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Abstract. A secret sharing scheme allows to share a secret among sev- 
eral participants such that  only certain groups of them can recover it. 
Verifiable secret sharing has been proposed t o  achieve seciirit.y against 
cheating participants. Its first realization had the spccial property that 
everybody. not only the participants, can verify tliat Ihe shares are cor- 
rectly distributed. We will call such schemes publicly verifiable secret 
sharing schemes, we discuss new applications t o  w : m w  cryptosystems 
and t o  payment systems with revocablc anonymity, and we present two 
new realizations based on ElGamal’s cryptosystem. 

1 Introduction 

A secret sharing scheme [20, 21 allows to split a secret into different pieces, called 
shares, which are given to  the participants, such that only certain groups of them 
can recover the secret,. The first secret sharing schemes have been threshold 
schemes, wherc only groups of more than a ccrtain number of participants can 
recover the secret. 

Verijiuble secret sharing (VSS) is ;t cryptographic primitive proposed in [7] to  
achieve security against cheating participants. A verification protocol allows the 
honest participants to  ensure that they can recover a unique secret. VSS plays 
an important role in the design of protocols for secure multi-party computation 
(see e.g. [l]). The first realization of VSS, presented in [7], has the very special 
property that not only the participants, but everybody is able to  verify that the 
shares have  been correctly distributed. We will call such schemes publicly werzfi- 
able secret sharing (PVSS) schemes. Apart from the applications for “ordinary” 
VSS, PVSS can be used for new escrow-cryptosystems, and for the realization 
of digital payment systems with revocable anonymity. 

The main technical results of this paper are two new PVSS schemes which can 
also be used with general (monotone) access structures. Both schemes are based 
on ElGamal’s cryptosyslerri [9]. Furthermore, the security of the first scheme can 
be proved to  be equivalent to some well-known cryptographic problems. 
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2 Publicly Verifiable Secret Sharing and Applications 

2.1 An Informal Model of PVSS 

In the sequel we give a informal description of secret sharing, verifiable secret 
sharing, and publicly verifiable secrct sharing. It is not our goal to present a pre- 
cise mathematical definition, but to  illustrate the basic properties of the schemes 
and to  point out the difference between ordinary and publicly verifiable secret 
sharing. 

A secret sharing scheme consists of a. dealer, n. participants PI, . . . , P,, arid an 
access st,ructure A 2{1,,.,1n}. The act:ess structurc is monotone, which means 
that if A E A and A C B then B E A. For instance, in a threshold secret, 
sharing schcme with threshold k the access structurc is defined as A = { A  E 
2{’>..”’’} 1 IAl 2 I c )  , which means that any coalition of at, lcast k psrticipant>s 
can recover the secret,. 

To share a secret s among the participants, the dealer runs an algoritjhrn 
Share 

Slzare(sj = ( 5 1 , .  . , , s,) 

to  co~ripiite the shares. The dealer then sends each share si, secretly to P,, 1; = 
1,. . . , n. If a group of participants wants to recover the secret, they run an 
algorithm Recover-, which lias the property t,liat, 

VA E A : Recower({s,ji E A } )  = s , 

and that for all A $! A it is computationally infeasible to calculate s from ( s , lk  E 
A}.  Thus, only those coalitions of participants defined by the access structure 
A are able to recover the secrct s. A secret sharing scheme is called perfect if for 
all A $! A the shares (szli E A} give no Shannon information about the secret. 

One problem of such secret sharing schemes is that they are not secure against 
cheating participants who send false shares when the secret is to be recovered. 
Another problem is that a cheating dealer could distribute false shares, so that 
different groups of participants recover different secrets. Such problems arise in 
protocols for secure multi-party computations (see e.g. [l]), and can be solved 
with verifiable secret, sharing (VSS) schemes [7]. 

A VSS scheme is a secret sharing scheme with ari additional, possibly inter- 
active algorithm Verify which allows the participants to verify the validity of 
their shares: 

3u VA E A : (Vz E A : Verzfy(stj = 1) 3 Recover({s,li t A ) )  = u, 
and u = s i.f the dealer was honest. 

