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Abstract. In [6] T. Matsumoto and H. Imai described a new asymmet- 
ric algorithm based on multivariate polynomials of degree two over a 
finite field, which was subsequently broken in 191. Here we present two 
new families of Asymmetric Algnrithrrrs t,liat so far have resisted all at- 
tacks, if properly used: Hidden Field Equations (HFE) and Isomorphism 
of Polynomials (IP). These algorithms can be seen as two candidate ways 
to repair the Matsumoto-Imai Algorithm. HFE can be used to do sig- 
natures, encryption or authenticat<ion in an asyrrirrietric way, with very 
short signatures and short encryptions of short messages. IP can be used 
for signatures and for zero knowledge aut,hent,icatinn. 
An extended version of this paper can be obtained from the author. 
Ariot,her way to repair the Matsumot,o-Irnai Algorithm will be presented 
in [lo]. 

1 Introduction 

Currently the security of most algorithms that we know in Asymmetric Crypto- 
graphy for encryption or signatures relies on the unproved intractability of the 
integer factorization or discrete log protdem. One of the challenges of Asymmetric 
Cryptography is to find new and efficient algorithms for encryption or signatures 
that do not depend on these two closely related problems. For authentication 
the situation is much better, due to the algorithms presented for example in [12] 
and (131. 

In this paper we propose two new classes of Asymmetric Algorithms whose 
security does not depend on factoring or discrete logs: Hidden Field Equations 
(HFE) and Isomorphism of Polynomials (IP). Flirthermore HFE also address two 
other problems facing Asymmetric Cryptography: generating very short asym- 
metric signatures, and generating short encryptions of short messages. Both HFE 
arid IP are based on a scheme described by T. Matsumoto and H. Imai (cf. [ S ] ) .  
In [!I] an efficient attack against this scheme was presented. Unfortunately, we 
are riot able to  prove the security of HFE or IP either, but so far they have re- 
sisted all attacks, including the one from [9], Moreover IP-based authentications 
can be proved to  be zero-knowledge. 

U. Maurer (Ed.): Advances in Cryptology - EUROCRYPT '96, LNCS 1070, pp. 33-48, 1996. 
0 Springer-Verlag Berlin Heidelberg 1996 
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2 Preliminaries 

Throughout this paper we use the following notation. We denote by F, a finite 
field of cardinality q and characteristic p, for some prime p and prime power 
(I = p m .  let F,n be an extension of degree n of F,. Let 

i , j  k 

be a polynomial in x over Fqn of degree d, for integers B i j , c p i j , [ k  2 0 .  
Since Fqrn is isomorphic to F,[z)/(g(z)), if g(z) E F,[z] is irreducible of 

degree n, elements of Fqn may be represented as n-tuples over F,, and f may 
be represented as a polynomial in R. variables X I ,  52, . . ., 5, over F,: 

f (z i , .  ..,G)= (~i(zi,...,z,),...,~~(zl,~z,...,z,)) E F ~ [ ~ I , . . . , ~ ~ ] ,  
with p z ( z l , . .  . ,z,&) E F, [z l , .  . . ,z,], for i = 1 ,  2, . . ., n. The pi  are quadratic 
polynomials due to the choice of f and the fact that x I+ zq is a linear function 

Note that f may be a permutation of Fqn, in which case each a E Fqn gives 
rise to precisely one solution IC E Fqn to the equation f(x) = a. I f f  consists of 
more than one monomial in z, however, it seems to be difficult to choose f such 
that it is a permutation (cf. [5: Chapter 7) or [8]). Obviously, for any a E Fqn 
there are at, most d solutions to f(z) = u, and often there are only a few. It 
is well known t h a t  solutions to f(z) = a can be found in deterministic time 
polynomial in p ,  m, n, and d, and in expected time polynomial in logp, m, n, 
and d, cf. [l: 17-26], 15: Chapter 41, [14], [15]. Some run times can be found in 

of Fqn 4 F,,n. 

[71. 

3 Hidden Field Equations for Encryption 

In this paragTaph we will describe a first version of HFE for encryption (i.e. the 
version with the easiest description). 

We assume that the message A4 is represented as an n-tuple z over F,, where 
F, as above is publicly known. (Thus, if p = 2, each message can be represented 
by nm bits.) Moreover, we mume that some redundancy has been included in 
the representation of each message, in such a way that the redundancy depends 
in a non-linear way on M .  A nice way to do this is to make use of an error 
correcting code. If p = 2 we could also obtain z by concatenating the binary 
representation of M and the first 64 bits of h ( M ) ,  where h is a hash function 
such as MD5 or SHA, as long as the resulting z has at most nm bits. 

