
element [z3 + ax + b]. This is possible since in Section 2 we saw that given
[z] € F, there is an algorithm for constructing [v/z] in random polynomial time.
If the above element does not have a square root in I, we run through the entire
computation using [#] = [z + r] for some randomly chosen r. After a constant
number of tries it will be possible to embed [Z] in the curve.

Next we explain how to find @ and § as required in step 2. Recall that
Eap 2 Zp X Zm where n = ¢7' -~ ¢!~ , m|n and all the primes g; are less than d.
To find a, 8 we use a simple generalization of the Pohlig-Hellman algorithm [24]
for discrete log in groups of smooth order. For simplicity we assume that all the
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7; are equal to 1. The Pohlig-Hellman algorithm generalizes to the case where
v; > 1 as well. The method for finding o, 3 is to construct o, 8 (mod ¢;) for all
t=1,...,r and then use chinese remaindering to find «, 3.

Let q; be a prime dividing n and let k¥ = n/q,. Notice that the points kP, kP>
have order at most ¢;. Therefore, since the point kP is in the group generated
by &Py, kP, there must exist integers 0 < o, 8; < q; such that

[/CPJ [0( kP + 3 A',P‘?]

These intcgers can be found in time Q(q3) by trying all possible pairs o;, 3 in
the range [0, ¢,].

As was stated above, the (a;,5;) (mod ¢;) can be combined using chinese
remaindering to obtain integers «, 3 such that P = aP; + 3P;. Since |E, 3| has
at most O{log p) prime factors and they are all less than d the running time of
this procedure is at most O(d*log p). 0

4.2 A two step algorithm

Before we present the results of this section we have to explain the notion of an
algebraic algorithm. Intuitively, a function f : F* — I¥ can be computed by an
algebraic algorithm if it can be computed efficiently even when the input is given
as black box field elements. This means that the function can be computed by
only applying elementary arithmetic operations and equality tests to its input.

Definition11. Let F, be a finite field and f : Fy — ¥, some function on n
inputs. We say that f can be computed in time T'(p) by an algebraic algorithm
if there exists a Turing machine M satisfying the following property: for any
black box representation (p,n,h, ', G, T) of the field F, the machine M given
access to the oracles £, G, 7" and [} will run in time at most T(p) and will output

[f(zy,...,zq)] on nput [x1], ..., [2,].

in Section 2 we noted that the functions f(z) = r=! (mod p) and f(z) = /=
{mod p) can be computed by random polynomial time afgebraic algorithms.

We improve the algorithm of the previous section by improving the brute
force search step. The improvement rclies on a certain additional assumption.
Namely, we assume that the Diffie- Hellman function over the group of points of
an elliptic curve can be computed by an Ly/3(p) algebraic algorithm. Though
this assumption is likely to be false (there are no sub-exponential algebraic al-
gorithms for computing discrete log) the theorem is quite useful. It provides a
more efficient reduction from computing discrete-log to breaking Diffie-Hellman.

Theorem 12. Suppose DH,(Py, Py) can be computed in time Ly 5(p) by an al-
gebraic algorithm where Py = (21,y1), Po = (z2,y2) and g are poinis on an
elliptic curve F,3(p). Then under the smoothness assumption, BBFP in a finite
field of size p can be solved in expected trme

Li(p)" T = exp ((? + o(U)Cﬁogp log log® P)

L
3
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Proof sketch. Virst generate a curve E,; over F, with n points such that the
largest prime divisor of n is Ly/z(p). By the smoothness assumption this can be
done in expected Ly 3(p)!/3+°()) time. The prime factors of n can be found using
the elliptic curve factoring algorithm [15] in time L1/3(p)1+°(1). Let g be a prime
divisor of n. The algebraic algorithm for computing DH,(P;, Po) can be used
to transform the subgroup of points on K, ; of order ¢ into a black box field.
Therefore the brute force search in the algorithm of Theorem 13 can be done in
time Ly2(¢)? < Ly3(p)?. The entire algorithm takes Ll/g(p)2+°(l) time. 0

Theorem 12 is a rare example where the elliptic curve method produces
an algorithm with a running time of L;;3(p). Such running times are usually
associated with the number field sieve [16].