In other words, all groups of participants recover the same value if their shares 
are valid, and this unique value is the secret if the dealer was honest. A VSS 
scheme is called non-interactive, if the algorithm Ve~zfy requires no interaction 
between the participants [ll]. 
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But even with a non-interactive VSS scheme, the participants can verify the 
validity of only their own shares, but they cannot know whcther other partici- 
pants (with whom they might be able to recover the secret) have also received 
valid shares. This problem can be solved with publicly verifiable secret sharing 
(PVSS). In a PVSS scheme a public ericryption function is assigned to each 
participant Pi, such that only he knows the corresponding decryption function 
Di. The dealer now uses the public encryption functions to  distribute the shares 
by calculating 

arid publishing the encrypted shares S,. To verify the validity of all the encrypted 
shares, there is an algoritlirri Pub Verify with the property that, 

s, = Ez(s , ) ,  i = I , .  . . , 7 1  

v/l 2{1>...?} : 

(PubVeri’y({S,/i. E A } )  = 1) + Recover({D,(S,)li E A } )  = u 

and ‘u = s if the dealer wa.s honest. In ot,her words: If a set, of encrypted shares is 
“good” according to  Pub Verify, then the honest, participants can decrypt them 
arid recover the secret,. Note that PubVerzfy can be executed even if the partici- 
pants have not, received t,heir shares so far. To run Pub Verify it, may he necessary 
to  communicate with the dealer (but not with any participant). A PVSS scheme 
is called non-interactive if Pub Verify requircs 110 interaction with the dealer at 
all. 

Theoretically, PVSS could be realizcd using techniques of [4] to prove (or 
to argue about) the satisfiability of a circuit,, but this would be very inefficient. 
Wc will present morc practical solutions for sharing discrctc logarithms and for 
sharing e-ih roots in Sections 3 and 4, respcctively. Bot,h schemes are based on 
ElGamal’s cryptosysterri [9]. 

2.2 Applications of PVSS 

Apart from t,he applications of ordinary secret, sharing arid of VSS, there arc 
two interesting problems for which PVSS can be used. One of those is software 
key escrow, such as nlficali’s fair cryptosyst,erris [16]. The basic: idea of fair cryp- 
tmystcms is tliat, any user shares his secret key among scveral trustworthy (from 
the user’s point of‘ view) escrow agenls by means of a VSS scheme. Each escrow 
agent can verify that he obtained a correct share of the secret key. However, 
one problem of such fair cryptosystcms is that the recipient of an encryptcd 
message decides on the set, of trustworthy escrow agent, although the sender of 
the message might trusts a different set of agent,s. Furthermore, the set of es- 
crow agents can only bc changed by changing the key. A better solution for this 
problem would be to have the sender provide information for the escrow agents 
to decrypt the messagc. Such a system could be realized using a non-interactive 
PVSS scheme with an ac~ess  structure that, allows the recipient as well as a the 
escrow agents to  recover (i.e. decrypt) the message. Since the encrypted shares 
can be publicly verified, everybody, e.g. any network provider, can verify thal 
the message could be recovered by a lcgitiinale subset of escrow agents. 
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Another application of PVSS is the tiesign of electronic cash systems pro- 
viding revocable monyinity [5, 21, 15, 61. Payrnerits made with such syst,ems 
arc (usually) not traceable to the payer, but if the anonymity of the scheme 
is abused for criminal activities, the payer's identity can be recovered with the 
help of so-called trustees or judges. PVSS could be used to  verifiably encrypt 
tracing-information for the trustees in a transactiori without compromising the 
anonymity of that transxtion. 

3 PVSS for Sharing Discrete Logarithms 

We will first describe two well-known methods for verifiably sharing discrete 
logarithms. The verification for both schcmcs consists of checking whether the 
secret share is the discrete logaritlirri of a pihlicly known element. 'I'lierefore, 
these schemes can be extended to PVSS schemes by means of an encryption 
scheme that allows to  verify that a cipher-text coritains t,he discrete logarithrri 
of a given value. Let iis first briefly dcscribc the number-theoretical setting. 