Let s and t be two affine bijections (F,)" --.) (F,)", where (F,)" is regarded 
as an n-dimensional vector space over F,. Both s and t can be represented as n- 
tuples of polynomials in n variables over F, of total degree 1. Using the function 
f from Section 2 and some representation of F,- over F, as in Section 2, the 
function (F,)" + (F,)" that assigns t ( f ( s ( z ) ) )  to z E (F,)" can be written as 

t(f(s(w, ' ' ' , G')) 1 = (p1(z1, , ' . , zn 1, . ' ' , Pn(zl, z2, . ' . , Zn )) E F, ( 2 1 ,  . . . , znl, 
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with pi(z1,. . . , zr l )  E F,[zl,. . . , z r l ] ,  for i = 1, 2, , , ., n. The p i  are quadratic 
polynomials due to the choices of s, t ,  and f. Furthermore, given s, t ,  f and the 
way Fqn is represented over F,, the polynomials pi can efficiently be computed. 
The converse, however, seems to be hard, if s, t ,  and f are properly chosen. This 
leads to the following public key encryption scheme, which we call ‘Hidden Field 
Equations’ (HFE) . 

Secret key. A function f as in Section 2, two affine bijections s and t as above, 
and some way of representing F,” over F,. The latter may or may not be secret 
since changing the representation is equivalent to changing s or t ;  therefore, we 
may assume some fixed (and public) way of representing Fqn . 

Public key. Polynomials p i  for i = 1, 2, . . ., n as above, computed using the 
secret key f ,  s, t .  Furthermore, F, ,  the extension degree n and the way to add 
redundancy to a message are public. 

Encryption. To encrypt the n-tuple z = (z l , .  . . ,z,) E (F,)” (representing the 
message M plus redimtlancy), compute the ciphertext 

2/ = ( P I ( ~ I , .  . . J ~ r i ) ,  . . . , ~ r i ( z 1 r z 2 , .  . . ,  zn)). 

Decryption. To decrypt the ciphertext y, first find all solutions z to the equation 
f(z) = t-l(y) (cf. Section a) ,  next compute all s-l(z)’s, and finally use the 
redundancy to find M from these. 

Security co7~siderclt.ior~s. We conclude this section with a few remarks concerning 
the security of HFE. We have restricted ourselves to the case where the char- 
acteristic p is equal to 2, even though HFE works for any small prime value p 
(unlike the MatsumoteImai scheme from [GI, which only works for p = 2). 

1. To avoid exhaustive search attacks we recommend that the message A4 con- 
sists of at least 64 bits and of at least 128 bits including redundancy. 

2. In order to avoid the “affine multiple attack” that is described in the next 
section, we recornmend to choose f of degree at least 17, but small enough to 
make decryption efficient. For computational examples of this attack we refer to 
the next section. Furthermore, to foil this attack it is necessary (but not suffi- 
cient) that f consists of at least two monomials in z: HFE with one monomial 
is equivalent to a Matsumoto-Imai algorithm, and can be attacked as described 
in ”4. We have done some Toy simulations of the vulnerability of HFE to the 
attack from [9] for n = 13. Though our tests enabled us to identify weak keys, 
they did not lead to a method to break HFE for well chosen keys. Details can 
be found in the extended version of this paper. 

3. Some aiithentication algorithms (such as [I21 or [13]) are proved to be as 
secure as a NP hard problem. (This is a very nice result of security but of course 
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this is not a proof of absolute security: a problem can be N P  hard but easy in av- 
erage, or easy with had parameters, or difficult only with very large parameters). 
Can we also hope to prove that HFE is as secure as a NP hard problem? No: 
from a generalisation of a theorem given by G. Brassard in [2] we can prove that 
to recover a cleartext from an encrypted HFE Text is never an NP hard problem 
(if NP f co NP). However this is not really a flaw of HFE but a property of 
almost all asymmetric encryption algorithms. 

Iden of the proof. Let F be an asymmetric encryption algorithm with a secret 
key K and a piihlic key lc such that when the secret key K is given and when 
a value y is given it is always very ewy to see if there is or not a cleartext z 
such that y = F k ( z ) ,  i.e. such that ’y is the encryption of x by the algorithm 
F with the public key k. HFE, as all efficient encryption algorithms (such as 
ELSA) has of course this property. Now let us consider the problem: “Is there an 
z such that g = Fh(z)?”, where y is a given value. Then if the answer is “yes” 
x is H certificate that irideed the answer is “yes”, i.e. it is easy to verify that the 
answer is “yes” if such an z is given ( K  is also another certificate). Moreover 
i f  the answer is “no” K is a certificate that indeed the answer is “no”. So this 
proLlem is in NP nco NP. But, (if N P  # co N P )  there is no N P  hard problem in 
NP nco NP. Similarly if from the secret key K we can compute easilly all the 
z such that y = F , , ( x ) ,  then the prohlern: “Is there an 5 such that y = Fk(z) 
and u 2 5 5 b?”, where u and b are two integers, is also in NP nco NPSo to 
recover a cleartext 5 from its corresponding cyphertext, y can not be a N P  hard 
problem. This shows that there is little hope to design any practical asymmetric 
encryption algorithm with :L security proved to be based on a NP hard problem. 
It is also instructive to see that RSA may (or may not) be as secrure as the 
factorisation problem because the factorisation problem is in N P  n co N P  (so 
is riot a N P  hard prohlern) , 

