
Publicly Verifiable Secret Sharing

Markus Stadler *

Institiit,e for Theoretical Computer Science
ETH Zurich

CH-8092 Zurich, Switzerland
Email: stadlerQinf.ethz.ch

Abstract. A secret sharing scheme allows to share a secret among sev-
eral participants such that only certain groups of them can recover it.
Verifiable secret sharing has been proposed t o achieve seciirit.y against
cheating participants. Its first realization had the spccial property that
everybody. not only the participants, can verify tliat Ihe shares are cor-
rectly distributed. We will call such schemes publicly verifiable secret
sharing schemes, we discuss new applications t o w : m w cryptosystems
and t o payment systems with revocablc anonymity, and we present two
new realizations based on ElGamal’s cryptosystem.

1 Introduction

A secret sharing scheme [20, 21 allows to split a secret into different pieces, called
shares, which are given to the participants, such that only certain groups of them
can recover the secret,. The first secret sharing schemes have been threshold
schemes, wherc only groups of more than a ccrtain number of participants can
recover the secret.

Verijiuble secret sharing (VSS) is ;t cryptographic primitive proposed in [7] to
achieve security against cheating participants. A verification protocol allows the
honest participants to ensure that they can recover a unique secret. VSS plays
an important role in the design of protocols for secure multi-party computation
(see e.g. [l]). The first realization of VSS, presented in [7], has the very special
property that not only the participants, but everybody is able to verify that the
shares have been correctly distributed. We will call such schemes publicly werzfi-
able secret sharing (PVSS) schemes. Apart from the applications for “ordinary”
VSS, PVSS can be used for new escrow-cryptosystems, and for the realization
of digital payment systems with revocable anonymity.

The main technical results of this paper are two new PVSS schemes which can
also be used with general (monotone) access structures. Both schemes are based
on ElGamal’s cryptosyslerri [9]. Furthermore, the security of the first scheme can
be proved to be equivalent to some well-known cryptographic problems.

* Supported by the Swiss Federal Commissiori for the Advancement of Scientific Re-
search (KWF) and by the Union Bank of Switzerland.

U. Maurer (Ed.): Advances in Cryptology - EUROCRYPT ’96, LNCS 1070, pp. 190-199. 1996.
0 Springer-Verlag Berlin Heidelberg 1996

191

2 Publicly Verifiable Secret Sharing and Applications

2.1 An Informal Model of PVSS

In the sequel we give a informal description of secret sharing, verifiable secret
sharing, and publicly verifiable secrct sharing. It is not our goal to present a pre-
cise mathematical definition, but to illustrate the basic properties of the schemes
and to point out the difference between ordinary and publicly verifiable secret
sharing.

A secret sharing scheme consists of a. dealer, n. participants PI, . . . , P,, arid an
access st,ructure A 2{1,,.,1n}. The act:ess structurc is monotone, which means
that if A E A and A C B then B E A. For instance, in a threshold secret,
sharing schcme with threshold k the access structurc is defined as A = { A E
2{’>..”’’} 1 IAl 2 I c) , which means that any coalition of at, lcast k psrticipant>s
can recover the secret,.

To share a secret s among the participants, the dealer runs an algoritjhrn
Share

Slzare(sj = (5 1 , . . , , s,)

to co~ripiite the shares. The dealer then sends each share si, secretly to P,, 1; =
1,. . . , n. If a group of participants wants to recover the secret, they run an
algorithm Recover-, which lias the property t,liat,

VA E A : Recower({s,ji E A }) = s ,

and that for all A $! A it is computationally infeasible to calculate s from (s , lk E
A}. Thus, only those coalitions of participants defined by the access structure
A are able to recover the secrct s. A secret sharing scheme is called perfect if for
all A $! A the shares (szli E A} give no Shannon information about the secret.

One problem of such secret sharing schemes is that they are not secure against
cheating participants who send false shares when the secret is to be recovered.
Another problem is that a cheating dealer could distribute false shares, so that
different groups of participants recover different secrets. Such problems arise in
protocols for secure multi-party computations (see e.g. [l]), and can be solved
with verifiable secret, sharing (VSS) schemes [7].

