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Abstract. Designcrs of stream ciphers have generally used ad hoc meth- 
ods to build systems that are secxre against known attacks. There is often 
a sense that this is the best that can be done, that any system will even- 
tually fall to  a practical attack. In this paper we show that thcrc nrc 
families of keystream generators that resist all possible attacks of a very 
general t,ype in which a small number of known bits of a keystream are 
used t,o synthesize a generator of the keystream (called a synthesizing 
algorithm). Such attacks are exemplified by the Berlekamp-Massey at- 
tack. We first formalize the notions of a family of feedback registers and 
of a synthesizing algorithm. We then show that for any function h(n)  
that is in U ( 2 n l d )  for every d > 0, there is a secure family B of periodic 
sequences in thc sense that any efficient synthesizing algorithm outputs 
a register of size h(log(period(l3))) given the required number of bits of 
a sequence B E I3 of large enough period. This result is tight in the sense 
it fails for any faster growing function h(n) .  UJe also consider several 
variations on this scenario. 

Index Terms - Binary sequences, nonlinear feedback registers, security, cryp- 
tography, stream ciphers. 

1 Introduction 

Historically, the design of stlearn ciphers has been largely a matter of finding 
ad hoc methods of foiling existing cryptanalytic attacks. Having their roots in 
Shannon's information theory, designers often feel that seeking a truly secure 
stream cipher is hopeless, that the best they can do is design a system that 
resists kriown attacks. The purpose of this paper is to explore the possibility 
that there exist families of stream ciphers that resist cryptanalysis by very large 
classes of attacks. We use asymptotic complexity rather than Shannon theory as 
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the basis for notions of security. A family of stream ciphers is secure against all 
attacks of a certain general type if all such attacks require asymptotically large 
numbers of bits of the keystream. Our approach to  the construction of these 
families of stream ciphers, while recursive, gives no practical construction for 
such a family of stream ciphers. 

The sort of attack we are concerned with uses a small number of known 
bits of a keystream to  synthesize a fast generator for the keystream. Perhaps 
the best known example of such an attack is the Berlekamp-Massey algorithm 
[13]. If the keystream can be generated by a linear feedback shift register (or 
T’FSR) of length n., then 2n. bits of the sequence suffice for the Berlekamp-Massey 
algorithm to  determine the LFSR that generates the keystream. The smallest 
such n is called the linear span of the keystream and is a well studied measure 
of security. The ingredients that make this attack of concern are as follows. 

1. A class of fast devices (LFSRs) that generate all possible eventually periodic 
sequences. 

2. A polynomial time algorithm A and a polynomial p ( n )  such that if a sequence 
can be generated by a device of size n, then p ( n )  bits of the sequence suffice 
for A to determine the device. 

A great deal of energy has gone into the design of (nonlinear) feedback registers 
that  resist the Berlekamp-Massey attack (see [4, 7 ,  8, 15, 161, to  name but a few). 
Similar attacks exist in the literature. For example, the Berlekamp-Massey algo- 
rithm works in any odd characteristic, and a binary sequence can be treated as a 
sequence over any field [9]. Also, recently Klapper and Goresky have designed a 
class of devices called feedback with carry shift registers or FCSRs [lo, 111, and 
an algorithm for synthesizing them based on 2-adic rational approximation thc- 
ory [12]. Both these approaches have been used to cryptanalyze certain sequences 
that had previously been shown to resist the Berlekamp-Massey attack (in the 
first case, geometric sequences [4], in the second case summation combiners [15]). 

In this paper we ask whether there is a family of efficiently generated se- 
quences that resist all such attacks. The answer is affirmative. However, the 
techniques used to  show their existence, while recursive, give no practical method 
for finding such a family. Even if we could give a reasonable description of such a 
family, it might not be possible to  give a computationally effective description of 
its generators. This should not be seen as too much of a difficulty, however, as this 
is the case even for m-sequences. Finding generators for m-sequences amounts 
to  finding primitive polynomials over G F ( 2 ) ,  and this is apparently a computa- 
tionally hard problem unless one knows a factorization of 2n - 1 (although it is 
not hard for currently practical sizes). Yet m-sequences are commonly used in 
practice as the bases for keystream generators. 