This result could suggest that when we have introduce a trapdoor in HFE, 
in order to have a cryptmystern useful1 for encryption, we may have weaken the 
problem. This results shows also that, the problem on with the security of HFE 
relies is not clearly shown (it can not be the general N P  hard problem of solv- 
ing randomly selectcd system of rniiltivariate quadratic equations over GF(2) ) .  
However to recovcr a cleartext from its HFE ciphertext is still expected to be 
exponentally difficult when the €WE parameters are properly chosen. 

4 The affine multiple attack 

J ~ t t r ~ d i ~ ~ t i o n  The “affine rniiltiple attack” of the basic HFE that we will consider 
in this paragraph is a generdization of the main attack of [9] of the Matsumote 
Imai Algorithm. It is the only attack that we know against the basic HFE that 
can sometimes be much hetter than “quasi” exhaustive search on the cleartext 
(i.e. exhaustive search on most of the cleartext). 
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PTinczpk of the uttuck Let j be a polynomial used in the basic HFE algorithm. 
By using a general algorithm (see for example [l] p. 25) we know that there 
are always some affine (in z) multiple A ( z ,  y)  of the polynomial f(5) - y. (This 
means that z I+ A ( z ,  y) is ari affine function and that each solution z of f(z) = g 
is also a solution of A(z,  y) = 0). For example in characteristic 2 the polynomial 
A ( z ,  y)  will have only 1,z, 2,  z4,z8. . . ,z2', . . . as monomials in z. 

Frorri now on we will assume for simplicity that the characteristic is 2. 

Moreover, sometimes for such an affine multiple A(z ,y)  all the exponents in y 
have small Hamming Weight in base 2. If this occurs, then the polynomial f will 
be a weak key for HFE. 
More precisely if all the exponents in y have a Hamming Weight 5 k ,  then there 
will be an attack with a Gaussian reduction on O ( T I ' + ~ )  terms (more precisely 

with about C n'+*/ i !  t e r m  because we have about n'+i/i! terms of total degree 

i in the yj variables, 1 5 i 5 k )  where n is the number of bits of the message. This 
attack will work exactly as the attack of 191 for the MatsiimotGImai Algorithm. 
The Gaussian reduction needed may be easier than a general Gaussian reduction 
but the conlplexit,y will be at worst in 0(n3k+3) and at least in O ( T Z ~ + ~ ) .  Gaussian 
reductions with N terms are asymptotically in N" with w < 2.376 (cf. [3]). 
Moreover we can choose some x but not some y, so in the equations on which 
we need to do a Gaussian rediiction we will have at  least O(n1+2k)  unpredictible 
values. So it seems that more precisely the Gaussian reduction needed will be at 
most in ~ ( n ( ~ + ~ ) ) " )  ant1 at, 1e;tst in 0(n1+2").  

k 

i= 1 

Example 1. Let J (z )  = z1+2e. S o  :c '+~'  - - Y. 

Then sZ2' .y = x.y2'. So A ( z ,  y) = z y + xy2' is an affine multiple of f(z) + y, 
and here all the exponents in y have a Hamming Weight 2 1. This leads to the 
attack with a Gaiissian reduction on 0(nr2) terms described in [9]. 

p e  

Example 2. Let, f(x) = 2 t- x3 + z = y. 

Then it is possible to prove that y3.z + (y2 + l)z4 + zI6 = 0. 

Here all the exponents in y have a Hamming Weight 5 2. So this leads to  
an attack of the HFE algorithm with a Gaussian reduction on O(n3) terms if 
this polynomial f is used. So this polynomial should riot be used (it's a weak 
polynomial) 

Example 3. Lct f (z) = z' + Z' + x5 + :c3 + z = ?I. 
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Then the affine multiple A(s,  y) of f(x) of degree 28 in 5 found by AXIOM is: 

(Y27 + Y24 + y23 + Y20 + yI9 + y” + y8 + y’ + y4 + y3)x + (Y2’ + Y25 + Y21 + YZO + Y I 5  + Y9 + Y7 + y5 + Y4 + Y 3 ) 2  
+ ( Y ~ ~  + Y~~ + Y~~ + y20 + yi8 + yi6 + yi4 + y9 + y8 + y6 + y4 + qZ4 

+ y2I + y18 + y16 + y’5 + y’4 + y13 + y’O + y* + Y 7 ) 2  + (YZ5 + $2 + yZ’ + y19 + y” + yI2 + 211 + y6 + y 5 ) 9  
+ (YZ3 + Y20 + 
+ (yI3 + Y” -I- y5 + y4 + y3)2’28 

+ 
+ y18 + y17 + yI6 + y15 + yI4 + yt3 + y” + y10 + Y9 +YE +y6 + Y 5 ) 2 2  + (Y18 + Y” + Y I 4  + Y 1 I  + Y’O + y9 + y6 + y 3 )z 64 

+ 1 2 5 6 .  