A VSS scheme is a secret sharing scheme with ari additional, possibly inter-
active algorithm Verify which allows the participants to verify the validity of
their shares:

3u VA E A : (Vz E A : Verzfy(stj = 1) 3 Recover({s,li t A)) = u,
and u = s i.f the dealer was honest.

In other words, all groups of participants recover the same value if their shares
are valid, and this unique value is the secret if the dealer was honest. A VSS
scheme is called non-interactive, if the algorithm Ve~zfy requires no interaction
between the participants [ll].

192

But even with a non-interactive VSS scheme, the participants can verify the
validity of only their own shares, but they cannot know whcther other partici-
pants (with whom they might be able to recover the secret) have also received
valid shares. This problem can be solved with publicly verifiable secret sharing
(PVSS). In a PVSS scheme a public ericryption function is assigned to each
participant Pi, such that only he knows the corresponding decryption function
Di. The dealer now uses the public encryption functions to distribute the shares
by calculating

arid publishing the encrypted shares S,. To verify the validity of all the encrypted
shares, there is an algoritlirri Pub Verify with the property that,

s, = Ez(s ,) , i = I , . . . , 7 1

v/l 2{1>...?} :

(PubVeri’y({S,/i. E A }) = 1) + Recover({D,(S,)li E A }) = u

and ‘u = s if the dealer wa.s honest. In ot,her words: If a set, of encrypted shares is
“good” according to Pub Verify, then the honest, participants can decrypt them
arid recover the secret,. Note that PubVerzfy can be executed even if the partici-
pants have not, received t,heir shares so far. To run Pub Verify it, may he necessary
to communicate with the dealer (but not with any participant). A PVSS scheme
is called non-interactive if Pub Verify requircs 110 interaction with the dealer at
all.

Theoretically, PVSS could be realizcd using techniques of [4] to prove (or
to argue about) the satisfiability of a circuit,, but this would be very inefficient.
Wc will present morc practical solutions for sharing discrctc logarithms and for
sharing e-ih roots in Sections 3 and 4, respcctively. Bot,h schemes are based on
ElGamal’s cryptosysterri [9].

2.2 Applications of PVSS

Apart from t,he applications of ordinary secret, sharing arid of VSS, there arc
two interesting problems for which PVSS can be used. One of those is software
key escrow, such as nlficali’s fair cryptosyst,erris [16]. The basic: idea of fair cryp-
tmystcms is tliat, any user shares his secret key among scveral trustworthy (from
the user’s point of‘ view) escrow agenls by means of a VSS scheme. Each escrow
agent can verify that he obtained a correct share of the secret key. However,
one problem of such fair cryptosystcms is that the recipient of an encryptcd
message decides on the set, of trustworthy escrow agent, although the sender of
the message might trusts a different set of agent,s. Furthermore, the set of es-
crow agents can only bc changed by changing the key. A better solution for this
problem would be to have the sender provide information for the escrow agents
to decrypt the messagc. Such a system could be realized using a non-interactive
PVSS scheme with an ac~ess structure that, allows the recipient as well as a the
escrow agents to recover (i.e. decrypt) the message. Since the encrypted shares
can be publicly verified, everybody, e.g. any network provider, can verify thal
the message could be recovered by a lcgitiinale subset of escrow agents.

193

Another application of PVSS is the tiesign of electronic cash systems pro-
viding revocable monyinity [5, 21, 15, 61. Payrnerits made with such syst,ems
arc (usually) not traceable to the payer, but if the anonymity of the scheme
is abused for criminal activities, the payer's identity can be recovered with the
help of so-called trustees or judges. PVSS could be used to verifiably encrypt
tracing-information for the trustees in a transactiori without compromising the
anonymity of that transxtion.

3 PVSS for Sharing Discrete Logarithms

We will first describe two well-known methods for verifiably sharing discrete
logarithms. The verification for both schcmcs consists of checking whether the
secret share is the discrete logaritlirri of a pihlicly known element. 'I'lierefore,
these schemes can be extended to PVSS schemes by means of an encryption
scheme that allows to verify that a cipher-text coritains t,he discrete logarithrri
of a given value. Let iis first briefly dcscribc the number-theoretical setting.

