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Abs t r ac t .  T h e  difficulty of computing discrete logarithms known to 
be “short” is examined, motivated by recent practical interest in using 
Diffie-Hellman key agreement with short exponents (e.g. over Z, with 
160-bit exponents and 1024-bit primes p ) .  A new divide-and-conquer al- 
gorithm for discrete logarithms is presented, combining Pollard’s lambda 
method with a partial Pohlig-Hellman decomposition. For random Diffie- 
Hellman primes p ,  examination reveals this partial decomposition itself 
allows recovery of short exponents in many cases, while the new technique 
dramatically extends the range. Use of subgroups of large prime order 
precludes the attack at essentially no cost, and is the  recommended so- 

lution. Using safe primes also precludes this particular attack and allows 
improved exponentiation performance, although parameter generation 
cos;bs are dramatically higher. 

1 Introduction 

Diffie-Hellman key agreement [3] allows two parties A and B to derive a com- 
mon secret by communications over an  unsecured channel, while sharing no  
user-specific keying material a priori. A prime p and element g E 2; of large 
multiplicative order are fixed. A chooses a random integer z, 1 5 z 5 p - 2, 
and sends to E the value gz mod p (hereafter, reduction mod p is not explicitly 
noted). B responds by choosing a random y, 1 5 y 5 p - 2, and sending to A 
t.he value gy. A and B may then respect.ively compute a common secret key K 
as K = (gy)“ and ii’ = (g2)Y. Due t.0 t.he intractability of the discrete logarithm 
problem [lo] for appropriate p ,  an  eavesdropper is unable to compute z or y from 
observation of g2 and gy, and thus unable to compute K in the same manner 
as A or B .  I t  is widely believed tha t  computing discrete logs is required for any 
party other than A or B to compute K ,  although this remains an open question 
[12]. For protection from active adversaries, the technique must be augmented; 
various authenticated key agreement protocols a re  available [17]. 

Regarding appropriate choice of the prime p ,  two issues are size and structure. 
Regarding bitsize, taking current algorithms into account and depending on the 
security requirement, 512 bits is typically specified as a minimum, and  1024 
bits (or more) is commonly recommended and generally considered safe for most 
applications. Regarding st.ruct.ure, it. is well-known tha t  p must  be  such tha t  p -  1 
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contains a large prime factor, t o  preclude feasibility of the discrete log algorithm 
of Pohlig and Hellman [14]. 

Efficient implementation of Diffie-Hellman key agreement entails efficient. 
modular exponentiation, which requires efficient modular multiplication. For a 
modulus p of bit,length m,  mod p exponentiation with m-bit exponents using the 
basic square-and-multiply method [7] requires about m modular squarings and 
c m (m-bit) modular multiplies, where naively, c = 0.5 (on average); improvc- 
ments are possible. Standard techniques [2] for each of (m-bit) multiplication 
mod p and modular reduction require O(m2)  bit operations. 

Diffie-Hellman is a preferred mechanism for generating ephemeral keys. Per- 
formance issues arise as security considerations demand moduli well beyond 512 
bits in some applications. Since the cost of computing gx depends linearly on the 
bitlength of 2 ,  ensuing real-time costs have motivated use of exponents z of less 
than full (m-bit) length, e.g. for l g z  as small as 128 or  160. This is somewhat 
analogous to  the widespread use of short public exponents such LS e = 216 + 1 
in the RSA [ZS] public-key operation. Care is necessary to  ensu re  such opti- 
mizations do not introduce security weaknesses. For example, precaut.ions are 
necessary in some applications when using e = 3 in RSA [4]: and using a short 
RSA private exponent is known to be insecure [21]. 

