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Abstract. We irrtroduce the notion of a black box field and present 
several algorithms for manipulating such fields. Black box fields arise 
naturally in cryptography arid our algorit,hnns have several cryptographic 
implications. First, our results show that any algebraically homomorphic 
cryptosystem can be broken in sub-exponential time. The existence of 
such cryptosystems was posed as an open problem in [la]. Second we 
show that, over elliptic (or hyperelliptic) curves the hardness of com- 
puting discrete-log implies the security of the Diffie- Hellman protocol. 
This provable security of the Diffie-Hellman prot,ocol over elliptic curves 
demonstrates an additional advantage of elliptic curve cryptosystems 
over conventional ones. Finally, we prove that manipulating black box 
fields over the rationals is as hard as factoring integers. 

1 Introduction 

An algebraic structure is often defined as a set of operators acting on some 
universe. Usually there is no reference as to how the elements in the universe are 
represented. One can design algorithms for such an  abstract algebraic structure 
by providing the algorithm with oracles for the various operators. We refer t o  
such a representation of an  algebraic structure as a black box r e p r e s e n l a t i o n .  The  
most widely studied structure given in this fashion is the black box group [3]. 

In this paper we study f ields given in a black box representation. We refer to 
such fields as black box fields, or BBF for short. The  definition of black box fields 
will be given in Section 2 .  For now we give a high level description. Let I< be a 
BBF. Intuitively speaking, f,he elenierits of li are reprcsented as arbitrary binary 
strings. For an  element IZ: E Ii we denote by [x] the binary string representirig 
the element 2 .  We refer to [x] as the blnck boa: r e p r e s e n t a t i o n  of 2. A black box 
field algorithm has access to oracles t>hat given [z] and [y] compute t8he black box 
representation of tjhe sun1 [z + y] and product [xy]. Similarly, there is an oracle 
that, given [XI, [y] will output, “true” if and only if 2 = y. Finally, the  algorithm 
is provided with an oracle that given T E K will output [z]. 

We will be most, interested in t,he following problem: let p be a prime arid 
K = IF, be a finite field given as a BBF. Find an algorithm tha t  takes as 
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input the black box representation of a field element [.a] and outputs an integer 
0 5 a < p such that u 2 cr (mod y). We refer tjo this problem as the black box 
field problem, or BBFP for short. A t,rivial algorithm for this problem is to test 
all elenients of IFp one by one by using t,he equalitmy test, oracle. T h e  running 
t,ime of this algorithm is O(p) .  We are interested in finding algorithms for BBFP 
whose rnnning tirrie is substantially less t,han p .  

Our ma,in results will be randomized algorithms for BBFP whose expected 
running time is sub-esporiential in  logp. Oiir algorithms are based on a technique 
due t.o Maurer 1181. 'The existence of sub-exponential algorithms for BBFP is 
surprising when contrastfled with a result, of Nechaev [25] and Shoup [27]. They 
considered t,he ecluivalerit problem t o  BBFP over groups, i.e. where elements can 
be added, but not multiplied. They show that for the group G = Z/pZ the best, 
algorithm for finding a hidden element must t,ake time R(  m). 

Sub-exponential algorithrns for BBFP have several consequences t o  cryp- 
tography. The first application shows t,hat any algebraacably hornornorphic cryp- 
tosystem can be broken in sub-exponential time. Such cryptosystems are desir- 
able since they enable non-interactive two- player secure function evaluation [ 11. 
These concept,s will be defined in Section 3.1. One may view this result as a 
general cryptanalytic t,ool: to show that a cryptosysteni can be broken in sub- 
exponential time it suffices to  show that  it is algebraically homomorphic. 

An irnportant motivation for studying the black box field problem is that, 
algorithms for BI3FP can be used to  prove t,he security of the Diffie-Hellman se- 
cret key exchange protocol [ll]. Proving t,hc equivalence of breaking the Diffie- 
Hellman protocol arid coinpiit,ing discrete-log is one of the oldest, problems in 
public key crypt!ography. In Section 3.2 wc show that t,he siib-exponential al- 
gorithm for RRFP has the following consequence: let G' be a group in which 
the discrete log problriii can not be solved in sub-exponential time. Then in the 
group G the Diffie-Helltnan protocol can riot be broken in sub-exponential time. 
The group generated by the points of an elliptic curve over a finite field is an 
example of a group for which there is no k.nown2 sub-exponential algorithm for 
computing discret.e log (this is the main rnotivation for using elliptic curve cryp- 
tosystems [14, 231). Hence, our result>s show that if computing discrete log in t$he 
group of points of an elliptic curve is hard then the Difie-Hellman protocol in 
such groups is secure. The existence of such a reduct,ion demonstrates another 
advantage of elliptic ciirve cryptosystems. 

Finally in  Section 6 we corisider an equivalent, of BBFP over the rationals. 
We sliow that  solving HHFP over the rationals is as hard as factoring integers. 
This negative result, suggests tshat perforrriing computations over rational black 
box fields is much harder than over finitc black box fields. 

A aub-exporierttial algorithrri is known for the raw ?vent when the  curve 1s supersin- 
giilar [ 2 2 ] .  