5 Security of the Diffie-Hellman protocol

We use the algorithins for BBFP of Section 4 to derive the security of the Diffie-
Hellman protocol over various groups. Theorem 7 shows that if discrete-log can
not be computed in time Tpr (|G|) in a group G then the Diffie-Hellman protocol
can not be broken in time O~(TDL(|G|)/TBBF(|G|)). Thus, the faster we can solve
BBFP the more secure the Diffie-Hellman protocol is.

Since the algorithms for BBFP take sub exponential time the above approach
can only be used in groups for which there is no sub-exponential time algorithm
for discrete log. There are several groups which are suspected to have such a
property. The groups are all constructed using a prime modulus p.

1. Let E, ; be the group of points on an elliptic curve modulo p. The best algo-
rithm for discrete log in such groups is Shank’s baby-step-giant-step {21] al-
gorithm. There is no known sub-exponential algorithm for discrete-log which
works in all groups E, ; (such algorithms exist when |E, 4| is a smooth num-
ber or when E, ; is supersingular {22]).

2. Let J be the Jacobian of a hyper-elliptic curve of genus g. When the genus g
is fixed, there is no known sub-exponential algorithm for discrete log which
works for all J. Adleman, DeMarrais and Huang [2] show that when the
genus 1s at least log p the index calculus method can be adapted to give an
L%(ng“*l)”"(l\' algorithm for discrete log i J.

3. Let g be an element of Z; which generates a subgroup of order Lysa(p). Let
H be this subgroup. Discrete log in H, is not known to be solvable in sub-
exponential time in |H,|. The digital signature standard [31] relies on the
exponential time hardness of discrete log in I, for its security.

4. Finally we mention that all sub-exponential algorithms for group Zj rely
on the index calculus method and therefore require sub-exponential space.
There 1s no known sup-expounential time and polynomial space algorithm for
computing discrete log in Z;.

The algorithms for BBFP can be used to derive hardness results for breaking
the Diffie-Hellman protocol for the groups mentioned above. These results are
summarized in the following theorem.
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Theorem 13. Let p be a prime. Under the smoothness assumplion we oblain
the following results:

1. If discrete log can not be compuled in [,1/2(1))2“’(1) time in the groups
Eap,J, Hy then the Diffie-Hellman protocol can not be broken in time L%(p)
in these groups.

2. If discrete log can not be computed in L1/3(p)2+0(1>) time in the groups
Eqy, J, Hy then the Diffie-Hellman protocol can not be broken by an alge-
braic algorithm in time Ly 3(p) in these groups.

Proof. First, we may assume that the factorization of |G| is known. This factor-
ization can be found using the number field sieve algorithm whose conjectured
running time is L ,3(p)!*°(!) [16]. Part (1) follows by combining Theorem 7 and
Theorem 8. Part (2) follows by combining Theorem 7 and Theorem 12. a

Note that part (2) of the theorem relies on a weaker assumption than part (1).
The conclusion is also weaker since we can only prove that DH,(z,y) can not
be computed by an algebraic algorithm.

6 Black-box fields in characteristic 0

In this section we consider the black box field problem over the field of rational
numbers (). We are provided with a black box representation of the rationals
which supports the axioms of Definition 1. The black box field problem over
Q can be stated as follows: given a black box representation of an integer [z]
between 1 and N find the integer z. The algorithm is said to be polynomial if it
runs in time polynomial in log N. We prove the following negative result:

Theorem 14. BBFP over () can not be solved in polynomial time, unless fac-
toring tntegers s easy.

By “factoring integers is easy” we mcan that a non-negligible fraction of the
n-bit RSA composites can be factored in polynomial time. We refer to [17] for
the precise definition. To prove Theorem 14 we first recall the notion of the
straight line complexity of a polynomial. Let f(z) € @[z] be some polynomial.
A straight line computation of f is a sequence of polynomials g1,. .., gm such
that g, = f and each g; is one of the following: (i) g; is the constant 1 or the
variable x; (ii) g; = g; o gr where o is one of + —* and j, k < i. The length of the
computation is m. The straight line complexity of f(z), denoted by L(f), is the
length of the shortest such computation. The following theorem can be easily
derived from a result due to Lipton [17].