3.1

Let) p be a large primc so that q = (p - 1) /2 is also prime', arid let h E Zi be an
element of order q. Let further G be a group of order p , and Ict ,9 bc a gcnm-ator
of G so that computing discrete logarithms to the base y is difficult,.

Our scheme will niake use of double exponentiation. By double exponcntia-
tion with bases g and h we mean the function

Double Exponentiation arid Double Discrete Logarithms

72, + G : c t) g('1') .

By the double discrete logarithm of y E G to the bases y and h we mean Ihe
unique J: E Zq with

h') ?4 = 9(

if siich an J: exists

3.2

Let s E ZP be the secret value and let S = ys be publicly known. There are
different ways to verifiably share this secret,. We first, prctscnt a solut,ion for
general monotone access structures, arid then briefly describe a threshold scheme

Let A be a rrioriotoiie access structure. For each A = {jl, . . . , j k } E A, the

Verifiable Sharing of Discrete Logarithms

[ll, 181.

dealer proceeds as follows: He cornputis t,he secret shares

{ rando:!? chosen in 72, for 2 = j , , . . . , j k - 1
s.4, =

s - Cp=l S A ~ ~ (mod p) for i = j k

This property is nccessary in ordcr to prove the secur i ty o f the schcme

194

and secretly sends SA% to the participarit P,. The values SAi = g"A2 are published
so that everybody can verify that

V A E A : n s,, = s.
i t A

The participant P, car1 verify his share by checking whether .SA,~ is the discrete
logarithm of SA,. Note t,liat this construction is quite unpractical for large access-
structures.

To share s in a threshold-scheme with threshold k , a publicly-known elerrierit
z, E Z,, 2, # 0 is assigned to each p:trticipsnt P,. The dealcr chooses random
elerrierit,s f , t Zp, j = 1, . . . , k - 1, and publishes the values S = y" and I;, = gs1 ,
j = 1,. . . , k - 1. Then he secretly sends to each Pi the share

k I

]=I

.4ny group of at least k participants can now compute s using Lagrange's inter-
polatiori formula. To verify a share s,, the participant P, can compute

?=I

arid check whether S , = 9 ' ' . See [l l , 181 for further details.
To make these schemes publicly verifiable, we need a public-kcy encryption

schcme that allows to vvrifiably encrypt t,he discrete logarithm of a publicly
known element. In other words, given a cipher-text IV and a group e,lemeiit s,
it should he possihle to convince everybody that the recipient, obtains log, S by
decrypt5ng 14'.

3.3

Our encryption scheme is ident,ical to ElGarnal's public key system [9] , which is
a, variation of the Diffie-Hcllman key-exchange protocol [8].

First, cach participant, randomly chooses a secret, key z t Z, and publishes
his public-key y = h," (mod p) , To encrypt, a message 7 n E Zz with the public:-key
y, t,he dealer randomly chooses 0 E Zq and calculates the pair

(h " , , r r ~ ~ ~ . yo) (mod p) .

Verifiable Encryption of Discrete Logari thms

Thc cipher-text (A , B) can be decrypted by the rccipient by calculating

TrL = A " / B (mod p) .

Let us now desc:I-ibc: a protocol for verifying t,hat a pair (A , B) encrypts the
discrete logarithm of a public element V = gu of the group G. It is based on the
fact that if (A , D) is equal to (h" ,v- l ' y ") (mod p) for any LY E Z, then

195

The prover (who will be the dealer in the secret sharing scheme) now proves
to the verifier that Ihe disciete logarithm of A to the base h is identical to the
double discrete logarithm of V B to the bases g and y.