285 

2 Black-box fields 

A black box field is an abstract algebraic construct motivated by cryptographic 
applications. We begin by giving a precise defiriitioii of black box fields (RBF) 
and the black box field probleni (BRFP) 

Definition 1. A black box f i e l d  is a six-tuple: (pl ( I ,  h ,  F ,  C;, 7') where p is a prime 
and n is a positive int,eger represent,ing t,he encoding lengt,h. The functions 
h ,  F ,  G,T  are defined as follows: 

1. The function h : ( 0 , l ) "  -+ IF, associaks a field element with every n,- 
bit binary string. The function h is surjective, i.e. every field elenierit is 
represented by a t  lenst one binary st,ring. 

2.  The functions F ,  G : (0 ,  l}n x (0 ,  1)" --+ (0,  1)" perform addition and multi- 
plication. They satisfy the followiug rrlat,ions: h ( F ( x ,  y)) = h(z )  + h(y) and 

3.  The function T : (0,  I}" x (0,  I}" - {txue,faSse} tests equality of two 
h(G(x ,  Y)) = h(t)h(Y). 

black box elements: T ( z ,  y) = t r u e  if and only if / I ( . )  = h(y). 

Notice that, an cleincnt 2 E IF, can br represent,ed by many different n-bit' 
binary strings since h - ' ( e )  is a set of arbitrary cardinality. Throughout the 
paper we will use [z] t o  denote some binary string representing the field element 
z, i.e. h ( [ z ] )  = z. 'I'he functions F' and G compute [z -+ y] and [zy] given [x] and 
[y]. This is consistent, with t,he notation used in the introduction. We usually 
refrain from mentioning the functions h ,  F ,  G,  T explicitly. When we say that  FJ, 
is given as a black box field we assume that these functions have already been 
agreed upon. As an abuse of notation we occas iod ly  write [z] E IFp which is 
to  be understood as saying that, [ x ]  is a black box representation of the field 
elerrient IC E IF,. 

In Section 3 we give examples where black box ficlds arise naturally. To 
familiarize the reader wi th  the concept of a black box field we present a few simple 
algorithms for such fields. The first is compiit,ing t,he inverse: given [z] E IF, we 
wish to  compute [z-'1. This can easily be done by observing that [z-'] = [zp--"]. 
Using repeated squaring t.his requires O(1og p )  applications of the multiplication 
function. Another example is that  of computing [a given [z] if i t  exists. An 
algorithm due to  Shanks [6, pp. 32-33] can find sqiiare roots in finit,e fields using 
only operations which are supported in black box fields. Hence, the algorithm 
can be applied t o  [x] and it will output [d. 

Definition2. L e t  ( p , 7 t ,  h,, F ,  C ,  T) be a black box field for some prime p .  We 
denote the map sending x to  some [XI by 0. The black box f i e l d  problem is the 
following: find an algorithm A t,liat, given p and oracles for F ,  G, T ,  u and an 
element [a] E IF, finds Q. explicitly. Formally, AF,",T1[I([O]) = a where a E cy 
(mod p ) .  The algoriLhrri is said to run in  polynomial time if it runs in time 
logo(') p .  'L'he algorit,hm is suh-exponent,ial if it, r uns  in sub-exponential time in 
1% Y .  
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The main goal of this paper is to  provide algorithms for solving the black 
box field problem. We first show that  it is possible to obtain a small number of 
bits that  uniquely define elements of the finite field F,,. 

Conjecture 3. Let J' be a plrnir and set k = r2 log2 p ] .  For a n  element z E g p  
define the signature of x a s  the vector: 

where (F) zs the Legpndre symbol  of I oiler p Then we conjecture that f o r  
sujjiczently large p ,  any two dzs-lznct elements 2, y zn IF, satasfy szg(ac) # szg(y). 

Problems similar to Conjecture 3 were studied by Davenport [8]. The  identity 
(mod p )  shows that given [z] one can compute sig(z) in a black 

hox field using O(log3 p )  applications of the oracles. Assuming the conjecture is 
true, sig(z) provides enough information t o  recover 2 .  Ilnfortunately, there is no 
known polynomial time algorithm for finding 2 given sig(;c). In fact, Damgard [7] 
suggested using this se.quence as a pseudo-random sequence. 

The argument above shows that one can not hope t o  obtain an information 
theoretic lower bound on thc number of oracle calls needed to  solve BBFP. 
Assuming conjecture 3 holds, a polynomial number of oracle calls are sufficient 
t o  completely constrain the hidden element [ x ] .  We note that for the equivalent 
problem in thc black box group Z / p E  there is an information theoretic lower 
bound showing that Q(fi) oracle calls are needed to  obtain enough information 
about a hidden element (see [27]). 

- E = 1  = z 2 (9 

3 Applications 

The black box field problem arises naturally in cryptography. In this section we 
discuss two applications of algorithms for BBFP to cryptography. 

3.1 Algebraically homomorphic encryption schemes 

Informally a cryptosystem is algebraically homomorphic if given the encryption 
of two plain-texts z ,g  one can construct the encryption of the plain-texts 2 + y 
and zy in polynomial time. This is captured in the following definition. 

Definition4 Let d ,  c ,  k be posit&ive integers denoting the plain-text length, 
cipher-text length arid key-length respectively. Let, Zn be the ring of integers 
modulo n where [log, nJ = d .  The ring Z,, constitutes t,he set of plain-t'exts. Let 
( E ,  D )  be an encryption scheme, i.e. 