This paper examines the security implications of using short Diffie-Hellman 
exponents. The major conclusions are that  use of random primes p combined 
with short exponents is generally insecure, and t h a t  the use of large prime-order 
subgroups is highly recommended. $2 reviews standard techniques for computing 
discrete logs in cyclic groups, including the case of short exponents. 53 presents a 
new method combining Pollard’s lambda method with partial recovery of a secret 
exponent by a (partial) Pohlig-Hellman decomposition, allowing an alarmingly 
effective attack when short exponents are used and the group in question h a s  
order n of arbitrary factorization (e.g. R = p - 1 for random prime moduli p ) .  $4 
examines the use of short exponents with safe primes, while $5 examines use of 
short exponents when computations are restricted to large subgroups of prime 
order. Both techniques, when used appropriately, preclude the known at.t.acks: 
each offers different advantages. Safe primes may allow further computational 
savings during exponentiation if a generator such as g = 2 is used, while use of 
prime-order subgroups are dramatically (e.g. more than  an order of magnitude) 
less costly with respect t o  parameter generation (namely p ) .  Much of the discus- 
sion applies t o  exponentiation-based systems beyond Diffie-Hellman, i.e. more 
general discrete logarithm problems. 

2 Background on Discrete Logarithm Techniques 

In this section, the basic methods for cornputsing discrete logs i n  cyclic groiip‘i 
are reviewed: Shanks’ method, and Pollard’s more practical rho  and lambda 
methods. The Pohlig-Hellman decomposition technique, of use in conjunction 
with any of these, is also reviewed. Advanced readers may omit this section. 
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The discrete logarithm problem for cyclic groups is as follows: given a cyclic 
group G of order n (i.e. having n elements), generator g E G, and element y E G, 
find z such t.hat. y = gz. One such group is the multiplicativegroup 2; of integers 
modulo a prime p: this group has  order n = p - 1. 

Shanks’ method. Aside from exhaust.ive search, the simplest idea for solving 
this problem is Shanks’ “baby-st.ep giant-step’’ method 181 (p.9 and 575-576). It 
requires O(n’I2) steps and the same order of space, where a step is one group 
operation. Define t = [n1/2 1. Compute ( g * ) i  for 1 5 i 5 t ,  and store the 
ordered pair ( ( s t y ,  i) in a table, sorted by first component (in constant time 
using conventional hashing). To find the logarithm x, compute y . gj(= g ” + j )  
for j 2 0. Stop when finding a j yielding a value stored in the table; this is 
guaranteed for some j 5 t - 1. At this point, g“ = g z + j ,  implying ti t + j 
(mod n). Then I = ti - j mod n is t.he desired log. The running time is O( t )  
steps where 1 = nr and r = 1/2.  The algorithm may be generalized using 
CI 5 T 5 1 ,  requiring a one-time precomputation of O(nr) time and space, and 
a per-logarithm computation of O(n l+)  time; r = 0 is exhaustive search, while 
T = 1 is table lookup. For example, T = 1/3 uses less space and more time. As 
overall time cannot be reduced below n1I2 and space is typically more expensive, 
T > 1/2 is not interesting unless computing a very large number of logarithms. 

Pollard rho. In practice, Pollard’s rho method for discrete logarithms [15] is 
preferable to  Shanks. It has similar square-root running time (heuristic, whereas 
Shanks is deterministic), but ent,irely avoids the large space requirement. While 
further details are omitted here (as the main focus is the lambda method), it is 
noted t.hat. this rriemoryless rho met.hod can be parallelized with perfect linear 
speedup [20]; that. is, essentially an r-fold speedup is possible using r processors. 

Pollard lambda. A lesser-known algorithm due to Pollard, the lambda method 
[15], more affectionately called t.he method for  catching kangaroos, can be used 
when the pursued logarithm x is known to lie within a restricted interval of 
width w .  Given a group G of order n and known integers b and w ,  it finds the 
logarithm z of an element y = g“ E G in time O ( W ’ / ~ )  and space for O(1ogw) 
group elements, provided it is guaranteed that b < x < b + w .  If x is not found 
on the first iteration, the probability of which can be controlled, subsequent 
iterations may be run as required. The technique is as follows. 