Prover Verifier

repeat K times:

T = w - c . a (mod y)
r

With t'he techniques of [la] for converting an ideritification scheme into
a signature scheme, combined with ideas from [19], we can construct a non-
interactive "proof": Let %! : (0, I}* + {0,1}[be a cryptographically strong
hash-function (e M 100). For a = 1. . .li, the prover chooses w, Z4 and calcu-
lates t h z = hWi (mod p) , and t,i = g(Y'"' 1. Then he computes the I-tuple

R = (TI,. . . ,re) = (WI - CICY (mod q) , . . . ,we - CBCY (mod Q))

where ct denotes the z-th bit of

c = 7-le(VIIAIIBll~hllI~,llI ' ' . llthilltg?) (*)

The non-interactive proof consists of R and c. A verifier computes t h2 =
hr~ACT (mod p) and t,, = (g ' - "~Tf '~B) (~ ' a) for 7 = 1 . . f , and checks whether (*)
holds.

3.4 Analysis

There are two points to consider when discussing the security of the scheme.
First, even if we assume that computing discrete logarithms and breaking El-
Gamal's public-kcy system is hard, we have to check whether computing u from
both V = g" and the cipher-t,ext (A, B), is also hard. Second, we have to makc
sure that, t,he dealer ca.nnot cheat in the verification protocol arid that no "useful"
information about u is given away. T i e can prove the following two propositions.

196

Proposition 1. Under the assumpt?on thut computing discrete logarithms i n G
is ,iiifeas,ible, uud Lliul Ds.eakin!l the ElGamal cryptosystem is h r d , mmputing II

from 9'' and (h a , uU- 'ya) is at least a.s h>ard as solving the D e c i s i o n - D z ~ e - H e l l m a n
problem t o th,c base h in Z;.2

Sketch, of Proof: Note that it is possible t,o decide whether the encrypted log-
arithm IJ is a quadratic resiclue in Z;, because the base h (and the public key
y) is a quadratic residue, but that it remains difficult to break ElGarnal's cryp-
tosystern, i t . to completely recover the encrypted message.

Assume that there is ari efficient algorithm P that computes v on input
(y", h", h", 71-'h"') with a non-negligible probability E over all u E Zi, and
z , cy E Zi. We show how to iisc P to decide whether a given triple (A , B , C) of
elements in (h) , is a Diffie-Hellman triple, i.e. whether C = h ' o g ~ ~ A ' ' n g l , B (mod p) .

First, we need a method to randomize (A, I?, C). Therefore, wc choose p E Zi,
and cr, 7 E Z, at random and calculate (,q, B , c) = (APh", Bh', CPAP'B"h"').
Since y, the order of h in Z;, is prime, it can easily be shown that the triple
(A , B , C) is a random Diffie-Hellman triple if (A, B , C) is a Diffie-Hellman triple,
and a random non-Diffie-Hellman triple, ot,herwise.

Now, we randomly choose ' (I E Zi arid run P on input (gw,A,B,uplC). Thc
probability that P returns IJ depends on whether (A , B , C) is a Diffie-Hellrnan
triple or not:

- If (A , B , C) is a Diffie-Hellman triple then 'P returns IJ with probability E .

- If (A , B, C) is not a Diffie-Hellman triple then the probability that P returns
TI is negligible. Lct us assume on the contrary that P returns I I with a non-
negligible probability y. Then the discrete logarithm of any Y E G can be
computed by repeatedly running 'P on input (Yy/',h",h',t) with p ER Zp,
cr, T ER Zq, arid t ER "6 until P returns p + log, Y (mod p) . Because the
probability that t / (p + log, Y) (mod p) E (h) is approximately l / 2 , the
expected riiirriber of repetitions is 2/y.

After sufficiently many repetitions, a decision on whether (A, B , C) is a Diffie-
Hellman triple can be made with arbitrarily small probability of error.

Proposition 2. The prover in the in,teracti?ie protocol: in, Section. 3.3 can, suc-
cessfully cheat with a probability of at most 2 T K . T h e protocol is perfectly zero-
knowledge.

Sketch of Proof: It can easily be seen that if in one roiirid bot,h challenges, c = 0
and c = 1, can correctly be answered then the claim holds, i.e. the logarithm of
A to base h is equal t o the double logarithm of V B to the bases g and h. So if the
claim does not, hold, i.c.thc two logarithms are different, a cheating prover can
prepare t , and t h for only one challenge and will therefore be caught at cheating
with probability 1 /2 in this round.