In A ( s ,  y)  the largest Hamming Weight of the exponents in y is 4. 
So this leads to an attack with a Gaussian reduction on O(n5) terms if this 
polynomial is used. This attack will need a lot of power but may be feasible. (For 
example if e n  = 64 it will need Gaussian reduction on 225 variables (.i n5/4!) 
and if n = 128 it will need Gaussian reduction on 230 variables. . .). So we do not 
recommend to use this function f .  

Example 4. Let f(x) = x12 + x8 + x4 + x3 + x2 + s = y. 
Then one of the affine multiple of f(s) found by axiom is: 

,256 + (Y1fi + y)z64 + (y8 + y5 + y2)216 I (y3 + qS4 
+yz + yl6 + y8 + y5 + y3 + y2 = 0. 

Here all the exponents in y have a Hamming Weight 5 2. 
So this polynomial f should not tje used for HFE. 
Since the degree of f was not so small (it was la), and since f had a lot of 
monomials (6 ) ,  this example shows that the affine multiple attack has to be 
taken seriously: it is riot always obvious whether it works or not. 

Example 5. Let f(z) = z17 -1- x9 t~ s4 + z3 + x2 + z = y. 
With AXIOM, we have computed the least affine multiple A ( Z ,  y) of f(x) + y 
(it took us two days on il workstation). 
In A ( z ,  y)  all the exponents in y are 5 3840, and the expotierit with the largest 
Hamming Weight as a Hamming Weight of 11 .  
So this affine multiple leads to an attack of HFE with this polynomial f with 
a Gaussian reduction on 0(n l2 )  terms, where n 2 64. (For n = 128 it will need 
Gailssian reduction on 258 terms because 258 2: nlZ/1l!). 
Since this attack is completely impracticable, this polynomial f resists to the 
‘‘alline multiple attack” and may be a strong polynomial for HFE. 

Example 6. Let f (z)  = 517 + xI6 + z5 + s = y. 
With AXIOM (also after two days of computations) we have computed the least 
affine multiple A ( z ,  y) of f(x) + y. In A ( s ,  y) the exponents with the largest 
Hamming Weight have a Hamming Weight also of 11. 
So this function may also be a strong polynomial for HFE. 
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Note: What is nice with this function is that this function is not only quadratic 
over Fz but also quadratic over Fq. (So the public computations will be easier 
with this function). 

Asymptot ic  complexity For large d ,  and for most of the polynomials f of degree d, 
the complexity of the affine multiple attack of the basic HFE with this polynomial 
f is expected to be in O(no(d)). 
So, if d = O(n) the complexity of the attack is expected to be exponential in n. 
Moreover, d = O(1nn) is expected to be sufficient to avoid all polynomial attacks. 

Conclusion The affine multiple attack is very efficient for some very special poly- 
nomials. However when the degree of f is > 17 and when f is well chosen, this 
attack is expected to fail completely. 

Note For easier computations, we have chosen in all the examples the constant 
terms in thc monomials off  equal to 0 or 1. 
Of course this is not an obligation and any elements of the extension field can 
be chosen. 

5 HFE variations 

HFE plus and m n u s  some p a  eq~ntaons. The polynomials ( p l ,  . . . ,pTl) of the 
HFE Algorithm of paragraph 3 gives y from 2. Since there is some redundancy 
in LC it may he possible to recover z from y without some of these polynomials. 
For example when pT,-l and pT1 are omitted it may still be possible to recover 5 
from y: we will just compute the 2'" ptssibilities and find the good 5 thanks to 
the redundancy in z. When m is very small, for example when m = 1 or 2 this 
is clearly feasible . 
So we can imagine that just P I , .  . . p - 2  are public. 

Note.  This idea of ommiting some polynomial pi can also be done in the original 
MatsumoteImai scheme (instead of HFE). However this is not recommended: 
in the extended version of this paper we give some ideas for the cryptanalysis of 
such a scheme. 