3.1 

Let) p be a large primc so that q = ( p  - 1) /2  is also prime', arid let h E Zi be an 
element of order q.  Let further G be a group of  order p ,  and Ict ,9 bc a gcnm-ator 
of G so that  computing discrete logarithms to the base y is difficult,. 

Our scheme will niake use of double exponentiation. By double exponcntia- 
tion with bases g and h we mean the function 

Double Exponentiation arid Double Discrete Logarithms 

72, + G : c t) g('1') . 

By the double discrete logarithm of y E G to the bases y and h we mean Ihe 
unique J: E Zq with 

h') ?4 = 9(  

if siich an J: exists 

3.2 

Let s E ZP be the secret value and let S = ys be publicly known. There are 
different ways to verifiably share this secret,. We first, prctscnt a solut,ion for 
general monotone access structures, arid then briefly describe a threshold scheme 

Let A be a rrioriotoiie access structure. For each A = {jl, . . . , j k }  E A, the 

Verifiable Sharing of Discrete Logarithms 

[ll, 181. 

dealer proceeds as follows: He cornputis t,he secret shares 

{ rando:!? chosen in 72, for 2 = j ,  , . . . , j k - 1  
s.4, = 

s - Cp=l S A ~ ~  (mod p )  for i = j k  

This property is nccessary in  ordcr to prove the secur i ty  o f  the schcme 
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and secretly sends SA% to  the participarit P,. The values SAi = g"A2 are published 
so that everybody can verify that 

V A  E A : n s,, = s. 
i t A  

The participant P, car1 verify his share by checking whether .SA,~ is the discrete 
logarithm of SA,. Note t,liat this construction is quite unpractical for large access- 
structures. 

To share s in a threshold-scheme with threshold k ,  a publicly-known elerrierit 
z, E Z,, 2,  # 0 is assigned to each p:trticipsnt P,. The dealcr chooses random 
elerrierit,s f ,  t Zp, j = 1, . . . , k -  1, and publishes the values S = y" and I;, = gs1 , 
j = 1,. . . , k - 1. Then he secretly sends to each Pi the share 

k I  

]=I 

.4ny group of at least k participants can now compute s using Lagrange's inter- 
polatiori formula. To verify a share s,, the participant P, can compute 

?=I 

arid check whether S ,  = 9 ' ' .  See [ l l ,  181 for further details. 
To make these schemes publicly verifiable, we need a public-kcy encryption 

schcme that allows to vvrifiably encrypt t,he discrete logarithm of a publicly 
known element. In other words, given a cipher-text IV and a group e,lemeiit s, 
it should he possihle to convince everybody that the recipient, obtains log, S by 
decrypt5ng 14'. 

3.3 

Our encryption scheme is ident,ical to ElGarnal's public key system [9] , which is 
a, variation of the Diffie-Hcllman key-exchange protocol [8]. 

First, cach participant, randomly chooses a secret, key z t Z, and publishes 
his public-key y = h," (mod p ) ,  To encrypt, a message 7 n  E Zz with the public:-key 
y, t,he dealer randomly chooses 0 E Zq and calculates the pair 

( h " , , r r ~ ~ ~  . yo) (mod p ) .  

Verifiable Encryption of Discrete Logari thms 

Thc cipher-text (A ,  B )  can be decrypted by the rccipient by calculating 

TrL = A " / B  (mod p ) .  

Let us now desc:I-ibc: a protocol for verifying t,hat a pair ( A , B )  encrypts the 
discrete logarithm of a public element V = gu of the group G. It is based on the 
fact that  if ( A , D )  is equal to  (h" ,v- l  ' y " )  (mod p )  for any LY E Z, then 
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The prover (who will be the dealer in the secret sharing scheme) now proves 
to  the verifier that Ihe disciete logarithm of A to the base h is identical to the 
double discrete logarithm of V B  to  the bases g and y. 