Related questions have been studied previously by Yao [18] and by Blum 
and Micali [2]. Their models and results were different, however, in a number of 
regards. First, their sequence generators were arbitrary polynomial time corn- 
putable generators (in the size of the seed). We use a much more restrictive 
model based on the use of fast feedback registers for generation of bit streams. 
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Second, the attacks they were concerned with required the availability of all pre- 
viously generated bits to predict the next bit (by a so-called next bit test). The 
attacks considered here require that only a small number (polynomially many in 
the size of the resulting generator) of bits be available to generate all remaining 
bits. Third, the attacks consider by Yao and Blum and MiCali were probabilistic 
while those considered here are deterministic. Finally, the existence results they 
gave were based on unproved complexity theoretic assumptions, such as the in- 
tractability of the discrete logarithm problem. Our results hold independent of 
any such assumptions. 

Maurer also considered the design of private key systems that resist all attacks 
[14]. His point of view differed from ours in that the system he designed required 
a globally accessible source of public randomness. Also, the notion of security 
was probabilistic - the probability that, an enemy could obtain information was 
shown to be exceedingly small. 

In Section 2 we abstract the notions of fast keystream generator and of effi- 
cient algorithms for synthesizing such generators given a small number of initial 
bits. In Section 3 we first show that there is a family of keystream generators 
that adniit,s no such synthesizing algorithm. We then show that an efficient, se- 
cure family 8 of sequences exists. This family is secure in the sense that, for 
every family of keystrearri generators .T that admits a synthesizing algorithm, 
the size of the smallest, generator in F that outputs a given sequence B in I? 
grows at  a superpolynoniial rate in the size of smallest efficient generator for B. 
In Section 4 we show that the bounds in Section 3 are optimal. In Sections 5 
and 6 we consider two variants: the case where the cryptanalyst is only required 
to generate a fraction of the keystream; arid the case where the number of bits 
the cryptanalyst has access t,o is linear in the size of the smallest generator. 

2 Definitions 

In this section we desrrihe feedback registers, the basic objects of study of this 
paper, and notions of security for families of feedback registers. 

Definition 1. A feedback wgzster of length n is determined by a function F : 
(0, l}n -+ (0, l}n, (balled the feedback f imctzon.  The state  of the register is an 
n-bit vector 2 = (20,. . . , x,,-1). The output from the state 2 is $0, and the n e x t  
state is F ( 2 ) .  

Thus from a given state 3 a feedback register outputs an infinite eventually 
periodic binary sequence by iterating the output and next state operations. In 
algorithms dealing with descriptions of feedback functions, we assume that the 
functions are described by circuits using binary AND (denoted A), binary XOR 
(denoted 0), and NOT (denoted 1) gates. Binary OR gates could have been used 
instead of XOR gates, but for the functions described here we find XOR more 
convenient. Changing the types of gates only changes complexity measures by 
a constant multiple. The AND and XOR gates are assumed to have fan-in two. 
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Such circuits can be encoded as binary strings [l]. The size of a register F is the 
minimum number of gates in a circuit that computes the function F .  The depth 
of a register F is the depth of the minimum depth circuit that computes F .  In a 
software implementation, the time it takes to  evaluate a circuit is proportional to 
its size. In a hardware implementation, evaluation time is proportional to depth. 

Note that feedback registers are really a type of finite state machine without 
input. One can consider more general finite state machines without input, where 
the output is computed as a function of the state rather than as the rightmost 
bit of the state vector. However, any such machine can be easily converted into 
an equivalent machine (i.e., producing the same output sequence) of the type 
used liere by increasing the length by one. This new bit is then updated by the 
composition of the original output and state change functions. The register has 
depth and size at  most twice those of the original machine. Thus our results 
apply to  the more general model as well. The simpler model is, however, easier 
to work with. 