HFE with multivarii~te fielit e p i i t i u w  for encryption. Here the idea is to change 
the description of the function f given in paragraph 2. We can notice that what 
we need for f is that: 
1. In a basis, f is H mu1tiv:tri:ite quadratic function. 
2. For any value o, it is easy to firid all the IC so that f(x) = a. 
3. f is a function with inputs and outputs with at least 64 bits (the reason for 
this is that we can not have small "branches" in the algorithm: we will give more 
details about this in the next paragraph). 
The solution given in paragraph 2 was to choose for f a polynomial in only one 
variable z over F(,,, so that, in a basis, f is a multivariate quadratic function. 
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In the extended version of this paper we present some different candidates for 
f :  polynornials in two variables x1 and x2, or more. An efficient algorithm of 
resolution of f(x) = a (for example with Grobner basis or with something else) 
will be hidden by the two affine functions s and t .  

HFE with more than one branch. In the original MatsumoteImai Algorithm [6] 
the values are split in different branchs after the first affine transformation 8 .  

We could also imagine to do this in a HFE scheme. However, in the extended 
version of this paper we show that if the branchs are small then it is always easy 
to attack the scheme by detecting and isolating the small branchs. So we do not 
recoinmerid to use more than one brarich. 

HRE: Hidrlen Rings Equations. In paragraph 2 we said that the field F4n is 
typically Fp[x]/(g(x)), where g(x)  E F,[x] is irreductihle of degree n. 
If  y (x )  is not irrediictible, then F,[x]/(g(z)) will then not be a finite field, but 
a finite ring. I n  siich a space t,he resolution of f(x) = y, where f is a univariate 
polynomial is still fe:lsible. For example the linearized polynomial algorithm still 
works. So we can design an asyrnetric scherne in such a space exactly as HFE in 
the finite field F,,". 

HFE uritlr p,irblic: polyironiial ,~ of ilegrm 2 3. Of course we can also choose for f 
A polynorniiil wiLh sornc: axpcments iri 5 o f  Hamming Weight still small but 2 3. 
A very iinportant sii1,ca.y from a practical point of view, if when this function 
is f(x) = zl+'ie+'ip, i.e. wit>h only one monomial and Hamming Weight 3. The 
study o f  these fiinc:tions is one o f  the main subject of [lo]. 

CoircnteiLatioii of triio bnsic HFE or HRE for fust rlccryptiorcs. Let x be the 
cleartext. Let y1 = H F E l  ( x )  be the encryption of z with a first IIFE encryption 
wit>h secret affine functions s1 and t l .  Let yz = H F E z ( z )  be the encryption of 
x with another HFE, siich that H F E l  and HFE2 have different polynomials f i  

and fz and intleperitlent secret affine fimctions 11 arid t z ,  but the same exterision 
field F,,.,, arid tjhe same secret affines fiinct,ions s1 = 52. Then let ylllyz be the 
encryption o f  2, where ( 1  is the concatenation function. 
The main at1v;mtage of this scheme is that decryption with the secret keys may 
be very fast, as we will see now. Froin y1 arid y2, fl (a) and fz ( a )  will be obtained, 
arid then GCD(f l (u) ,  f 2 ( u ) )  will be computed. Then from this GCD the value 
of u will be obtained with one of the classical algorithm of resolution of equation. 
Then x = s l 1  ( a )  will tje obtained. 
In average tlie time of  computation of G C D ( f l ( u ) ,  fz(u)) is expected to be dom- 
inant. 'lhis time is 5 O(d2n2),  where d = s u p ( d l , d ~ ) .  So if dl and dz are not 
too large decryption will really t x  very fast (and much faster than in the basic 
HFE) . 
For example the complexity of tlecryption may be 5 O(nln3 n) for well chosen 
f l  and j:, with degree ( f l )  5 O(1nn) and degree (f2)  5 O(lnn). 
However it, is not recoIrirrientled generally in cryptography to encrypt the same 
message twice by t,wo different encryptions. Moreover this is generally particulary 
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not recommended when the two encryptions are not independents. So if this 
variation is really used we recommend to be extra-careful in the choice of the 
polynomials f l  and fi. For example not only f l  and fi should avoid the “Afine 
multiple attack”, h i t  also f l  + fi. 

6 HFE in signature or Authentication 

All encryption algorithm can also be use as an authentication algorithm: the 
verifier will encrypt a challenge and ask for the cleartext. So HFE can be use 
for authentications. Moreover HFE can also be slightly modified in order to give 
asymmetric sigiatures. We will now give two examples of such transformations. 
In the first example the signatures will have 160 bits, and in the second example 
the signature will have ahout 128 bit,s. However in these examples the time 
needed to compute a sigrlatiire is not constant: some messages may he much 
easier to sign thari some otliers. 

