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Abstract. We present a method to solve integer polynomial equations
in two variables, provided that the solution is suitably bounded. As an
application, we show how to find the factors of N = PQ if we are given
the high order ((1/4)log, N) bits of P. This compares with Rivest and
Shamir’s requirement of {(1/3)log, N) bits.

1 Introduction

We present a method to solve a polynomial equation p(«, y) = 0 over Z, provided
that the solution is suitably bounded: {#| < X and |y| < V', with X| Y depending
on the coefficients and degree of p.

Our algorithin uses lattice basis methods [2]. It is similar in spirit to [1],
which solved equations in one variable in (Z mod N), but the present algorithm
requires a different analysis.

We require bounds X and Y on the absolute values of x and y in our solution.
Suppose p(z,y) has degree § in each variable, and p(z, y) = zij pij 2ty . Define
D = max; |pi;|X'Y7 as the largest possible term in p(z,y) in the region of
interest. Then we will find a bounded solution (x,y) (if it exists) provided that

XY < D@0

For fixed degree 4, the algorithm runs in time polynomial in (log D).

Similar methods can be applied to the multivariate case but are not assured
of success; the proof breaks down at a critical point.

Our immediate application, and the framework in which the algorithm is
described, 1s the problem of factoring an integer when we know the high order
bits of its factors. If we know N = PQ and we know the high order (3 log, N)
bits of P, then by solving the equation (P + z)(Qo + y) — N = 0 over a suitable
range of ¥ and y we can find the factorization of N. By comparison, Rivest
and Shamir (5] need about (log, N) bits of P. This has applications to some
RSA-based cryptographic schemes; see for example [7].

We give here a sketch of our algorithm. Define integer variables rgp, represent-
ing 27y". Form the lattice of those values of {ry} satisfying several polynomial
relations g;;(x,y) = 2’y p(x,y) = 0 under this interpretation. Claim that the
lattice element s corresponding to our desired solution is relatively short (less
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than the nth root of the determinant of a certain matrix). The expression of s in
terms of a reduced basis of our lattice cannot involve the longest basis element
(because s is short), so s is confined to the hyperplane spanned by the other
basis elements. This gives a linear equation on {r,, = 29y"}, which we interpret
as a polynormial equation on = and y. We combine this with p(z, y) = 0 and solve
for zp and yp.

The remainder of the paper is organized as follows. In Section 2 the algo-
rithm is developed, concentrating on the concrele case where p(z, y) has degree
1 in each variable. Section 3 gives a brief discussion of linear lattice methods as
applied to the nonlinear problem of solving polynomials. In Section 4 we extend
the algorithm to other bivariate polynomials, and discuss the dependence on the
size parameter DD and degree é of the polynomial p. We comment on possible
extensions to three or more variables in Scction 5. In Sections 6 and 7 we com-
pare the current algorithm with previous ones. An application to Vanstone and
Zuccherato’s RSA variant is given in Section 8. The appendix proves a technical
result on Toeplitz matrices.

2 Factoring with high order bits known

We present the algorithm in terms of the problem of factoring an integer when
we know the high-order bits of one of the factors.

Suppose we know N = PQ, and suppose that for some ¢ > 0 we know the
high order (§ + ¢)(log, N) bits of P. (We will dispense with the ¢ later.) By
division we know the high order bits of ¢} as well.

P=P+ux
Q=Qu+w
lzo| < X = P/ N/ D+
Iyol <Y = QO/N(1/4)+6
plz,y)=(Po+z)(Qo+y)— N
= (PoQo— N) + Qox + Poy + zy
p(zo, ) = PRQ—-N =0

Here Py and (o are known, while zy and y are unknown, and z and y are
dummy variables. p(x, y) is an irreducible polynomial with integer coefficients,
and 1ts coeflicients share no common factor.

We will relate the bounds X and Y to the quantity

D = max{|PsQo ~ N|, QoX, PoY, XY} .

This is the largest possible size of an individual term of p(x, y) with bounded =
and y. For our methods to work, we will require (XY)3/? < D. In the case of
a more general polynomial p(z,y) = Zij pijz'y, of degree § separately in each
variable, we would define

X'y}

D = max{|p;;
ij
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and demand (XY)3%/2 < D. (The definitions of X,Y, D appear circular, but
it’s all right; the condition is equivalent to existence of indices 7,j < é such
that X(3%/2)=1y(3/2)~J < |p.;|, and the exponents (36/2) — i and (36/2) — j are
strictly positive.)