The method involves computing two sequences (trails) of points T and W 
(represent,ing paths travelled by t,arne and wild kangaroos). T computes the 
sequence do, Y;, . . . , y;Y , where d+l = . g f ( Y : )  using the “random” function 
f(y,!) whose output takes values from a set R. At the point dN, T halts and 
“sets a trap” hoping to cat.ch W should W land at  this point during its own 
[.rail y = yo, y1,. . . , YN; t.his will occur if W’s t.rail hits any point d .  The tame 
trail begins at do = g b + w ,  and proceeds to  dN. Note log,(y”) = log,(y&) 4- dk, 
where d;Y = Ciz0 f (y i )  mod n. The wild trail begins a t  yo = y, and concludes ”-1 
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when y~ = y" for some point YM in W's trail, at which point the logarithm x 
of y is computed as x = b + w + d h  - dM mod n.  If no collision y~ = yb occurs 
before dM exceeds w + d h ,  the  h u n t  is terminated with failure (W has travelled 
beyond the trap). The failure probability for a single iteration is controlled by 
parameter 0 (see below), which should be set to  minimize the expected overall 
work (balancing expected number of iterations and work per iteration). 

and yi can be viewed as deterministic paths which are 
stepped by random values from an integer set R of mean rn; by rough analysis, 
each of the N points in T's trail provides an independent chance with probability 
l /m of catching W .  For 0 = N / m  and m large, the probability of success is 
ps = 1 - (1 - m-l)em zz 1 - e- ' .  For optimum performance, set m = N .  wl/' for 
Q as optimized below. Then for example, for 6' = 4, p s  = 0.98 (0  = 1 gives ps = 
0.63) and the total expected work, N + M ,  minimized by cy = 1/4, is O ( w ' / ' )  
steps. More generally, 2 6  is the expected work given 8, when minimized using 
Q = J/(2&) [15]. Pollard suggests computing and storing g 3  for all s E R. used. 
and therefore choosing IR,I << wl/'. R = {2*, 2 l ,  2 2 , .  . , , 2L-1} is one suggestion 
(for an appropriate bound L ) ,  with f(yi)  = 23 where j = yi mod L.  

The sequences 

Pohlig-Hellman decomposition. Given the prime power factorization of n 
(with q,, the largest prime divisor), a divide-and-conquer technique known as 
Pohlig-Hellman decomposition [14] can be used to reduce the running time for 
each of the Shanks, rho and lambda methods, by decomposing the original large 
discrete log problem into a number of smaller such sub-problems. For Shanks. 
the reduction results in overall time and space O ( m ;  for rho and lambda: 
the reduction is to such time and negligible space. The original problem is to 
find x , given a group G of order n (e.g. G = Z;, R = p - l) ,  g,  and y where 
y = g z .  This is reduced to one of finding c; discrete logs in a subgroup of order 
q; for each prime power qf' dividing n. Let n = f ly=,  qf' where q; < q i + l l  q, 
prime. For simplicit,y, consider the case ci = 1 for all i (distinct prime factors); 
the technique is easily generalized. For a fixed i, compute y"/q* = (g " / " ) " .  The 
result takes on one of pi values, defining the simpler sub-problem of finding the 
discrete logarithm x i  (= x mod p i )  in a group of pi elements generated by g"/q*. 
Once ti is found for all i, the Chinese Remainder Theorem allows solution of the 
simultaneous congruences x G x i  mod qi , yielding x mod fl p i ,  which is z mod R 
as originally desired. The overall complexity is dominated by the cost of finding 
2,' the  logarithm for the largest prime factor q,, . 

C o m p u t i n g  Discrete Logs of Restricted Form. While sub-exponential time 
index-calculus techniques (see [9]) for computing discrete logarithms in groups 
with additional structure are in general more powerful than those of Shanks and 
Pollard, the latter are typically more effective when the order n of the group 
factors such that a Pohlig-Hellman decomposition is possible, or when the expo- 
nent is small. This paper restricts attention to methods applicable to  arbitrary 
cyclic groups. For a cyclic group G of order n (e.g. n = p - 1 for Z;), it follows 
from the discussion above that: 
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(i) discrete logs can be found in O(n1I2) time and negligible space; and 
( i i )  tirile can be reduced to O(q’ /2 )  if q is t,he largest prime divisor of n. 

For an appropriate bound B, call a prime factor q; of n small if q; < B ,  and 
call R smooth (more specifically: B-smooth) if all of its prime factors are small 
in this sense. To be of interest, B is chosen depending on the computational 
resourceS available, and for the present purposes, defined such that  when n is 
B-smooth, discrete logarithms may feasibly be computed using Pohlig-Hellman 
decomposition. For non-smooth n, finding I (given y where y = gz) appears 
difficult for random x of approximate bitlength lgp.’ In the sections listed below, 
the following approaches for constraining the size of exponents are examined: 

$3:  restricting exponents to random integers z in the range [ l ,w];  
$4: using a safe prime p = 29 + 1 ( q  prime) along with the first option; and 
$5: rtrst.rict.iiig computations t.o a subgroup of prime order q where q x w. 