D : x (0, 1jk - { o ,  1 1 ~  arid E; : {0,1>' x (0,  l l k  -+ zn 
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where E ,  D are deterministic polynomial time computable functions. Further-. 
more, D ( E ( x ,  l i e ) ,  K d )  = 2 for some key pair ( K e ,  K d )  generated by a prob- 
abilistic polynomial time key generation algorithm. The  encryption scheme is 
said to be algebraica l ly  h.omom.orphzc if there exist two probabilistic expected 
polynoniial time algorithms A,  A4 : (0, 1 j e  x {0, l}e 4 (0,  l}e such that for all 
x ,  y E En and encryption keys Ice: 

A ( E ( z ,  ITe), E(y ,  l i e ) )  = E ( z + ~ ,  K e )  and hi’(E(z, Ice),  E ( y ,  IC,)) = E(xy ,  Iie) 

As an exaniple we note that for the RSA cryptosyst,em, given the encryption 
of two plain-t,exts 2 and y onc can easily construct the encryption of zy  by simply 
multiplying the two given cipher-texts. RSA is not known t,o be algebraically 
homomorphic even though it supports one of the required operations. 

Algebraically homomorphic encryption schemes have several applications 
which make them desirable. Most importantly, they enable two players two per- 
form non-interactive secure function evaluation. See [l] for the appropriate def- 
initions. The existence of such functions was posed as an open question in [ la ,  
pp. 6--71. Unfortunately our sub-exponential algorithm for BBFP shows that any 
algebraically hornomorphic encryption scheme can be broken in sub-exponential 
time. 

Theorem 5. Suppose that  BBFP an a f i n i t e  f ield of size y c a n  be solved in t h e  
T B B F ( ~ ) .  T h e n  any  algebraica l ly  h,omomorph.ic e n c r y p t i o n  scheme ( D ,  E )  o v e r  
a plain-iext  r i n g  of s i z e  ‘n c a n  he broken zn expected time 

Proof. To simplify the exposition we assume that 71 is square free. This restriction 
can be easily lifted using methods of Pohlig and Hellinan [24]. Since one can 
factor integers in expect,ed exp( (1 + o( 1)) vlog n log2 log n )  time (see [lti]) it 
is possible to f ador  the plain-text ring into a direct product of finite fields: 
Zn  = ni=, IFp, where the pi are distinct primes. 

Let lie, K d  be some encryption/decryption key pair. Given E ( z ,  lie) we wish 
t o  find x in the required time bound. For each pi we define the black box field 
(pi, e ,  h ,  A ,  M ,  T )  as follows: h(z )  = D ( x ,  K d )  (mod pa).  Notice that  for a E 
IFp ,  the string [u] can be any string w satisfying w = E(a’, K e )  where a E 
a,‘ (mod pa). The addition and multiplication functions A ,  A4 are simply tshe 
corresponding funct,ions used in  Definition 4. Hence A ,  A4 can be computed in 
expected polynomial time. To implement the equality testing oracle T observe 
that a’ 6’ (mod pi) if and only if (a’ -- h’ )  * n / p i  0 (mod n ) .  Thus, for 
a ,b  E Fp, given [a] = E ( d ,  I C E )  and [b] = E(b’,1ie) t,esting if a = b is done by 
t,esting if E((u’-b’)*n/pi,  Iqe) = E(0,  lip). The string E((a’-b’)*n/pi, Ice) can 
be computed from [ a ] ,  [b] in expected polynomial t,ime. We have thus shown that 
(pi, e l  h ,  A ,  M , T )  is a black box ficlcl and t,he furict,ions A ,  M ,  T can be comput<ed 
in probabilistic polynomial time. 

Given E ( x ,  I c e )  we use the algorit,hni for BBFP i n  each of the black box fields 
I F p ,  to recover z mod p i .  Using cliiriese remaindering we can now recovcr x .  The 

0 total expected running time is Cs=o # ( Z h ~ ~ ( p i ) )  < O ( T B B F ( ~ Z ) ) .  
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'Theorern 5 can be generalized to work for more general finite coniniuta- 
tive rings. We do riot pursue thwe generalizations here. An immediate corollary 
of Theorem 5 is that, the sub-exponential algorithm for BBFP (Theorem 8) 
enables one to break any algebraically homomorphic encrypt,ion scheme in sub- 
exponential time This fact may also be viewed as a general t,ool for cryptanalysis. 
A cryptanalyst which is faced with a new cryptosysterri might try to prove tha t  
it is algebraically homornorphic. If he succeeds then our techniques immediately 
give a method for breaking the syskin3. 

3.2 The Difie-Hellman protocol 

The  Iliffie-Hellrrmn secret key exchangc protocol [l I ]  is one of the oldest public 
key protocols. The  protocol enables two parties t o  perform a secret key exchange. 
We briefly describe t.he protocol using an a.rbitrary finite cyclic groups G. Say 
Alice and Rob wish t,o perform a secret, key exchange. 'I'hey agree ahead of time 
UII some generator g E G of the group G. The generator 9 is made public. Both 
Alice and Bob sccretly pick randorri integers 0 < u ,  b < /GI. Alice sends to Bob 
the value ga and Rob sends to  Alice the value g b .  Both Alice and Rob can now 
compute the  value g"" = ( g a ) b  = ( g b ) u  which is used as their secret key. 