Zero-knowledgeness can be shown using staridard techniques for constructing
a simulator. 0

See [3] for a discussion or Ihe Decision-l)iffi~-Hellman problem

197

4 PVSS for Sharing e-th Roots

Methods similar to thosc presentjed in the previous Section can be used to share
an e- th root of an element in a group Zz , where the factorization of n is unknown.
For example, 71 and e could be the public parameters of a Fiat-Shamir [lo] or
a Guillou-Quisquater [14] signature scheme. A verifiable sharing scheme with
general access-structure can be constructed in a similar way as described in
Section 3.2; for the construction of a threshold scheme see [ll]. What remains to
show is an encryption scheme that allows to efficiently prove that a cipher-text
contains the e-th root of a given element.

4.1

Let g E Z:?, be a public value of large order. Each participant raridoIrily chooses
a secret key z E ZT2. and computes the corresponding public key y = g2 (mod n) .

A sender can now encrypt a value m. E Z i by randomly c:hoosing a t ZIL
and calculating

Verifiable Encryption of e-th Roo t s

A = gQ (mod n) , and L? = m y" (mod 71.).

The recipient can easily obtain the e-th root, of M by calculating

m = B/A" (mod n) .

With the following interactive protocol t>he sender can prove that the pair
(A, B) encrypts the e-th root of M = mc (mod n) (e > 0).

Prover Verifier

repeat K times:

w E R (0,. . . ,
t,q = gZu (mod n)
t , = yew (mod n) t,, t , t

C E R {o, . . . , 2'-1}
c .

r = w - - c . c r
(calculation in Z j

r .
t , grAC (mod 71)

t,,, y"[Be/M)" (mod 71)

For a non-interactive proof we need a cryptogmphically strong hash-function
: (0, l}" + {O, 1}l. The sender chooses a random w E (0 , . . . , r2en1+c1}

and computes t , = yLU(mod n) , t, = uew(mod n) , c = '+L(MIIAIIRlltgllt,), a d
r = w - c . a. The resulting proof is (,r ,c); vrrifimtion is straightforward. If M

198

and
2c t
n >

the cipher-text (A , B) are included, the whole share has a length of only
- (4 + c) . log, TZ bits. For a “practical” scheme we recommend to choose
2750, e > 80 and E z i.

4.2 Analysis

As in Section 3.4, we have to consider the securit,y of the encryption scheme and
the security of the verification protocol. Unfortunately, a statement similar to
proposition 1 is difficult to prove. This is mainly because the order of g is riot
prime and therefore a good randomization of non-Diffie-Hellman triples is not,
possible anymore. If we required that the order of 9 is prime, then the security of
the scheme could only be proved (in the manner of proposition 1) for messages
711. that belong to the subgroup generated by 9.

For the security of the verification protocol, we can prove the following propo-
sition:

Proposition 3. The prover in the interactive protocol in Section 4.1 can suc-
cessfully cheat with a probability of at most 2 T K L . The protocol is statistically
zero-knowledge if c = O(log1ogn).

Sketch of Proof: The first claim can be proved in a similar manner as for propo-
sition 2. For proving zero-kIiowledg.eness wc construct a simulator that first ran-
domly chooses r E (0 , . . . , [2%lfe1}, guesses c E (0 , . . . ,2! - l}, computes t ,
and t,, and then checks whether c was correctly guessed or not (according to the
verifier’s strategy). For t! = (?(log log n) this simulator runs in expected polyno-
mial time. It remains to show that the output of the simulator and the output
of the protocol are statistically indistinguishable (see [13] for definition). 0

Acknowledgments

Many thanks to U. Maurer, D. Bleichenbacher, C. Cachin, J. Canienisch, and
the anonymous referees for their useful comments.

References

1. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-lolerant distributed computation. In 20th Annual Symposium
o n the Theory of Computing (STOC), pages 1-10, 1088.

2. B. Rlakley. Safeguarding cryptographic keys. In Proceedings of the National Com-
puter Conference 1.979, volume 48 of American Federataon of Informalion Process-
ing Societies Proceedings, pages 313-317, 1979.

3 . S Brands. An efficient off-line electronic cash system based on the representation
problem. Technical Report CSR9323, CWI, Amsterdam, 1993.