3 Restricting Exponents t o  the  Range [I, w] 

Pollard’s lambda met.hod allows exhaction of logs with running time about, the 
square-root of the size of the interval in question. The requirement of a fixed 
level of security, say 2‘ (i.e. t bits), defines a (not necessarily greatest) lower 
bound on the size of Diffie-Hellman exponents. More specifically, if exponents 
are limited to  random integers I of bitlength w, this imposes the constraint, 
w 2 2 2 1 .  However, if attacks better than the basic square-root methods exist, 
this bound on w fails to provide t bits of security. Indeed, Lemma2 implies a 
great,er lower bound, resulting from such an improved attack. 

To explore the security impact of short exponents, consider the amount of 
information which may be obtained from a Pohlig-Hellman decomposition in 
this case of short exponents, for a group G of order n (e.g. n = p - 1 for 
G = 2;). As previously, assume n = ny=, q; where q; < q;+l.  The task  is to  find 
c given y (= gz). For each B-smooth prime factor q i ,  it is feasible to compute 
zi = 2 mod q,. Suppose there are r 5 u such small q;, Combine these xi using 
the Chinese Remainder Theorem to recover z mod B, where B, = n:=‘=, Qi. If 
Br > 2, this yields I itself, while for B, 5 2: it yields k = lg(Br) bits of 
information about x. The bitlength of the product of all small prime factors of 
n is k, and each q; essentially leaks lgq; bits of I. This raises two important 
questions. Let lgz = u.  

Ql :  For a raridorn prime p ,  what is the expected number of bits k of 3: leaked? 
Q2: 1s t.here an attack finding t,he remaining u - k bits of z in O ( e )  time? 

( I f  p leaks k bits of x, t bits of security would then require l g z  2 2t + k.) 
Related to Q1 and of more direct practical interest is the question: for a random 
prime y, with what probability is z fully revealed ( B ,  > z)? Both this and & I  
depend on the size of I relative to the smoothness bound B.  The expectation 

lg” is used to denote base-2 logarithms; “ln” denotes na tura l  logarithms. 1 I (  
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is that  k z 1gB (see §3.1), and thus one may expect full compromise when 
Igz lg B, although there is considerable variation. Perhaps more significant is 
the affirmative answer to Q2,  using a new t.echnique (see $3.2) .  

3.1 

Again let B be an upper bound such that  computing discrete logs is computa- 
tionally feasible in groups of prime order q 5 B. Consider first, for a random 
prime modulus p, the expected bitlength of the product B, of all “sma11” primes 
pi < B which divide p - 1. (More generally, the question relates t o  divisors 
of a group order n.) Each such prime contribut.es lgp, bits to k = Ig B,.! and 
pi divides a random number with probability l/p, (refined further below). The 
expected bitlength of B, can thus be approximated as: 

Expected Size of Product of Short Factors of p - 1 

This sum may be further approximated by summing, rather than over all primes 
p;, over all integers i 2 2 weighted by the probability i is prime (estimated as 
11 l n i  by the Prime Number Theorem). Then, since C;”=, i-’ z In B ,  

A slight.ly more precise estimate results by replxing l/pi by l / ( p t  - l ) ,  justified 
as follows. Of interest. is whet.her p%Ip-- 1. Since pi does not. divide p, p mod p; # 
0 and thus p - 1 mod pi # -1, leaving only p i  - 1 (not pi) possible residue 
classes. Moreover, l / ( p i  - 1) may itself be refined to  pi/(p; - 1)’. to account for 
divisors p;  of higher multiplicity. Numerical summation of t.his refinement. given 
in Lemma 1, supports the estimate above. (While such a result is known, and 
may be derived rigourously using advanced number theory, a heuristic derivation 
from first principles as given above is considered appealing.) 