A family of feedback registers, F, is an infinite collection of feedback registers 
such that every eventually periodic binary sequence can be output by at least 
one register in F. We let Fn denote the set of feedback registers in F of length 
n. If B is an infinite eventually periodic binary sequence, then t,he .T-span of B ,  
denokd XF(B), is the least integer n such that B can be output by a register in 
Fn. 

We are concerned with registers whose feedback functions can be computed 
quickly. Let d(n) be thc maximum over all F in F,, of the depth of F .  We say 
F is fast if 6(n) E O(log(n)). Note that this implies that the sizes (numbers of 
gates) of the registers in F are polynomial in the lengths of the registers. In fact, 
in all but one case in this paper, the sizes of fast families of registers described 
are linear in the lengths of the registers. 

Our basic concern is whether, given a small number of bits of a sequence 4 ,  
we can efficiently synthesize the smallest register in F that outputs B. 

Definition 2. Algorithm T is an F-synthesizing algorithm if, when given the 
input bO,...,hk-l, 

1. T outputs the encoding of a circuit that computes a feedback function F E F; 

2 .  if n is the length of F ,  T also outputs an n-bit vector a such that the first k 
and 

bits of the output of F with start state ii are bo,.  . . , bk-1 .  

The algorithm may or may not be assumed to know the period of the sequence 
B. T is effective if: 

1. It runs in polynomial time; and 
2 .  There is a polynomial p ( n )  such that if 71 = X7(B),  on input b~,...,bk-l 

with k 2 p(n), T outputs an F E F of length n that generates B. 

A family F of registers is synthetic if there is an effectfive F-synthesizing algo- 
rithm. 
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Certain families of sequences that have played a significant role in cryptog- 
raphy are known to be synthetic. 

Fact 3 T h e  fami l y  of LFSRs and the  f a m i l y  of  FGSRs are synthet ic .  

We say that a family of sequences is secure with respect to a family of registers 
if there is either no way to  synthesize t,he best register in the family for a given 
sequence, or the length of the best register grows quickly with period of the 
sequence. 

Definition 4. Let B = B' , BZ , . . . be a sequence of binary sequences of increas- 
ing periods, and let p ~ ( n )  be the period of B?'. Let A F , B ( n )  = A,(Bn). Then 8 
is F - s e c u r e  if either 

1. F is not synthet,ic:; or 
2. For every k > 0, we have 

In either case, for large enough n a short register in 3 generating B" cannot 
bc found effect,ively. Our goal is t,o show the existence of a sequence of periodic 
binary sequences B such that 

1. 13 is F-secure for every family of feedback registers; 
2. There is a family F of fast registers containing generators for the sequenccs 

in 8 whose lengt,hs are logarithmic in the periods of the sequences. 

In describing the growth rates of furic:t,ions, we use the following terminology. 

Definition 5.  Let f(n) be a function. 

1. We say f ( n )  is subexponential  if for every d > 0, f(n) f 0 ( 2 " l d ) .  
2. We say f ( 7 1 )  is superpolynomial if for every k > 0, f(n) E 0(nk) .  

Thus by our definition, a family is secure if it, achieves superpolynomial se- 
curity. In fact, we show that we can find families that achieve arbitrary subex- 
ponential security, not simply superpolynomial security. It is well known that 
there are subexponent,ial superpolynomial functions. 

3 Existence of Secure Feedback Registers 

In this section we give theorems on the existence of feedback registers and se- 
quences that resist all synthesis at,tacks in the sense that any such attack outputs 
inefficient generators. 
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Theorem 6. Let h (n)  be any subexponential function. There exists a fast family 
F of registers such that fop. e v e q  synthetic family F', there are infinitely many 
registers F in F wath output sequence S satisfying 

A F  ( S )  2 WAdS)). 