4. G. Brassard, D. Chaum, and C. Crdpeau. Minimum disclosure proofs of knowl-
edge. Journal of Computer and Syslem Sciences, 37(2):156-189, Oct. 1988.

199

5. G. Brickell, P. Gemmell, and D. Kravitz. Trustee-based tracing extensions to
anonymous cash and the making of arionyrrioiis c:liange. In Proceedinys of the ,S
Annual A CM-SIAM Symposium on Discrete Algorithms, pages 457--466. ACM,
1995.

6. J. Carnenisch, ,J.-M. Piveteau, and M. Stadler. An Efficient Fair Payment Sys-
tem. To appear in Proc. 3rd ACM Conference on Computer and Communications
Security, 1996.

7. B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and
achieving simultaneity in the prcsencc of faults. In Proceedinys of the 26th IEEE
Symposaum on the Foundations of Compuler Science (E'OCS), pages 383 -395, 1985.

8. W. Dime and MI. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22(6):644-654, Noveniber 1976.

9. T. ElGamal. A public key cryptosystcrn arid a signature scheme based on discrete
logarithms. IEEE Transactions on In[orma2ion Y'tieory, IT-31 (4):469 472, July
1985.

10. U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. .Journal of
Crypt ol og y , 1 : 77-94, 1988.

11. P. Feldman. A practical scheme for uoii-interactive verifiable secret sharing. In
Proceedings of the 28th IEEE Syrrqmsiurrr. 071 I~b~undations of Computer Science

12. A . Fiat, and A. Shamir. How to prove yourself Practical solution to identification
and signature problems. In Advances in Cryptology - CRYPTO '86, volume 263
of Lecture Notes in Computer Science, pages 186-194. Springer-Verlag, 1987.

19. S. Goldwasser, S. Micali, arid C. RackoK. 'The knowledge complexity of interacLive
proof-systems. In F'roc. 17th ACM Symposium on Theory of Computing (STOC),
pages 291-304, 1985.

14. 1,. Guillou and J.-J. Quisyuater. A practical zero-knowledge protocol fitted to
security microprocessor minimizing both transmission and memory. In Advances
in Cryptology - EUROCRYPT '88, volume 330 of Lecture Notes in Computer
Science, pages 123-128. Springer-Verlag, 1988.

15. M. Jakobsson and M. Yung. ltevokable and Versatile Electronic Money. To appear
in Proc. 3rd ACM Conference on Computer and Communications Security, 1996.

16. S. Micali. Fair cryptosystems. Technical Report TR-579.b, MIT, Novembcr 1993.
17. NIST. Clipper chip technology, 30 April 1993.
18. T. Pedersen. Distributed provers with applications to undeniable signatures. In

Advances in Cryptology - EUROCRYPT '91, volume 547 of Lecture Notes in Com-
puter Science, pages 221-242. Springer-Verlag, 1992.

Efficient identification and signature for smart cards. In Advances
in Cryptology - CRYPTO '89, volume 435 of 1,ectur.e Notes in Computer Science,
pages 239-252. Springer-Verlag, 1990.

20. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612 613,
1979.

21. M. Stadler, J.-M. Piveteau, and J. Camenisch. Fair blind signatures. In Advances
in Cryptology - EUROCRYPT '95, volume 921 of Lecture Notes in Computer
Science, pages 209-219. Springer-Verlag, 1995.

(FOCS), pages 427-1187, 1987.

19. C. Schnorr.

	Publicly Verifiable Secret Sharing
	1 Introduction
	2 Publicly Verifiable Secret Sharing and Applications
	2.1 An Informal Model of PVSS
	2.2 Applications of PVSS

	3 PVSS for Sharing Discrete Logarithms
	3.1 Double Exponentiation and Double Discrete Logarithms
	3.2 Verifiable Sharing of Discrete Logarithms
	3.3 Verifiable Encryption of Discrete Logarithms
	3.4 Analysis

	4 PVSS for Sharing e-th Roots
	4.1 Verifiable Encryption of e-th Roots
	4.2 Analysis

	Acknowledgments
	References