Lemma 1. For a random prime p and a fixed bound B (see above), the expected 
bitlength k = lg(B,) of the product of all prime divisors p i  5 B of p - 1 is 

where C1 x 0.94, and C1 < 1.0 f o r  B > 2”. 

This answers Q1 (but see also Table 2); note that. k is independent of lgp. Tahle 1 
provides supporting results for a small sample of random primes p .  indicating 
the average, minimum, and maximum bitlengths of the product of all B-smooth 
prime divisors of p -  1. Note the large deviation from the mean, and that values 
B in Table 1 are relatively small. 

The cryptographic significance of Lemma 1 is as follows. An adversary with 
sufficient computational resources t o  compute discrete logs in cyclic groups of 
order up to 2s implies B =: 2’. One then expects about Ic = s bits of a n  exponent 
z are leaked by a “random” prime modulus p (revealing 2: entirely if l g z  < s). 
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Ig(B,) for 100 primes p z 2Io2* 
B mean min max 

216 16.4 1.0 47.2 
- 

232 1 31.3 1 .o 
2" I 52.1 I 2.6 

I 

112.2 

194.4 

1 2" I 65.0 I 2.6 I 243.1 1 
Table 1. Smoothness of p - 1 relative to B. B, = n qr' where q, 5 B ,  q?lp - 1. 

3.2 L a m b d a  Method Restricted to a Strategic Interval 

A new technique for cornputing discret,e logs is now presented, which is computa- 
t.ionally feasible when exponents E are bounded t,o x a 2" for (in)appropriat,e u .  
The t.echnique first. recovers what information about. x may be obtained from a 
part.ial Pohlig-Hellman decomposition (say I ;  bits), and then employs the lambda 
method t o  recover the remaining bits. The combined technique runs in t ime 
0(2("-')/2). This answers Q2 in the affirmative. 

Let y = gz be a n  element of a group G of order n, with the usual task t o  
determine x. Isolate the smooth factors of n and write n = zQ where z = B, 
(see 33) is the product of smooth factors, and has bitlength approximately k. 
C0mput.e V where V = 2: mod z, by a partial Pohlig-Hellman decomposition 
(see $2) .  Write x = A z  + V ,  where 0 5 V < 2 wit.h A as yet unknown. Then 
y = gz = g A z + " .  Now A 5 x / z  implies sl E [0,2'], where c x u - k bits of z: 
remain unknowii after finding V .  Compute 9" and y* = y/gv = g A z  = hA where 
h = gz is known. Consider the new problem of finding the discrete logarithm A 
(relative to  h )  of y*, given y* and the base h (in place of 9) .  Use the lambda 
algorit.hm (see 52) to find A .  Using h in place of g here restricts the trail points t o  
a subset. of cardinality about 2'. As required in the lambda method, the log to be 
found (here A in place of x) is known to lie in a restricted range [b ,  b+w] = [0,2"] 
of width w = 2'. The expected running time t o  find A is thus 0"). Knowing 
z and V ,  this allows computation of x = Az + V .  

An example with concrete parameters is given for clarity. Let G = 2; and 
R = p - 1 with a 1024-bit prime p and 160-bit 3: (so ec = 160). Suppose E = 100 
hits  of L are recovered using Pohlig-Hellnian (so Igr  z 100). Then IgA sz 60 
(c  = 60), and ahhough h generabes a subgroup of order z 21024-100, recovery 
of A by the lambda method is feasible, in 0(230) steps, because A is known to 
lie in the interval A E [0,260] of width w = 260. Note that  while the Shanks 
met,hod is also easily adapted to  restricted intervals, it is much more costly than  
t.he lambda due to memory requirements. Furt,hermore, t,he rho method is not 
feasible - direct use results in running time which is square-root but  in a group 
of cardinality 2924, and adaptations remain far inferior to  the lambda method. 