Proof: For each synthesis algorithm T ,  let 3 T  be the family of registers that is 
output by T .  Let 3', 3', . . . be an enumeration of the synthetic families of reg- 
isters such that each FT occurs infinitely often. Let the corresponding synthesis 
algorithms be T1 ,T2 , . - . .  

We construct .T in stages by a kind of diagonalization argument. At the end 
of st,age i - 1 we will have constructed F for registers of lengths up to ki-1 
so that the theorem holds for F1,. . . , We now show how to  extend the 
construction to stage i. 

Let p ( n )  be a polynomial such that for every sequence B, Ti  outputs a register 
that generates B given at  least p(XF;  ( B ) )  bits of B. We may assume p ( n )  = nd. 
Let T be larger than the period of any sequence generated by any register already 
in 3, and be large enough that for every k 2 r ,  we have 

2 k / d  > h ( k  + 3 ) .  

Let n satisfy 2' < p ( n ) .  Let k satisfy 2k 5 p ( n )  < z k + l .  We construct a pair of 
registers F and G of length at  most k + 3 and depth at  most [log(k)] + 1, whose 
outputs agree on the first 2"' - 1 terms, but not on the 2k+1st term. 

For F we choose a linear feedback shift register of length k + 1 that outputs 
an m-sequence (of period 2k+1 - 1). The feedback function of such a register is 
just a shift for k bits, and an XOR of at  most k + 1 bits. Thus it can be computed 
in depth [log(k)l. 

For I= we take a length k + 3 register with bits labeled xk+2 to 20 from left 
to right. The leftmost k + 1 bits are updated exactly as the k + 1 bits of F .  
Bit 2 1  changes only when the leftmost k + 1 bits all equal 1. Bit 20 (the output 
bit) always equals x1 tB x2. Suppose 2 1  is initially 0, the leftmost, k + 1 bits 
of G are initially identical to the k + 1 bits of F ,  and 20 = @ x2 initially. 
Then the output from G is strictly periodic with period 2(2"' - 1). The first 
half of one period equals a period of the output of F ,  while the second half 
equals the complement of a period of the output of F .  The additional circuitry 
required for G has depth [log(k)l + 1 since x1 = 2 1  @ ( 2 2  A . . .  A 5 k + 3 ) ,  and 
20 = ( 2 1  @ ( 2 2  A . . . A 5 ~ + 3 ) )  @ 23 (remember: the new value of 22 is the old 
value of 2 3 ) .  

For initial values, we take 0 ,1 ,1 , .  . . , 1 for F ,  and 0 ,1 ,1 , .  . . , 1 ,0 ,1  for G. This 
gives the desired behavior. Let B1 a.nd B2 be the resulting output sequences. 
Since p(71) < 2'+', Ti cannot distinguish these sequences with only p(n) bits 
available. Thus at least one of the sequences, say Bm, has 

A,;(B") > n 2 2 k / d  > h ( k  + 3). 

A p  (B") > h(lc + 3) 1 h(kJ = h(AF(Brn)) 

We put the corresponding register in F and lct ki be the length of that register. 
Thus 
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as desired. This concludes stage i. 
To make F a family of regist,ers (i.e., capable of generating every sequence), 

we add to .F every linear feedback shift register with only a single tap in its 
feedback function. rl 

In particular, for the sequence l? of registers constructed in the proof, there 
is no i such that AFh,a(7a)  is in O ( h ( A ~ , a ( m ) ) ) ,  and h(n) can be taken to  be a 
superpolynomial function. 

Corollary 7. There exist  (uncountably m a n y )  f a s t  nons;ynthetic famil ies  of  reg- 
is ters .  

However, we want a stronger statement than that given by Theorem 6. All 
we know is that the above bound holds for infinitely many sequences in B. U'e 
want, it to hold for all sequences in l? of sufficiently large period. That is, we want 
AFZ,a(7n)  E n ( h ( A ~ , a ( m ) ) ) .  We can modify the above construction to achieve 
this, as follows. 