Theorem 15. Let {fi(z)} be a sequence of polynomials over Q[z] such that for
any k, the polynomial fy(x) has at least 2% [k integer roots for some inieger
e > 0. Then for any d > 0 and sufficiently large k we have L(f) > k¢, unless
factoring is easy.
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Proof of Theorem 14. In a black box field the only operations allowed are ad-
ditions, multiplications and comparisons. Thus, a computation in a black box
field can be viewed as an algebraic decision tree [29]. That is, given an input g
the computation proceeds as follows: at every internal node v in the tree some
polynomial f,(zo) is evaluated. If f,(zp) = 0 the computation branches to the
left child of v otherwise the computation branches to the right child. The leaves
of the tree are labeled with the output.

Assume towards a contradiction that for any N there is an algorithm which
solves BBFP over (@ in time logo(l) N. That 1s, given the black box representa-
tion of an integer 0 < = < N the algorithm will find z. The algorithm defines
an algebraic decision tree with N leaves. Siuce the algorithm is polynomial, the
depth of the tree is at most logd N for some d > 0. Furthermore, the straight
line complexity of every polynomial f, in the tree must satisfy L(f,) < log® N
for some ¢ > 0.

Consider the path vg, ... , v, from the root vy to a leaf v,, in which every v;
is the right child of v;_y. For i = 0,... ,m let Z,, be the sct of integer roots of
fv, in the range [1, N]. An input z will not reach the leaf v,, if it is contained in
some Z, . Since only one integer in the range [1, N} is allowed to reach the leaf
vm we know that |{JiL, Z,,| = N — 1. Hence, there must exist an ¢ such that
|Z,,] > (N = 1)/m. Since m < log? N we conclude that the polynomial f,, has
at least N/log® N integer roots.

Applying this argument for N = 2*¥ where k = 1,2,... we obtain a sequence
of polynomials f; where each f}, has at least 2¥ /k¢ integer roots and L{f) < k°.
This sequence contradicts the statement of Theorem 15. b

7 Conclusions and open problems

We defined a new problem which we call the black box field problem or BBFP
for short. We demonstrated several applications of BBFP to cryptography: (1)
efficient algorithms for BBFP provide reductions from computing discrete-logs
to breaking the Diffie-Hellman protocol. (2) algorithms for BBFP can be used as
a cryptanalytic tool to break algebraically homomorphic cryptosystems. These
applications demonstrate the importance of this problem.

We described two sub-exponential algorithms for solving BBFP. The first
solves BBFP in time L,/5(p). The second solves BBFP in time Ly;3(p) under
certain (strong) assumptions. These algorithms were used to show that over
elliptic curves the hardness of computing discrete-log implies the security of
the Diffie-Hellman protocol. These results demonstrate an advantage of elliptic-
curve cryptosystems over conventional ones. In addition we noted that for small
sub-groups of Zy, such as the ones used by DSS [31], our results show that the
hardness of discrete-log implies the security of the Diffie-Hellman protocol. We
have also shown that assuming factoring integers is hard, BBFP can not be
solved in polynomial time over the rationals.

The problem of solving BBFP over a finite field in polynomial time is still
open. We briefly deseribe a promising approach. Schoof’s algorithm [26] for
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counting the number of points on elliptic curves over F, can be made to work
over black box fields. Given a curve y* = z3+[a]z +[b] over F,, the algorithm will
output an explicit integer which is the number of F,-points on the curve. Given a
black box element [j] we construct the curve y* = 2% +[a]z +[b] whose j-invariant
is [j]. The number of points on this curve provides a lot of information about j.
Currently it is not known how to reconstruct j from this information. Progress
in this direction will be of great interest and is likely to yield a polynomial time

algorithm for BBFP.
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