Example 1 

Fig. 1. Example 1 of HFE in signature. z : the signature (160 bits). y‘ : the hash to 
sign (128 bi t s ) .  P I , .  . . , F ‘ I ~ S  are public. P129,. . . ,PIG,) are secrets. 
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Let us consider ail HFE algorithm, as described in the next paragraphs, with z 
and y of about 128+32=160 bits. 
Let p l ,  . . . ,prL be the n public polynomials that give y from z, with n = 160 and 
F, = F2 for example. 
If only p1 to PI28 of these polynomials are public (the over are secret), then the 
polynomials PI , .  , . p128, give a value z of 128 bits from a value z of 160 bits. 
In our algorithm here z is the hash of a message to sign and z will be the 
signature of z .  When z is given, then with the secret polynomials p12g to p160 
and the other secret values we will be able to find a value z so that from this z, 
the polynomials p l ,  . . . ,p128 will give exactly the value z .  
For this we will padd z with 32 extra bits and try to  find an IC with a decryption 
of the HFE algorithm. If it fails we try with another padding until we succeed. 
In figure 1 we illustrate such a use of HFE in signature. 

Example 2 

Computation of the signature In this example 2 to sigm a message M there 
will he three steps. 

Step 1. We generate H small integer R with no block of numbers with 10000 in 
its expression in base 2 (for example R = 0 to start). 
Step 2. We compute h(RIllOOO011M) where h is a public collision free hash 
fimction with an output of 128 tits (for example h is the MD5 algorithm). 
Step 3. We consider an HFE algorithm (as in paragraph 3) with values z and 
y of 128 bits. 
If we take 7~ = h(RI110000)IM), then we can (with the secret key) try to find a 
cleartext z so that H F E ( z )  = y. 
If we succeed, then Rllz will be the signatlire of M .  
If we do not succeed (because since HFE is not a permutation some value y have 
no corresponding x) then we try again at Step 1 with another R (for example 
with the new R equal to the old R + 1 if this new R has no block of 10000 in 
base 2).  

Verification of a signature The message M and a signature Rllz of M is 
given. First, we separate R and z (since z has a fix length of 128 bits this is 
easy). Then we compute h(R111000011M) and H F E ( z )  and the signature is valid 
if h(H~~lOOOO~(M) HIFE(z). 

Length of the signature In this example 2 the length of the signature is not 
fixed. However in average R will be very srnall so that the signature Rllz will 
have in average just a few more than 128 bits. 

Note.  Of course the pattern 10000 is just an example and another pattern P 
can he chosen. More precisely the property that we want is that from RIIPIIM 
we can recover R and M when we know that R do not have the pattern P. (So 
the pattern will have at least one 1 arid one 0). 
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7 The Isomorphism of Polynomials (IP) authentication 
and signature scheme 

7.1 Introduction 

We will now present a new authentication scheme called “Isomorphism of Poly- 
nomials” (IP). 
IP authentications have a few nice properties: 
- It is proved zero-knowledge. 
- We know exactly the problem on which the security of the scheme relies. 
- The scheme is very symmetric, and the design of the scheme is very similar to 
the well known “Graph Isomorphism Authentication scheme” (cf. [ l l ]  p. 88-89 
for example). 
- No hash fiinct,ions are needed. 
- IP illustrates the fact that, if in HFE the function f is public the HFE scheme 
may be still secure. 
However if all these nice properties show that IP is a scheme of theoretical 
interest IP may not he as practical in Authentication as the schemes of [12] or 
[13] or as HFE. (Essentially because of the large number of bits to exchange 
or because of the lenght of the public key). Moreover HFE can be used for 
authentication, signatures, or encryption, and IP is just for authentication or 
signatures. 

7.2 
and t 

Let u arid n be twn integers. Let F, he a finite field. 
Let A be a public set o f  u qiixlratic eqiiations with n variables 2 1 ,  . . . , x,, over 
the field F,. We can write all these equations like this: 

The Isomorphism of Polynomials Problem with two secrets s 

?Jk y t J k Z I Z J  p I k 5 ,  + b’k, for k = 1, . . . U (1) 
* J  I 

NOW let s be a bijective arid affine transformation of the variables x,, 1 5 i 5 n, 
and let 1 be a bijective and affine transformation of the variables yk, 1 5 k 5 u. 
Let s ( x 1 , .  . . , x , ~ )  = (xi,. . . , z:~), and t(y1,. . . , yU) = (yi, . . . , yh). 
From (1) we will obtain k eqwttions that gives the yI, values from the x: values 
like this: 

Let B he the set of these u equations. We will say that A and B are “isomorphic”, 
i.e. there is a double bijective and affine transformation that gives B from A. 
And we will say that (s, t )  is an “isomorphism” from A to B. The “Isomorphism 
of Polynomials Problem” is this problem: when A and B are two public sets of u 
quadratic eqiixtions, and i f  A and B are isomorphic, find an isomorphism ( s , t )  
from A to B.  