In summary, the technique allows an at.tack on Diffie-Hellman (and similar 
exponentiation-based systems) which has running t.ime (in number of group op- 
erat,ions) significantly better than square root of the exponent space size (e.g. 
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adversary 

power zc 
224 

232 

2‘0 

= 2”). Instead, it is the larger of the square root after this is first. rediirpd 
to account for leaked bits recoverable by partial Pohlig-Hellman decomposition 
(e.g. d v  = 230), and the square root of the largest prime factor of n used 
in this decomposition. This establishes the following result. 

exponent bitlength u 

64 96 128 160 192 224 256 

81% 45% 18% 10% 1% 0% 0% 

100% 68% 38% 25% 12% 2% 1% 

100% 84% 55% 32% 22% 7% 2% 

Lemma2. T h e  securi ty  of discrete exponen t ia t ion  in a group of order n uszng 
exponents  x w 2u is at most a . max(u - k, Ig(q,)) bits,  where k is the  n u m b e r  of 
bits of x feasibly recoverable by a part ial  Poh l ig -He l lman  decomposi t ion (using a 
part ial  factorizat ion of n), and qr i s  t h e  largest p r i m e  f a c t o r  of R used therein.  

In other words, the running time is O ( m a x ( G ,  6)). By Lemrnal .  for 
G = 2; with random primes p ,  one expects k = lg B for a smoothness boiind B .  

At, present, it, seems dangerous t o  assume other than that  an analogous gcn- 
era1 result holds, when the exponent space is restricted t o  any arhit.rary set S of 

cardinality 2”. Related to this, the  rho algorithm is adaptable t o  the case where 
exponents 3: are const,rained by bounding their Hamming weight. For example. 
Heiman [5] describes how to do so using Shanks’ method (t,he rho met.hod woiilrl 

furthermore remove memory requirements). We are aware of no “faster than 
square-root” method on S in this case; the above combined method does riot. 
appear t o  apply directly. Of related interest, Yacobi [22] has sketched a tech- 
nique for improving exponentiation performance (saving multiplications but not 
squarings) based on use of exponents which are compressible in the Ziv-Lempel 
sense. 

Table 2 provides insight into the practical implicat.ions of Lemma 2. It waq 
constructed by generating 100 random 1024-bit primes p (as per Table l ) ,  and 
partially factoring each using an implementation of the elliptic curve factoriza- 
tion method, specifically tuned and run t o  find prime factors up t,o 85 bits in  
length (thus with high probability extracting all 80-bit fackrs) .  This allowed 
determination of k for use in the attack of Lemma 2. 

Table2 gives empirical values for the percentage of cases this attack suc- 
ceeds for exponents z = 2”, assuming attackers capable of 2c total modular 
multiplications (roughly corresponding t o  an ability to take logs in groups of or- 
der = 22c). For example, for 32% of these 1024-bit primes, an adversary capable 
of Z40 multiplications mod p would find a 160-bit logarithm x .  An ideal method 
accelerating exponentiation via short exponents would have, in Table 2, for the 
best attack, the entry “100%” only for (roughly) u 5 2c, and “0%” for all u > 2c: 
this appears t o  be the case for safe primes ($4) and prime-order subgroups ($5). 

Table 2. Sample success rate of discrete log attack in 2“ steps, for 1024-bit primes 
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Prior t.o this result, it. h a s  been suggest.ed that, using a 160-bit exponent x 
provide dO bits of security, for primes p which are not “Pohlig-Hellman weak”. 
1 t IS now seen t.hat. even “partial” Pohlig-Hellrnan weakness may significantly 
reduce at.t-ack tirnes. Note the power of the divide-and-conquer nature of the 
attack: if n = p - 1 contains, for example, divisors whose bitlengths sum t o  u/2,  
a u-bit. logarithm can be recovered by determining u/2 bits through a partial 
Pohlig-Hellman decomposition in 0 ( 2 ” / 4 )  (and typically less t han  2”14) steps, 
and u / 2  bits through subsequent use of the lambda method on the appropriate 
subproblem in a further O ( 2 ” l 4 )  steps, giving an overall cost of 0(2”/4) steps. 
Previously, the best attack would require the minimum of the t ime to run either 
Pohlig-Hellrnan or a square-root method on the entire problem, i.e. 0 ( 2 ” / ‘ ) .  

4 Use of Short Exponents with Safe Primes 

Prior uncert,aint,y about the securit.y implications of using arbitrary prime moduli 
p with short exponents T has motivated (e.g. [6, 11) the use of sale  p r i m e s  p ,  
of t.he form p = 2q + 1 where q is also prime. This precludes the attack of 
Lemma 2 because a partial Pohlig-Hellman decomposition yields only a single 
bit, of information about an exponent x. Against this attack, it  appears safe to 
use exponents x zz 2”, with u = 2t determined such that  0(2$) operations are 
cornputationally infeasible (perhaps t = 80 for commercial security). 