Prover Verifier 

repeat K times: 

T = w - c .  a (mod y) 
r 

With t'he techniques of [la] for converting an ideritification scheme into 
a signature scheme, combined with ideas from [19], we can construct a non- 
interactive "proof": Let %! : (0, I}* + {0,1}[ be a cryptographically strong 
hash-function (e M 100). For a = 1. .  .li, the prover chooses w, Z4 and calcu- 
lates t h z  = hWi (mod p ) ,  and t,i = g(Y'"' 1. Then he computes the I-tuple 

R = (TI,. . . ,re) = (WI - CICY (mod q ) ,  . . . ,we - CBCY (mod Q))  

where ct denotes the z-th bit of 

c = 7-le(VIIAIIBll~hllI~,llI ' ' .  llthilltg?) (*) 

The non-interactive proof consists of R and c. A verifier computes t h2  = 
hr~ACT (mod p )  and t,, = (g ' - "~Tf '~B) (~ ' a )  for 7 = 1 .  . f ,  and checks whether (*)  
holds. 

3.4 Analysis 

There are two points to consider when discussing the security of the scheme. 
First, even if we assume that computing discrete logarithms and breaking El- 
Gamal's public-kcy system is hard, we have to  check whether computing u from 
both V = g" and the cipher-t,ext (A,  B), is also hard. Second, we have to makc 
sure that, t,he dealer ca.nnot cheat in the verification protocol arid that no "useful" 
information about u is given away. T i e  can prove the following two propositions. 
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Proposition 1. Under the assumpt?on thut computing discrete logarithms i n  G 
is ,iiifeas,ible, uud Lliul Ds.eakin!l the ElGamal cryptosystem is h r d ,  mmputing II  

from 9'' and ( h a ,  uU- 'ya)  is at  least a.s h>ard as solving the D e c i s i o n - D z ~ e - H e l l m a n  
problem t o  th,c base h in Z;.2 

Sketch, of Proof: Note that it is possible t,o decide whether the encrypted log- 
arithm IJ is a quadratic resiclue in Z;, because the base h (and the public key 
y) is a quadratic residue, but that it remains difficult to break ElGarnal's cryp- 
tosystern, i t .  to  completely recover the encrypted message. 

Assume that there is ari efficient algorithm P that computes v on input 
(y", h", h", 71-'h"') with a non-negligible probability E over all u E Zi, and 
z ,  cy E Zi. We show how to iisc P to decide whether a given triple (A ,  B ,  C) of 
elements in ( h ) ,  is a Diffie-Hellman triple, i.e. whether C = h ' o g ~ ~ A ' ' n g l , B  (mod p ) .  

First, we need a method to randomize (A, I?, C). Therefore, wc choose p E Zi, 
and cr, 7 E Z, at random and calculate (,q, B ,  c) = (APh", Bh', CPAP'B"h"'). 
Since y, the order of h in Z;, is prime, it can easily be shown that the triple 
( A ,  B ,  C )  is a random Diffie-Hellman triple if (A,  B ,  C) is a Diffie-Hellman triple, 
and a random non-Diffie-Hellman triple, ot,herwise. 

Now, we randomly choose ' (I  E Zi arid run P on input (gw,A,B,uplC).  Thc 
probability that P returns IJ depends on whether ( A ,  B ,  C) is a Diffie-Hellrnan 
triple or not: 

- If (A ,  B ,  C) is a Diffie-Hellman triple then 'P returns IJ with probability E .  

- If (A ,  B, C) is not a Diffie-Hellman triple then the probability that P returns 
TI is negligible. Lct us assume on the contrary that P returns I I  with a non- 
negligible probability y. Then the discrete logarithm of any Y E G can be 
computed by repeatedly running 'P on input (Yy/',h",h',t) with p ER Zp, 
cr, T ER Zq,  arid t ER "6 until P returns p + log, Y (mod p ) .  Because the 
probability that t / ( p  + log, Y) (mod p )  E (h)  is approximately l / 2 ,  the 
expected riiirriber of repetitions is 2/y. 

After sufficiently many repetitions, a decision on whether (A, B ,  C) is a Diffie- 
Hellman triple can be made with arbitrarily small probability of error. 

Proposition 2. The prover in the in,teracti?ie protocol: in, Section. 3.3 can, suc- 
cessfully cheat with a probability of at  most 2 T K .  T h e  protocol is perfectly zero- 
knowledge. 