A passive eavesdropper, Eve, who listens in on the conversation hears 9" 
and 9'' To discover the secret key, Eve has to compute gab. T h u s ,  we define the 
Diffie-Hellman function as: 

Note that the cyclic group C; is implicit in this notmation. In their original paper, 
Diffie and Hcllrnan claimed tha t  for G = Z; corriputing the function DHg(z,  Y) 
is hard. Many ot,hcr types of groups have been suggested by various authors. 
Examples include the mult,iplicative group of residues modulo a composite num- 
ber [20, 191, elliptic curves over finite fields [14, 231, t,he Jacobian of a hyperelliptic 
curve over a finitc field [13] and t,he class group of irriaginary quadratic fields [4]. 
In all these groups the function DH,(z, y) is believed to be hard to comput'c. 

A long stJanding open problem in  cryptography is the cluestion of whether 
computing DIl,(s,  y) is as hard as computing discrete-log for the group G. The 
discrete log-funct,ion is defined as Dlog,(ga) = ci where n is an  integer in the 
range 0 to IGl -. I .  I t  is not difficult to see that, an oracle for Dlogg(z) enables 
one to compute DH,(x,y) in polynomial time. The  hard question is whether 
the converse holds: given an  oracle for coinputmirig DH,(x, y) can one compute 
Dlogg(z) in polynomial time (in log \GI)? Surprisingly, t,fiere have been very few 
results on this problem [lO] 18, 301. R,ecently Maurer [lS] obtained a beautiful 
result showing that, given a polynomial number of advice hits which depend 
only on IGI o m  can coinputme Dlog,(t) in polynomial time given an oracle for 
l ) H g ( x )  y). Unfortunat,ely, computing t,hese a.clvice bits takes exporieritial time. 
-- 

This does not hold for probabilistic encryption schemes. The reason is that given 
tmwo cipher-t,cxt,s one can  [Lot test, if they are the encrypbion of the same plain-text. 
As a rcsult, the equality testing oracle can not be implemented. 
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We show how algorithnis for HRFP can be used t,o reduce Dlogg(z) t o  
l l € Ig (x>y) .  First we state an observation due t,o Pohlig arid Hellman [24] which 
shows that tho ability to  compute discrete log in groups of prime order is suffi- 
cient for computing discrete log in arbitrary groups. 

Lemrna6. Let  C; be a finiie cyclzc group for which  t h e  fac tor i za t ion ,  of IGI i s  
known. Suppose  th,at for a n y  ele,ment g E G of prim.e o r d e r  p one  can  compute 
Dlog,(x) in lime T ( y ) .  T h e n  one  c n n  compute Ulog,(x) for a n y  elem,ent h E G' 
i n  t i m e  ~ ( 1 ~ 1 )  logo(') \ G I .  

The main connection bet,weeri BBFP arid t,he security of the Diffie-IIellman 
protocol is explained in the following theorem. The  theorem shows that if BBFP 
can be solved quickly then an algorit,hm for breaking Dif€ie-Hellman will give an 
algorithm for coniput,ing discrete-log. 

Th,eorem 7. Suppose BBFP o v e r  f h e  f i e l d  IF,, can be solwed i n  lzme ' I ~ B F ( ~ ) .  
Let G be some f i n i t e  cyclrc yroup for  which  the fcictorization of 1G/ is known. 
Suppose  thal  DH,(x,y) can be evaluated  in t u n e  TDH(IGJ) f o r  any i~ E G of 
p r i m e  order .  ?'hen f o r  a n y  g E G t h c  f u n c t i o n  Dloy,(.c) can be computed  in tame  

T&I.'( p i )  ' T D H  (/GI) . log"(l) (GI 

Proof. Let g be a generator of G and e = !la. We wish t o  computc Dlog,(z). First, 
we show that, when G has prime ordcr p t,he thcorem is immediate. The abilit'y 
t o  evaluate D€Ig(z,y)  transforms G into the black box field F r .  An element, 
b E Fp is represented as [b ]  f g' .  Two elerrlentas can be added [ b  + c] = g b g c  and 
niultiplied [bc] = DH,($, 9').  Since [u] = n: the algorit,hm for BRPP will output, 
a on input x. The algorithm for solving BBFP runs in time TBRF((GI) and 
therefore makes a t  mod T B B F ( ~ G ~ )  calls t o  the multiplication oracle. Each call 
requires a calculation of the Diffie-Hellman fuiiction which takes time TDH (IGl). 
The t,otsal running time is O ( T R R F ( I G ~ )  . Tnff(IC1)). 

When \GI is not prime we make m e  of Lemma 6. Let p be a prime dividing (G( 
and let h = glGl/r. The group generated by h has prime order. By assiiniption, 
D H ~ ( z ,  y) can be eva.liiated in time ' I D H  ( p ) .  Hence, by the previous paragraph, 
Dlog,(y) can be computed in time T U B F ( ~ )  . TUH(P) .  Lemma 6 can now be 
applied to  show t,hat Dlogg(z) can be coinputcd in time T'RF(IGI). TDH(IG'() . 