It, should be emphasized, however, that, when using short exponents, it is 
no t  f h c  s z n g l p  ve ry  large prame q that  provides protect ion against  L e m m a  2, but, 
rat.her that, t.he t.ot,al bit.lengt,h of smooth factors is k = 1; t,his differs significantly 
fronr t,he sit,uat,ion for an ordinary Pohlig-Hellman att.ack against a full-length 
exporient.. For example, p = Rq + 1 with q very large and R relatively small, e.g. 
Ig R = T = 20 bits, nonetheless leaks 20 bits of information about  a n  exponent 
T (of bitlengbh 2t say). This reduces securit.y from t t,o t - ( r / 2 )  bits, which for 
short. exponents (t small) may bring an attack per Lemma 2 within range. 

An advantage of using safe primes p = 2 q  + 1 is that  all group elements of Z; 
other than f l  are then known t o  have order either q or 2q.  Consequently g = 2 
is known to be a generator for the full group of 29 elements if 2 is a quadratic 
non-residue mod p (in this case one bit of a logarithm z is available by a partial 
Pohlig-Hellman decomposition), and a generator for the subgroup of q elements 
when 2 is a quadratic residue (in this case, g = 2 does not leak even one bit).2 In 
modular exponentiation using base g = 2, the cost. of the modular multiplies (but 
not. squarings) effectively disappears. Ordinarily, multiplies are more costly than 
squatings, ahhough the number of multiplies is substantially less. In efficient 
implement.at.ions, this number is reduced further. All points considered, one may 
expect use of g = 2 to  result, in modular exponentiation performance improved 
by 20% overall, vs. an arbitrary generator 9. As the main motivation for use of 
short exponents i s  improved performance, this is significant. 

A more important point is tha t  use of a generator for the subgroup of order p corre- 
sponds to a prime-order subgroup as per $5  (albeit t h e  maximal proper subgroup), 
which avoids t h e  attack detailed in the last paragraph of 54. 
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One drawback, however, is the computational cost of finding safe primes. A n  
obvious (but inefficient.) method to  find an n - b i t  safe prime p is t c i  generat.e a n d  
search some space of candidate primes q = p i  of m- 1 bits, verify t.hat. q is prime, 
and then verify the candidate p;  = 2qi + 1 is also prime. While the densit.y of 
primes in search sequences 2q, + 1 differs somewhat from that. of the density 
of primes among all integers, the latter is 1/ l n p  (e.g. 1 in 710 zz In 2'"?4 for 
1024-bit integers). A standard optimization is to  filter candidate primes using 
small-prime sieve techniques. But even advanced techniques require some form 
of double search, generating many primes pi before a safe prime p emerges. In 
contrast, the cost of parameter generation in the  alternative of using prime- 
order subgroups ($5) is essentially that of generating a single candidate 1024-bit 
prime. Use of safe primes thus appears t o  introduce a substantial penalty, with 
parameter generation t.ime increased by a factor roughly equal t.0 t.he number of 
trials required t.o generat,e an m - 1 bit prime qi. 

A drawback of more general concern for basic forms of Difie-Hellman key 
agreement is a potentially fatal protocol attack (rather than an algorithmic 
at,tack on exponent.iation itself) which, although observed by others (includ- 
ing S. Vanstone), appears to not yet be widely recognized. The  at.tack applies 
also for safe primes, except when the large prime-order subgroup thereof is 
used (as noted above). Note that if (Y generates 2,. where p = 2q + 1, then 
/3 = crQ = crb-1)/2 = -1 is an element of order 2. If A and B respectively send 
each other unauthenticated ephemeral exponentials az and cry (as in §1), an  
active intruder may substitute (a")Q for the first, and ( ( Y Y ) ~  for the second. The 
shared key computed by both parties is then K = a z Y q  = /Y, which is +1 or -1 
depending on the parity of zy. (The attack generalizes directly for p = Rq+ 1 .  in  
which case Ii' takes on one of R values from t,he group of order R. generatd hy 
p = aq; for appropriately small R, Ii' may thus be easily found by the intruder 
by exhaustive trial.) This again motivates the use of prime-order subgroups ( i 5 ) .  