44 

Exnniple. If IL = n no polynomial algorithms to solve this problem are known. 
If such an algorithm were found then it would give us a way to find the keys of 
the Matsumoto-Imai algorithm {and not only a way to decrypt most of the m e s  
sages). So it would give us a new, and more powerful, attack on the Matsumote 
Imai Algorithm. Moreover if such an algorithm were found then in HFE it would 
be essential for security to keep f secret. On the contrary as long a.s no such 
algorithm is found HFE may he still sccure i f f  is public. 

Note. We could think to proceed like this in order to  find s and t :  to introduce 
the matrix of s :tncl t values and to formaly identify the equations (1) and (2). 
However we will obtain like this some equations of total degree three in the 
values of s and t and the general problem of solving equations of degree 2 two 
in a finite field is N P  hard. So this idea does not work. 

7.3 The IP authentication scheme wi th  two secrets s and t 

Public: Two isomorphic sets A and B of u quadratic equations wit,h n variables 
over it field F,, . 
Secret: An isomorphism ( s , t )  from A to B. 

Not(itZons The ecpatioris o f  A are the equations (1) of paragraph 7.2, they give 
the ?/k values from zi vitliies, and the equations of B are the equations (2) of 
paragrtipli 7.2, they give the yL values from the z: values. 
Let us SSIIIII~ that Alice knows the secret (s, t )  and that Alice wants to convince 
Bob o f  this knowledge, without revealing her secret. Alice and Bob will follow 
this protocol: 

Step 1. Alice raiitlomly computes a set C of equations isomorphic to  A .  
For this, she randomly computes an affine bijection s’ of the values x i ,  1 5 i 5 n, 
and a11 affine bijecthn t’ of t,he v;triihles gk, 1 5 I; 5 u. 
The u equations of C are PL eqiiations like t,his: 

- s gives the trmsforrnatiori x -+ 2’. 

- t gives the transformation y -+ y’. 
- s’ gives the transformation 5 -+ 5’’ 

- t’ gives the transforination y --+ y”. 

Step 2. Alice gives the set C of equations (3) to Bob. 
Step 3. Boh asks Alice either to 

(a)  Prove that A and C are isomorphic. 
(h) Prove thitt B and C are isomorphic. 
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Moreover Not> choosr to  ask (a) or (b) randomly with the same probability 1/2. 

Step 4. Alice complies. 
If Bob ask (a), then she reveals s’ and t ’ .  
If Bob ask (h), then she reveals s’ o s-l arid t’ o t - l  (i.e. the transforinations 

5’ + z’f and y’ -+ y”).  

It is easy to  prove that this protocol is zero-knowledge and that if somebody 
doesn’t know an isomorphism (s, t )  from A to  I? the probability to  successfully 
pass the protocol is at most 1/2 
So if Alice and Bob repeat steps (1) to (4) N times, the probability of succes 
will be at most 1/2”’. 

7.4 Parameters 

Analogous to the pro\)lem o f  fincling the secret affine transformations s and t 
of HFE when f is public or of the Matsiirnoto-Irriai Algorithm, we could have 
u 1 ‘R. = 64 or 128 and F ,  = F2 for example in a IP authentication scheme. 
However more practical values may be sufficient for security. 
I n  the exterided version of this paper we give some comments about more prac- 
tical v’ r t  1 11es. 

7.5 

Let VrL be an integer. Let F,, be ;L finit,e field. Let A be one public cubic equa- 
tion wit,h n variables X I ,  , . . , x, over the field F, .  (Here in A we have only one 
equation, but of degree 3 iintl not 2 ) .  We can write this equation (A) like this: 

The IP problem with one secret s 

Now let, s be a bijective ant1 affine transformation of the variables xi, 1 5 i 5 n. 

F’rorri ( A )  we will obtain one equation (B) in xi like this: 
Let s(z1,. . . , z r l )  = ( x i , .  . . , X t J .  

We will say that, ( A )  itnd (B) are “isomorphic”, i.e. there is a bijective and affine 
transformation that gives R from A .  And we will say that s is an “i~oxnorphism” 
from A to B. The “Iso~riorpllisrn o f  Po1ynomi:ils Prothin” is now this prolt 
lcm: when A and R are t,wo piihlic sets of such equations, and if A and B are 
isomorphic, find an isomorpliisrn s from A t,o B. 

Note .  For eqii:tt,ions of total degree 2 3, we know no polynomial algorithm to 
solve this IP prohlems. IIowever for equations of total degree 2 there is a polyntr 
mial algorithm to solvo the problem, hecaiise there is a “canonical” representa- 
tion of each quadratic equations over a finite field (cf. [ 5 ] ,  chapter 6 for example). 
If (A)  and (B) are isomorphic, then the two canonical representations of  (A) and 
(B) will he exsilly foi ir id,  will be t,he same, and this will give the isomorphism 
from ( A )  t,o (B). This is the reason why we have chosen equations of degree 2 3. 
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7.6 

The IP problem with one secret s can easilly be use to design an authentication 
scheme in the same way we used the IP problem with two secrets s and t (more 
dctails are given in the extended version of this paper). 