0 

We note that, when ICl is square free the theorem can be strengthened tjo 
obtain a more direct reduct,ion from computiiig discrete-log tso breaking Difiie- 
Hellniaii. Namely, for a fixed y an algoritlirn for I)Hg(r,  y) can be converted to 
an algorithm for Dlog,(z). 

Theorem 7 shows that algorithrns for BBFP c a n  be used t,o reduce computing 
discrete-log to breaking I)iffie-Hcllman. We present two algorithms for BBFP i n  
the next section. In Section 5 we show several groups for which t81iese algorithms 
imply the security of the Diffie-IIell~nan protocol. These results are summarized 
in Theorem 13. 

log"(') \ G I  for any y E G. 
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4 Algorithms for black-box fields 

In this section we describe two sub-exponential algorithms for BBFP. The results 
depend on an assurription which is often used in compiit,a.tional number theory: 
Smoothness assumption 
Let Lc,(p) be the function Lc, (p)  = exp (1og"p loglog'-*p). For an integer 2 

let d ( z )  be t,he largest prime divisor of I .  If d ( z )  < a we say that 2 is Q- 

smooth. The assumpt,ion we need i s  t,hat, integers chosen uniformly in the range 
Cp + 1 - 2Jis ,  y -I- 1 +- 2 J i j ]  satisfy 

for any fixed (t > (1. When the integer 2 is chosen in the range [l ,p] this assump- 
tion is known to be true (see [5, 91). The assumption when cy = is necessary for 
the running time analysis of the elliptic curve factoring method of Lenstra [15]. 

4.1 

Theorern 8. Lei A' be n finite f i e l d  of s u e  11 g i w n  us u black box field. Under the 
smoothness assumpiion, BBFP can be solved using O(log p )  space and expected 
time 

A sub-exponential algorithm for BBFP 

L ; ( p ) " O ( ' )  - - exp ((2+0(1))Jlogp loglogp) 

The proof of Theorem 8 uses a technique similar t,o the one used by Mau- 
rer [18]. Before proving Theorem 8 we state some simple facts regarding ellip- 
tic curves. We denote by E a , b ( p )  the set of points ( x , y )  E IF: on the curve 
y2 = z3 + a x  + b plus a point 0 called the point, a t  infinity. It is well known [28] 
that there is a natural Abelian group st,ructure defined on thc points in Ea,b (p ) .  
Given two points PI P2 E E a , b ( p )  we denote their sum in this group by PI + P2. 

Fact 9. Let Ea,b be a n  ellaptac curve over  the black box f i e l d  IFp. Let PI = ( 2 1 ,  y1) 
and Pz = (xa, y2) be two points on Ea,b. Le t  P3 = PI + Pz = ( x 3 ,  y3). Then given 
[ z l ] ,  [yl], [xz], [ya] 2 1  2 s  possible t o  compute [tg], [y3] zn pohjnom.ial t ime in l o g p .  

Proof. The values 13, y3 are algebraic expressions in cl, y l ,  22, y2, a ,  b. See [28, 
pp. 58- 591 for a list, of these expressions. Thus, [23], [y3] can be computed from 

0 

Throughoutj the section we nse [PI to  denote the point P = (2, y) E Ea,b(p) 
whose coordiriat,es are given as black box demerits, i.e. [PI = ( [ x ] ,  [y]). Fact 9 
shows that  given points [PI]  = (lzl], [yl]) and [P2] = ( [ z ~ ] ,  [yz]) i t  is possible to 
construct [PI -+ 41 1 ([1:3], [y3]) in polynomial time. Similarly, using repeated 
doubling onc can const,riict the point [ k P ]  given a point [PI and an integer k. 

Fuct 10. Let Ea,b be an ellaptzc curve over  IF,. Then the group E a , b  can. he 
generated by two  poin ts .  Furlh.erm.owJ t,wo ran.dom poiitis PI, P2 generule t he  
group Ea,b wilh probabili ty at  leust R (  I /  log' p ) .  

[XI], [y'], [ xz ] ,  [yz] using t>he addition and mult~iplication oracles. 
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proof. The  structure of the group b>a,b is known t o  be b!a ,b  2 & x Em for 
some m, n where mln (see [as]) .  'l'hus Ea,b can be generated by two points. The 
number of pairs which generate Zn x Ern is lower bounded by St((r(nm)'). The 

0 

Proof of Theorem 8. The basic idea is to generate random elliptic curves Ea,b 
over IF, until a curve with a smooth order is found. It is well known that the 
number of points on a random elliptic curve over IF, is approximately uniformly 
distributed in the range Lp + 1 -- 2@, y + 1 + 2@] (see [15]). Hence, by the 
smoothness assumption, after an expected exp (( $ + o( 1 ) ) d o g p  loglogp) tries 
we will have generated a curve Ea,b such t,hat the largest prime divisor of (Eca,bl 
is less than exp (dlog p log log p) . 

Let Ea,b be an elliptic curve over Fp for which the largest prime divisor of 
IEa,bl is less than d for some d > 0. The number of points on the curve Ea,b 
can be found in polynomial time using Schoof's algorithm [26]. We show that 
using this curve it is possible to solve the black box field problem over IF, in 
time O(dz logp). This will prove the theorem. Note that  since the prime factors 
of lEa,b1 are small, they can be found i n  the required time bound. 