Theorem 8. L e t  h(n) be a n y  subexponential f unc t ion .  There  exists a sequence 
of binary periodic sequences B = B', B2 ,  . . . such  that  

a. t3 can  be generated by a fa s t  f ami l y  .F of registers such  tha t  t he  length of t h e  

b. For  every synthetac fami l y  F', if m is suficien,t ly large, then 
register generating B" is a t  m o s t  twice t h e  log of t h e  period of Bm; 

A p , a  (rn) 2 h ( l o g ( p e r i o d ( B m ) ) ) .  

In particular,  af we let h be superpolynomial,  t h e n  l3 satisfies t he  requirements a t  
t he  end  o f  Sect ion 2. 

Proof: We begin with an enumeration Fi of the synthetic families of regis- 
ters and construct B by stages, as in the preceding proof. At the ith stage we 
construct Bi to have appropriate properties with respect to  .TI, . . . ,Fi. Let 
p(n)  = nd he so that for 1 5 j 5 i, Tj  synthesizes a register in Fj that outputs 
any sequence S given p(X,, ( S ) )  bits of S. 

Let t = [log(i)l. We construct Bi so that it has period 2k+1+t- l ,  and can be 
generated by a register of length k+t+2 and depth m a (  rlog(k + 1)1 , [log(t)l)+3 
for some k. 

Let r be 

1. larger than the period of any previous B J ;  
2. larger than t ;  and 
3. large enough that, for every k 2 r ,  we have 

2"ld > h(log(2k + t ) ) .  

Choose n so that nd > 2'. Let k satisfy 2k 5 nd < 2"'. We construct i + 1 
registers whose outputs are identical to one period of an m-sequence for 2k+1 - 1 
bits. The j t h  register then outputs the binary expansion of the integer j .  It 
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is straightforward to check that this can be done within the stated bounds on 
length arid depth. 

There must be at  least one of these sequences, which we denote Ba ,  that 
satisfies 

AT, (B') > n 2 2 k / d  > h(log(Zk + t ) )  = h(log(period(B'))) 

for 1 5 j 5 1,. This concludes stage i. 
The constructions in Theorems 6 and 8 can be made recursive. That is, there 

is an effective procedure which, given i ,  outputs a list of the registers in Fi in 
the first case or Ba (or a generator of B') in the second case. Such a procedure, 
however, is likely to be impractically slow. 

4 Exponential Bounds Are Impossible 

In this section we show that Theorem 8 is sharp in the sense that the function 
h cannot be replaced by an exponential function. 

Theorem 9. L e t  h(n) = 2"/d be a n  exponential  f u n c t i o n ,  and  let  13 = B1, B2,  . . . 
be a n y  sequence of periodic binary sequences. There exists a fa s t  synthet ic  f a m i l y  
of  sequences F such that  f o r  everg i ,  

XF(BZ) 5 h(log(period(B'))). 

T h e  synthesis  algorithm f o r  F is assumed t o  k n o w  the  period of t h e  sequence. 

Proof: We construct the family F by describing a register synthesis algorithm 
T .  .F is then the set of registers output by T .  

A k bit register generated by T has the following form. The leftmost k - 1 
bits operate independently of the rightniost bit. The rightmost bit is computed 
as a function of the leftmost Ic - 1 bits. Thus the registers are, in effect, nonlinear 
feedback registers with nonlinear feedforward functions. 

Algorithm T will produce a register of length [pl/d] when acting on a se- 
quence of period p .  Thus 

X,(Bi) = [period(Bi)l/d] 5 h(log(period(Bi))). 

Since the number of bits the algorithm can have access to is polynomial in 
X,(Bi), we can assume T knows a complete period of period(Bi). 