Sketch of Proof: It can easily be seen that if in one roiirid bot,h challenges, c = 0 
and c = 1, can correctly be answered then the claim holds, i.e. the logarithm of 
A to  base h is equal t o  the double logarithm of V B  to the bases g and h. So if the 
claim does not, hold, i.c.thc two logarithms are different, a cheating prover can 
prepare t ,  and t h  for only one challenge and will therefore be caught at cheating 
with probability 1 /2  in this round. 

Zero-knowledgeness can be shown using staridard techniques for constructing 
a simulator. 0 

See [3] for a discussion or Ihe  Decision-l)iffi~-Hellman problem 
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4 PVSS for Sharing e-th Roots 

Methods similar to  thosc presentjed in the previous Section can be used to  share 
an e- th root of an element in a group Zz , where the factorization of n is unknown. 
For example, 71 and e could be the public parameters of a Fiat-Shamir [lo] or 
a Guillou-Quisquater [14] signature scheme. A verifiable sharing scheme with 
general access-structure can be constructed in a similar way as described in 
Section 3.2; for the construction of a threshold scheme see [ll]. What remains to 
show is an encryption scheme that allows to efficiently prove that a cipher-text 
contains the e-th root of a given element. 

4.1 

Let g E Z:?, be a public value of large order. Each participant raridoIrily chooses 
a secret key z E ZT2. and computes the corresponding public key y = g2 (mod n) . 

A sender can now encrypt a value m. E Z i  by randomly c:hoosing a t ZIL 
and calculating 

Verifiable Encryption of e-th Roo t s  

A = gQ (mod n) ,  and L? = m y" (mod 71.). 

The recipient can easily obtain the e-th root, of M by calculating 

m = B/A" (mod n) .  

With the following interactive protocol t>he sender can prove that the pair 
(A, B )  encrypts the e-th root of M = mc (mod n) ( e  > 0). 

Prover Verifier 

repeat K times: 

w E R  (0,. . . , 
t,q = gZu (mod n) 
t ,  = yew (mod n) t,, t ,  t 

C E R  {o, . . . ,  2'-1} 
c . 

r = w - - c . c r  
(calculation in Z j 

r . 
t ,  grAC (mod 71) 

t,,, y"[Be/M)"  (mod 71) 

For a non-interactive proof we need a cryptogmphically strong hash-function 
: (0, l}" + {O, 1}l. The sender chooses a random w E (0 , .  . . , r2en1+c1} 

and computes t ,  = yLU(mod n) ,  t, = uew(mod n ) ,  c = '+L(MIIAIIRlltgllt,), a d  
r = w - c . a. The resulting proof is ( ,r ,c);  vrrifimtion is straightforward. If M 
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and 
2c t 
n >  

the cipher-text (A ,  B )  are included, the whole share has a length of only 
- (4 + c )  . log, TZ bits. For a “practical” scheme we recommend to choose 
2750, e > 80 and E z i. 

4.2 Analysis 

As in Section 3.4, we have to consider the securit,y of the encryption scheme and 
the security of the verification protocol. Unfortunately, a statement similar to  
proposition 1 is difficult to  prove. This is mainly because the order of g is riot 
prime and therefore a good randomization of non-Diffie-Hellman triples is not, 
possible anymore. If we required that the order of 9 is prime, then the security of 
the scheme could only be proved (in the manner of proposition 1) for messages 
711. that belong to  the  subgroup generated by 9. 

For the security of the verification protocol, we can prove the following propo- 
sition: 

Proposition 3. The prover in the interactive protocol in Section 4.1 can suc- 
cessfully cheat with a probability of at most 2 T K L .  The protocol is statistically 
zero-knowledge if c = O(log1ogn). 

Sketch of Proof: The first claim can be proved in a similar manner as for propo- 
sition 2. For proving zero-kIiowledg.eness wc construct a simulator that first ran- 
domly chooses r E (0 , .  . . , [2%lfe1}, guesses c E (0 , .  . . ,2! - l}, computes t ,  
and t,, and then checks whether c was correctly guessed or not (according to  the 
verifier’s strategy). For t! = (?(log log n)  this simulator runs in expected polyno- 
mial time. It remains to show that the output of the simulator and the output 
of the protocol are statistically indistinguishable (see [13] for definition). 0 
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