By Fact 10 we can find a pair of points PI, Pz which generate the group Ea,b 
by picking them a t  random. If it so happens that  PI'  Pz do not generate Ea,b then 
the algorithm will fail and we will know that PI, Pz were poorly chosen. Fact 10 
shows that  in an expected polynornial nurnbcr of attempt,s the pair P I ,  Pz will 
work. 

Let PI = ( z l , y l ) ,  P.L = (.uz,y2) be two points which generate Ea,b. Given 
a black box representation [z] of some field element z E IFp we construct, z 
explicitly, i.e. find an integer 21) such that w E z (mod p ) .  This is done in three 
steps: 

result now follows since always ( p ( x ) / x  > Q( I /  logx). 

1. Embed [x] in the curve En,br i.e. find [!I] E IF, so that  the point [PI = ([.I7 [y]) 

2 .  Find integers a and (8 such that, [PI = [aP1 + / jP2],  Such integers exist since 

3. Calculate cyPl +PP2 explicitly. The x coordiriat,e of the resulting point, which 

is on Ea,b. 

PI, P2 generate Ea,b. 

is an explicit field element, is the required value. 

We now explain how to carry out, st,eps 1 and 2 .  In step 1 we are looking 
for [y] E F p  such that I/ = x3 + az + b.  Given [z] one can clearly construct 
[z3 + 02 + b ] .  The required [y] can be found by taking the square root of the 
element [z3 + a x  + b] .  This is possible since in Section 2 we saw that. given 
[ z ]  E IFp there i s  an algorithm for coristruct,ing [&I in random polynomial time. 
If the above element does not have a square root in EJ, we run t,hrough the entire 
computation using [t] = [z + T ]  for some randoinly chosen T .  After a constant 
number of tries it will be possible t80 embed [i] in the curve. 

Next we explain how to find N and /3 as required in st,ep 2. Recall that 
Ea,b N En x Zm where n = qy l  . . q:r , mln, and all the primes qi are less than d .  
To find a ,  p we use a simple generalization of the Pohlig-Hellman algorithm [24] 
for discrete log i r i  groups of smooth order. For simplicity we assume that all the 
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yi are equal to 1. ‘rhe Pohlig-Hellman algoritlirn generalizes to t,he case where 
yi > 1 as well. The method for finding cu,@ is to construct cr,@ (mod q i )  for all 
i = 1, .  . . , r and then use Chinese remaindering to find cryl @. 

Let pi  be a prime dividing n and let, k = n/qt,. Notice that the point,s kP1, kP2 
have order at rnost q 7 .  Therefore, since the point, kP is in the group generated 
by kP, ~ kP2 there must) exist integers 0 5 oi ,  < qi such that 

[ k P ]  = [QikPI + ilikPZ] 

These intcgers ca.n be found in t,initi O ( q 3 )  by trying all possible pairs c y i ,  jjz in 
the range [0, q i ] .  

As was stated above, the (aZ5 /Ji) (rnod q i )  can be combined using Chinese 
remaindering to obtain integers cr, 13 such that, P = aC-; + PP2. Since IEa,bl has 
at  most O(1ogp) prime factors and !,hey are all less than d the running time of 

0 this procedure is at  most O(d2 logp). 

4.2 A two step algorithm 

Before we present the resiilt,s of this sect,ion we have t,o explain the riotion of an 
algebraic algorithm. Intuilively, a functiari f : IF” -+ IF can be comput,ed by an 
algebraic algorithm if it, can he computed efficiently even when the input is given 
as black box field elements. This means that t,he function can be computed by 
only applying elementary arithmetic operatmioris and equality tests to its input. 

Definitionll. Let IFp be a finite f ield arid f : IFF - IFp some function on n. 
inputs. We say that f can bc computed in  h i i e  T ( p )  by an algebraic  a lgor i thrn  
if there exists a Turing machine hl satisfying t,he following property: for any 
black box representation ( p ,  71,  h ,  F ,  G, T) of tjhc field IFp the machine M given 
access to the oracles F )  G, T arid [I will run i n  time at, most T ( p )  and will output 
[ f ( z l> .  . . , zn)] on input. [ T I ] ,  . . . I [z,]. 

in Section 2 we noted t,hat, the  functions f ( z )  = x - ’  (mod p )  and f(z) = fi 
(mod p) can be computed by random polynomial time algebraic  algorithms. 

We improve the algorithm of the previous sect,ion by improving the brute 
force search step. The improvement rclies 011 a certain additional assumption. 
Namely, we assume that the Iliffie-Hellman function over the group of points of 
an elliptic curve can be computed by an ldl/s(p) algebraic  algorithm. Though 
t,his assumption is likely to  be false (there are 110 sub-exponential algebraic al- 
gorithms for comput8ing discrete log) the theorem is quite useful. It provides a 
more efficient reduction from computing discrek-log to breaking Diffie-Hellrrian. 