The first step is to construct a fast feedback register whose state sequence 
has period p .  This can be done, for example, by constructing a maximal period 
LFSR of length k ,  with 2k-1 5 p < 2k .  Thus the period of this LFSR is 2k - 1. 
Such a LFSR can be found by an exhaustive search for a primitive polynomial 
of degree k. There are 2k 5 2p polynomials of degree k ,  and each can be checked 
for primitivity in time quasi-linear in p .  Thus such a LFSR can be found in 
polynomial time. It can then be modified to switch back to its initial state after 
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p states by using a k-bit AND to check for the pth state. We call the resulting 
register G. 

The construct’ion is completed by finding a binary function on k bits that has 
the bits of the sequence as values on the p states of G. This can be written as an 
XOR of p terms, each an AND of k bits. Such an expression can be implemented 
as a circuit of depth [log(p)l + [log(k)l. 

Finally, the resulting register is extended to  length [p1Id] by padding it with 
0 

Theorem 9 is in fact true without knowledge of the period, but the polynomial 
bound on the number of bits available must be squared. This ensures tha t ,  for 
period p, p2 bits are available. These are enough bits to  determine the period 
unambiguously. 

[pl’d] - k duniniy bits on the left. 

5 Partial Attacks 

For many purposes t,he attacks considered in the preceding sections are too weak. 
A syst,em is also vulnerable if an adversary can find a substantial number of bits 
of the keystream. This is especially true if there is enough context in the message 
to recover the remaining bits. If F is a family of registers, B is a sequence of 
(eventual) period m, and 0 < r 5 m, then A ~ , ~ ( l 3 )  is the size of the smallest 
register F in F whose output agrees with B on at least T bit,s of each period’ of 
B. 

Definition 10. Let T be an F-synthesizing algorithm and 0 < r ( m )  5 m. We 
say that T is r(m)-efSective for .F if 

1. It runs in polynomial time; and 
2. There is a polynomial p(n) such that if B is a sequence with (eventual) 

period m and n = AF,r(m) ( B ) ,  then on input bo, .  . . , bkPl  with k 2 p ( n ) ,  T 
outputs an F E F of length n. If the sequence generated by F is B’, then 
for any k ,  

~ { i ,  k 5 1; 5 k + m - 1 : b, = bi}l 2 ~ ( m ) .  

F is r(m)-synthetic if there is an r(m)-effective algorithm for F 

Theoremll. Let h(n) be subexponential a71d let r(m) E (m + O(~n’ /~)) /2.  
There exists a fast family F of registers such that for everg r(m)-synthetic family 
F‘, there are infinitely many registers F in F with output sequence B of eventual 
period m satisfying 

XF’,T(rn)(B)  2 h(XF(B)) .  

Some care must be taken here. The sequence B and the output sequence B’ of F 
may have different periods, and in fact may not be strictly periodic, only eventually 
periodic. A reasonable interpretation is that r/period(B) is less than or equal to the 
limit as n goes to 03 of I{i, 1 5 i 5 n : b, = bi}l /n .  
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Proof Sketch: It is possible to construct a fast register such that one output 
period consists of an m-sequence followed by a degree one Reed-Muller code 
word. It is well known that the covering radius of the Reed-Muller code R M ( n ,  k )  
for fixed k is at most (2.  - ~ 2 ? " ~ ) / 2 ,  where c depends only on k [3]. The constant 
c can be made arbitrarily large by the choice of k. Taking complements, we see 
that there is a Reed-Muller codeword whose distance from any given sequence 
of length 2" is at least (2" + ~ 2 " / ~ ) / 2 .  R(n, k )  codewords can be generated by 
registers of length n and depth C?(log(n)). 