5 Restricting Computations to Prime-order Subgroups 

To meet the objective of improved running t ime through use of short exponents, 
the recommended alternative is t o  employ an idea used in Schnorr's signature 
scheme [18] and in DSA [19], to guarantee tha t  computations are carried out in a 
large subgroup of cardinality q x 2" where q is prime ( a  prime-order subgroup). 
For t bits of security, set u = 2t (e.g. u = 160 is used in DSA). If g E Z i  is 
a generator, and q divides p - 1, then = g(P-')/q generates a subgroup of 
order q.  Using /3 in place of g as a base for exponentiation, all exponents I may 
be reduced modulo q .  Such an element /3 of order q may be found as follows. 
Select a random element h E Zp' and compute /3 = h ( p - l ) / q ;  repeat until /3 # 1.  
(While it suffices to first find a generator g and then use g = h wi th  guarantwd 
success, finding such a g is not mandatory, and moreover requires knowledge of 
the factorization of p - 1 .) 

T h e  expected number of repetitions to  find @ # 1 is q / ( q -  1) z 1, established 
as follows. A trial fails if the order of h divides Q = ( p  - l ) / q ;  otherwise h(P-')/q 
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h a s  order q (success). Since exactly Q elements have order which divides Q ,  the 
proportioil  of eler1rent.s h which fails is Q / ( p  - 1) = l / q .  

The use of prime-order subgroups is by far preferable to  using random primes 
($3)  and at,ternpt.ing to increase the exponent. bitlength from 2t to 25 + i!’ to  
compensate for divisors of p - 1. The latter not only increases exponentiation 
t.iiire? but. arr appropriate value of 1’ varies with p ,  can only be determined with 
cert.ainty by factoring y - 1, and with small probability may be quite large. 
The use of prime-order subgroups has the advantage over safe primes that prime 
generation does not require guaranteeing a large prime divisor q = (p- 1)/2; only 
a prime divisor q x 221 is required. Since typically 25 <( lgp (e.g. 160 vs. 1024), 
t.he cost. of constructing, by well-known techniques [13], a primep such that  p -  1 
has a 2t-bit prime divisor q is little more than for finding a random prime p .  In 
addition, the use of prime-order subgroups precludes the att,ack discussed in the 
lajt paragraph of $4. 

6 Concluding Remarks 

,411 houglr the details differ, Pollard’s lambda method can be parallelized analo- 
gously t,o t,he rho method (201. Thus all aspects of the short-exponent discrete 
log attack of Lemma 2 can be parallelized, and the task can be distributed over 
large collections of computing platforms (111 , with small memory requirements. 

For a security requirement o f t  bits when using secret exponents x in Diffie- 
Hellman exponentiation (mod p )  and similar systems, use of random primes p 
t,oget,her with Igz = u is clearly insecure for u = 2t (and even larger). Suscep- 
t.ibi1it.y 60 at,t.acks based on a partial Pohlig-Hellman decomposition (stemming 
from divisors of p - 1) is significant, when using short exponents 2. In this case, 
random primes y should not be used. 

The resulk herein firmly establish that some measure must be taken to en- 
sure securit,y is preserved when using short exponents for Diffie-Hellman expo- 
irent.iat.ion. Aside from precluding strict Pohlig-Hellman attacks, this require- 
ment was hitherto folklore, which has nonetheless apparently helped motivate 
the use of safe primes in practical protocols such as Photuris [S] and SKIP 
[l]. We are aware of no effective attacks against the combined use of (appro- 
priately) short exponents with computations restricted to  (sufficiently) large 
prime-order subgroups. Use of prime-order subgroups allows more efficient gen- 
eration of ephemeral Diffie-Hellman parameters. In contrast, finding safe primes 
p irit.roduces considerable expense, although pre-computing a safe prime off-line 
and using g = 2 as a base allows improved real-time performance. However, in 
this case,  it, is recomirrerided t,hat the safe prime be one for which g = 2 generates 
a large prinie-order subgroup as well. 
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