Theorem 12. Suppose  DH,( Pl, P2) can he  compiiicd zn t i m e  L113(p)  by a n  al- 
gebraic algorz ihni  where  P1 = ( . r , > y l ) ,  Pz = ( ~ 2 , y 2 )  arid g arc poinis on an 
ell iptic c u r w  E,,b(p). Then u n d e r  th.e sirioothness a s s u m p t i o n ,  BRFP in a f i n i t e  
f i e l d  of size p c a n  be solved zn r z p w l e d  t z i r i t .  
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Proof sketch. First generate a curve E , k  over IF, with n points such that the 
largest prime divisor of 11 is L 2 / 3 ( p ) .  By the smoothness assumption this can be 
done in expected Ll~ , (p) ’~a+o( l )  time. The prime fac.tors of n can be found using 
the elliptic curve factoring algorithm [15] in time Ll,3(p)’+o(1). Let q be a prime 
divisor of 71. The algebraic algorithm for computing DH,(P1, P2) can be used 
to  transform the subgroup of points on h!a,b of order p into a black box field. 
Therefore the brute force search in the algoritshm of ‘rheorern 13 can be done in 
time L1/2 (q )3  < Ll/,(p)’. ‘The ent,ire algorithm takes L,/3(p)2+o(1j time. 0 

Theorem 12 is a rnre example where t.hc ellipt,ic curve method produces 
an algorit,htn with a running t,ime of C , , , ( p ) .  Such running times are iisually 
associated with t>he niimber field sieve [I61 

5 Security of the Diffie-Hellman protocol 

We use the algoritfiiris for BBFP of Sectiuii 4 to derive the security of thc Diffie- 
Hellman protocol over various groups. Theorem 7 shows that if discrete-log can 
not be computed i n  time TDL( IGl) in a group C; t,hen the Diffie-IIellman protocol 
can not be broken i n  t,ime o(’r’,,(lGl)lT~~r~(ICl)). Thus, t,he faster we can solve 
BBFP the more secure the Diffie-Hellman prot,ocol is. 

Since the algorit,hms for BHFP take sub exponentid time the above approxh  
can only be used in groups for which t,here is no sub-exponential time algorithm 
for discrete log. ’lhere are several groups which are suspected to have such a 
property. The groups are all constructed using a prime modulus p .  

1. Let Ea,b be the group of points on an elliptic curve modulo p .  The best algo- 
rithm for discrrte log in such gronps is Shank’s baby-skp-giant-step “211 al- 
gorithm. There is no known sub-exponential algorithm for discret,e-log which 
works in all groups b’*,b (such algorithrris exist when IEn,bl is a smooth nuin- 
ber or when E a , h  is supersingular [ a%] ) .  

2. Let J be t8he Jncobian of a hyper-elliptic curve of genus 9 .  When the genus 9 
is fixed, there is no known sub-exponent,ial algorithm for discrek log which 
works for all J .  Adleman, DeMarrais and Huang [a] show that when the 
genus is at least logp the index calciiliis method can be adaptcd to  give an 
L+(p2gy+1)ito(1j algorithm for discrete log in J .  

3.  Let g be an elerrierit of Z; which generates a suhgroiip of order L1/3(y) .  Let, 
H ,  be this siibgroup. Discrete log in IZ, is riot, known to be solvable in sub- 
exponential time in lHgl .  The digital signature standard [31] relies on the 
exponential time hardness of discrete log in 11, for its security. 

4. Finally we mention t.hat all sub-exponential algorithms for group Z; rely 
on the index calculus method and therefore require sub-exponential space. 
There is no known sup-exponent,ial t,ime and polynomial space algorithm for 
computing discrete log in Z;. 
The algorithms for BBFP ca.n be used t,o derive hardness results for breaking 

the Diffie-Hellman prot,ocol for t,he groups mentioned above. Thcsc results are 
summarized in the following theorem, 
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Theo.r.ernl3. Let  y be a prime.  l inder the smoothness assumption we obtain 
the following res,ults: 

1. If discrete log can riof be computed in  L1/2(p)2+@(1) t i m e  in  the groups 
Ea,b, J ,  H ,  then  the Ui f ie -Hel lman prvtocol can not be broken 212 time L ; ( p )  
in these groups. 

2. If discrete log can not be computed i n  L 1 / 3 ( p ) 2 + @ ( 1 )  tim.e an the groups 
Ea,b, J ,  H ,  then, the Di f ie -Hel lman protocol can not be broken by an alge- 
braic algorithm in  lzme L,13(p) i n  these groups. 

Proof. First, we niay assume that the factorization of ]GI is known. This factor- 
ization can be found using the number field sieve algorithm whose conjectured 
running time is L1/3(p)’.to(’) [16]. Part (1) follows by combining Theorem 7 and 

0 

Note that part (2) of the theorem relies on a weaker assumption than part (1). 
The conclusion is also weaker since we can only prove that DH,(x,y) can not 
be computed by an algebraic algorithm. 

Theorem 8. Part ( 2 )  follows by conibining Theorem 7 and Theorem 12. 

6 Black-box fields in characteristic 0 

In this section we consider the black box field problem over the field of rational 
numbers Q. We are provided with a black box representation of the rationals 
which supports the axioms of Definition 1. The  black box field problem over 
Q can be stated as follows: given a black box representation of an integer [x] 
between 1 and N find the integer 2. The algorithm is said to  be polynomial if it 
runs in time polynomial in l o g N .  We prove the following negative result: 

Theoreml4. BBFP ower Q can n.ot be solved in polynomial t ime ,  unless fac- 
toring integers is easy. 