The IP authentication scheme with one secret s 

7.7 

Instead of only two public isomorphic equations (A) and (B), less us now assume 
that we have k public isomorphic equations ( P I ) ,  (Pz),  . . . (Pk). 

We denote by xi1) the variables of ( P I ) ,  . . . and by zjk) the variables of (Pk). And 
we denote by s j  the secret affine transformation from z(l) to 2 5 j I k. 
(So all the k equations are isomorphic to (PI), so each couple of these equations 
are isomorphic). 
Of course we can assume if we want that all the secret affine transformations 
s j ,  2 5 j 5 k ,  are computed from one small secret K ,  for example K is a secret 
DES key and the matrix of the s j  are obtained by some computations of DESK. 
So the public key is larger, since we have k equations ( P j ) ,  but the secret key 
can be still small. 
The authentication now proceed like this: 

Less computations with larger public keys 

Step 1. Alice rantlomly computes, as iisiial, one equation C isomorphic to Pi. 
Step 2. Alice gives this equation C to Bob. 
Step 3. Bob rarrdornly chose a vxlue u, 1 5 u 5 k ,  and ask Alice to prove that 
C and P, are isomorphic. 
Step 4. Alice complies. 

I t  is still easy to prove that this protocol is zero-knowledge and that if some- 
body doesn’t know any isomorphism s from one (Pa)  to one ( P j ) ,  i # j, then 
the probahility to successfully pass the protocol is at most 1 /k .  
So if Alice ~ r i t l  Bob repeat steps (1) to (4) N times, the probability of success 
will be at most l / ( k N ) .  

7.8 IF for asymmetric signatures 

The Fiat-Shamir ailthentication scheme and the Guillou-Quisquater authenti- 
cation scheme can be transformed in signature scheme by using a now classical 
transformation hy introducing hash function. This transformation works also 
very well here for the IP algorithm. 
Let M be the message to sign. The signature algorithm is this one: 

Step 1. Alice randorrily computes X equations Ci isomorphic to PI.  
Step 2. Alice computes hash (MIICIII.. . Cx), where 1 1  is the concatenation 
function, and hash a public hash function sufficiently large such that the first 
bits of oiitpiit can give X values e l , .  . . , e x ,  where each ei is a value between 1 
and k .  
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Step 3. Alice computes the X isomorphisms ti, 1 5 i 5 A, such that each ti is 
an isomorphism from Ci to  Pei. 

The signature on M by Alice is then (T, E )  where T is the vector ( t l , t z ,  . . . t x )  
and E is the vector (e l ,  e 2 , .  . . e x ) .  

To verify this signature, Bob proceeds like t,his: 
Step 1. Bob computes C1,. . . , Cx such that ti ,  1 5 i 5 X is an isomorphism 
from Ci to Pe:. 
Step 2. Bob checks that the first bits of hash (MIICIII . . . Cx) are the entries ei 
of E .  

7.9 

In signature we must have k’ 2 264 for security. 
It is not dear what value of n should be taken, but we suggest n 2 16 if K = Fz. 
With K = F2,n = 16,X = 16 and k = 16 then the lenght of the public key is 
1120 bytes and the lenght of the signature is about 4128 bits. With K = Fz, n = 
16,X - 4 and k = 216 then the lenght of the public key is k.16.15.14/3! bits = 

4,4 Mo. This is huge but can be store in a hard disc of a Personal computer, and 
the lenght of the signature is N 4.(16 + 16.16) = 1088 bits. 

Numerical examples of IP signatures with one secret s 

8 Conclusion 

We have dwigned two new classes of Algorithms: HFE arid IP. These algorithms 
are based on multivariate polynomials over a finite field of total degree two. One 
interesting point of HFE is that thrse algorithms can lead to very short ELSJTII- 

metric signatures (128 bits for example). Similarly they can encrypt messages 
by blocks whith very short blocks (128 bits Mocks for example). 
Another interesting point of these algorithms is that their security do not depend 
on factorisation or discret log, and very few algorithms for encryption or signa- 
tures in asyinmetric cryptography are known that do no rely on these problems. 
However a lot of problems are still open, for example: 
Are these algorithms really secure ? 
Is it possible to design strong HFE, with public polynomials of degree two and 
a secret fiinction j’ with two or more monomials, that are also permutations ? 
Is it possible to solve a general system of multivariate quadratic equations over 
GF(2)  much more qiiickly than with a quasi exhailstive search ? 
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