Let T be an r(m)-effective synthesis algorithm that is successful when given 
~ ( A F I , ~ ( ~ ) ( S ) )  bits of any sequence S .  We choose the sizes of the two parts 
of the above register so that the length 2k - 1 of the m-sequence is at  least 
p(h(log(rn))), where m is the period. We then choose the Reed-Muller codeword 
so that whatever sequence T outputs given 2k - 1 bits, the last 2" bits disagree 
with the codeword on at least (2" + ~ 2 ~ / ~ ) ) / 2  bits. It is possible to choose n and k 
so that this is more than (m + 0 ( 7 7 ~ ~ / ~ ) ) / 2 .  This is used to construct the family 
F in a manner similar to that in Theorem 6. 0 

This result will be improved if easily generated codes with small covering 
radii can be constructed. Coding theorists have studied covering radii for some 
years, but good asymptotic bou~ids are difiicult to obtain and they seem to have 
not considered the question of fast generation of the codewords. It would also be 
desirable to  find a sequence of sequences Bt so that Bi resists the first i r(m)- 
synthetic attacks. Using our techniques, such a construction would depend on 
finding easily generated codes with small multicoverzng radii, i.e., the smallest 
d such that every sequence is within distance d of at least i codewords. This 
concept appears to have not been studied by coding theorists. 

6 Linear Synthesis Attacks 

In this section we discuss the effect on our results of restricting the power of the 
synthesis algorithms. 

As defined, synthesis algorithms depend on polynomial bounds. A synthesis 
algorithm for a family F of registers must work correctly if the number of bits 
available is at least a fixed polynomial in the F-span, and the running t,ime 
must be polynomially bounded in the number of bits available. If the degree 
of the polynomial is large, however, it is questionable whether such an attack 
should bc considered strong enough to be of practical concern. By contrast, 
the Rerlekamp-Masseg and the 2-adic rational approximation algorithms work 
correctly if at least a linear number of bits are available. The former algorithm 
has quadratic running time, while the latter has quasi-quadratic running time. 
An algorithm is said to  be a l inear synthesis  algorithm for a family 3 if it requires 
only a linear number of bits in XF(B) to synthesize a register in F that outputs 
B. Then F is said to be linearly synthetic.  Theorems 6 and 8 can be improved 
if we restrict our attention to linear synthesis. 

Theorem12. L e t  h(n)  E o(2"). There exists a sequence of binary periodic .re- 
quences f? = B1, B" . . . such tha t  
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a. B can be generated b y  a f a s t  fami ly  F of  registers such that  the length of the  

b.  Le t  F' be a linearly synthetic family .  For every su f ic ien t ly  large i we have 
register generating Bi is at m o s t  twice the log of the period of Ba; 

AF, (@) 1 h(Iog(per iod(Bi ) ) ) .  

This result can then be shown to be tight. 

Theorem 13. Let h(n) = c2", for some constant c.  Let  B = B1, B 2 , .  . . be a 
sequence of periodic binaqt sequences. There exists a fas t  linearly synthetic fami ly  
of sequences 3 such that  f o r  eiiery i, 

A,(Bi) 5 h,(log(period(Bi))) .  

The. synthesis algorithm for F is assumed to  know the period of the sequence. 

7 Conclusions and Open Questions 

We have described a general model for attacks on stream ciphers of a very gen- 
eral type. Using this model, we have proved the existence of families of sequence 
generators that resist all such attacks. The proof, however, does not give a prac- 
tical construction. We hope to inspire researchers to search for such highly secure 
sequence generators with more natural descriptions. The basic ope11 question we 
leave is whether practical constructions can be found for register and sequence 
families that satisfy the conclusions of Theorem 8 and 6. 

We have also considered only one class of attack on stream ciphers. Other 
attacks are possible, for example probabilistic attacks such as correlation attacks 
[17], differential cryptanalysis [5] ,  and linear cryptanalysis IS]. It is desirable to  
formalize such probabilistic attacks arid (hopefully) prove the existence of classes 
of keystream generators that universally resist them. 

We have concentrated on the depth of circuits as a measure of feasibility. 
This corresponds to time of evaluation. Size (number of gates) is also a concern 
as it impacts area and hence cost. In all our theorems except Theorem 9 the 
sizes of the resulting fast registers are linear in the lengths of the registers. In 
Theorem 9, the sizes of the fast registers are polynomial in their lengths. We 
leave open the question as to  whether one can achieve smaller sizes than these. 
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