By “factoring integers is easy” we mean that a non-negligible fraction of the 
n-bit RSA composites can be factored in polynomial time. We refer to [17] for 
the precise definition. To prove Theorem 14 we first recall the notion of the 
straight line c~mplexi t~y of a polynomial. Let f (z )  E Q[z] be some polynomial. 
A straight, line computation of f is a sequence of polynomials 91 , .  . . , gm such 
that gm = f and each ga is one of the following: (i) gi is the constant 1 or the 
variable z; (ii) gi = g3 o g k  where o is one of + - * and j ,  k < i .  The  length of the 
computation is m. The slraight line complezi fy  of f ( z ) ,  denoted by f , ( f ) ,  is the 
length of the shortest such computation. The following theorem can be easily 
derived from a result due to Lipton 1171. 

Theorem 15 .  Let { f k ( z ) }  be a sequence u fpu lynomaal s  over Q[x]  such thnt f o r  
any k ,  the polynoinzal fk ( . c )  has a t  least 2 k / k e  Integer roots f o r  some integer 
e > 0 .  T h e n  f o r  any d > 0 and suf iczent ly  large k we have L(fk) > k d ,  unless 
factortng 2s euby .  
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Proof of  Theorem 14. In a black box field the only operations allowed are ad- 
ditions, multiplications and comparisons. Thus, a computation in a black box 
field can be viewed as an algebraic decision tree [as]. Tha t  is, given an input xo 
the computation proceeds as follows: at, every internal node v in t,he tree some 
polynomial fv(zo) is evaluated. If fv(xo)  = 0 the computation branches to  the 
left child of w otherwise the computation branches to the right child. 'The leaves 
of the tree are labeled with the output.  

Assume towards a contradiction that, for any N there is an algorithm which 
solves BBFP over Q i n  time logo(') N .  Tha t  is, given the black box representa- 
tion of an integer 0 < z 5 N the algorithm will find z. The algorithm defines 
an algebraic decision t,ree with N leaves. Sirice the algorithm is polynomial, the 
depth of the tree is a t  most logdN for some d > 0. Furthermore, the straight 
line complexity of every polynomial f u  in the tree must satisfy L(fv) < loge N 
for some P > 0. 

Consider the path U O ,  . . . , u r n  from the root, 7io to a leaf v, in which every v i  
is the right child of u i - 1 .  For i = 0,  . . . , m let, Z u ,  be the sct of integer roots of 
f v ,  in the range [ l ,  N ] .  An input 2 will not reach the leaf v,, if it is contained in 
some Zu, .  Since only one integer in the range [ l ,  N ]  is allowed to  reach the leaf 
v, we know that I uyll Z,,, 1 = N - 1. Hence, there must exist an i such that 
IZu,l > ( N  - l ) /m.  Since m < logd N we conclude that the polynomial f,,, has 
a t  least. N /  logd N int,eger roots. 

Applying this argument for N = 2k where k = 1 , 2 ,  . . . we obtain a sequence 
of polynomials fk where each f k  has at  least 2 k / k d  integer roots and L(fk) < k ' .  
This sequence contradicts the statement of Theorein 15. 0 

7 Conclusions and open problems 

We defined a new problem which we call the black box field problem or BBFP 
for short. We demonstrated several applications of BBFP to cryptography: (1) 
efficient algorithms for BBFP provide reductions from computing discrete-logs 
to breaking t,he Diffie-Hellman protocol. ( 2 )  algorithms for BBFP can be used as 
a cryptanalytic tool t o  break algebraically homornorphic cryptosystems. These 
applications demonstrate the importance of this problem. 

We described two sub-exponent,ial algorithms for solving BBFP. The first 
solves R H F P  in time L l , , ( p ) .  The second solves RRFP in time Ll/3(p) under 
certain (strong) assumptions. These algorithms were used to show that over 
elliptic curves the hardness of computing discrete-log implies the security of 
t>he Diffie-Hellman protocol. These results dernonst.rate an advantage of elliptic- 
curve cryptosystems over conventional ones. In addition we noted that for small 
sub-groups of Zi, such as the ones used by DSS [31], our results show that the 
hardness of discrete-log implies the securit,y of t,he Diffie-Hellman protocol. We 
have also shown that assuming factoring integers is hard, BBFP can not be 
solved in polynomial t,ime over the rationals. 

The problem of solving BBFP over a finite field in polynomial time is still 
open. We briefly describe a promising approach. Schoof's algorithm [26] for 
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counting the number of points 011 elliptic curves over Fp can be made to work 
over black box fields. Given a curve y2 = z3 + [a]. + [b] over IFp the algorithm will 
output an explicit integer which is the number of F - oints on the curve. Given a 

is [j]. The number of point,s on this curve provides a lot of information about j .  
Currently it is not known how to reconstruct j from this information. Progress 
in this direct,ion will he of great interest, and is likely to yield a polynomial timc 
algorithm for BBFP. 

black box element [ j ]  we const,ruct, t,he curve y2 = z p:, +[a]z+[b] whose j-invariant 
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