We are trying to find a bounded pair of integers (g, yo) solving p(zo, %) = 0.
We begin by selecting an integer k& > 1/(4¢). For each pair of integers (4, j) with
0<i<kand0<j<k, form the polynomial ¢;;(x,y) = 'y p(z, y). Obviously
4ij(z0,50) = 0.

Form a matrix M, with (k+ 1)? rows, indexed by ¥(g, 1) = (k+1)g+h with
0<g.h<k+1. M has (k+1)?4k? columns, the left-hand columns indexed by
v(g, h), and the right-hand columns indexed by 8(¢,j) = (k + 1)? + ki + j with
0 < 7,5 < k. The left-hand block is a diagonal matrix whose (y(g, k), ¥(g, h))
entry is given by X 9Y =" The (v(g, h), B(i, j)) entry of the right-hand block is
the coefficient of z9y" in the polynomial ¢;;(z, y).

An explanation of M, is in order. The 4(g, h) row corresponds to an integer
unknown rg, which represents zfjyf. In the left-hand block, the diagonal entry
X=9Y " will be used to bound |ryn| by approximately X¥Y". We will be con-
centrating on the sublattice in which the right-hand columns are zero; a zero in
column f3(4, j) will correspond to the condition ¢;5(20, yo) = 0.

Perform elementary row operations on M to produce a matrix M2 whose
right-liand block has the k% x k? identity matrix on the bottom and the (2k +
1) x k% zero matrix on the top. We can do this because the coefficient of 2y in
p is 1, so that the right-hand block of AM; contains an upper triangular matrix
with 1 on the diagonal. (For a more general polynomial p(z,y), we require that
the coeflicients of p share no nontrivial commeon factor; in other words, p(z,y)
does not factor as k x u(z,y) over Z.)

The lattice formed by these top 2k + 1 rows of M; is the sublattice of the
original lattice gotten by forcing to 0 all the right-hand columns. Call it Ms.

Consider the (k + 1)?-long row vector r whose (g, h) entry is z3y?. The row
vector s of length (k + 1)? + k? given by s = rM; satisfies

Sy(g.h) = (za/ X)) (yo/ V)
lsw(y,h)| <1
Spii 5y = @ij(Zo, o) =0
ls| <k+1

Because its right-hand side is 0, s is one of the vectors in the lattice spanned
by the rows of Ms;. We will show that it is a “relatively short” vector in the
lattice, which will enable us to confine it to a hyperplane, thus producing a linear
equation relaling its coeflicients. This will translate directly to a polynomial
cquation on zg and yo: u(xp, yo) = 0, where u(x, y) is not a multiple of p(z, y).
We can then take the resultant of u(x, y) with p(z, y) to find a single polynomial
equation v(z) = 0 satisfied by zo, and solve this equation over Z to find zg.

We proceed to estimate the sizes of the vectors in row lattice spanned by Mj,
by estimating the determinant of a squarc submatrix of M3. Define the diagonal
matrix W of dimension (k + 1)? x (k + 1)2, with (y(g, h),7(g, h)) entry given
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by X9Y". In the matrix WM, the left-hand block is the identity. In the 8(Z, 7)
column of the right-hand side of W M;, the largeet element has absolute value

X'Y?D. That is, the element at (y(g, h), (i, j)) i
X0V pyoinej = XYy = XPYI(XY Ppoy)

where @ = g — ¢ and b = h — j. Further, the right-hand columns are “nearly
orthogonal™, because they are part of a Toeplitz array. (A formal statement and
proof appear in the appendix.) Associated with this near orthogonality, there is
a specific set of k? columns in the left-hand block. Whenever we delete these k2
columns from a rectangular matrix M, we denote the resulting square matrix as
M. Deleting these columns from W M, leaves a matrix WM, whose determinant
satisfies
| det(WM1)| = (1, (XY D))
= Q((XY)F=niizpi?y

the constant implicit in §2 depending on k£ and the pattern of nonzero coefficients

in the polynomial p(z, y), as shown in the appendix. For the polynomial in our
example, the constant is 1 (see appendix) so we drop the “£2”:

| det(W M| = (XY)F (k=D/2pk*

Since ,
dt‘t(W) — H(Xg)/h) — (‘\'y')(k‘*‘]) k/? ’
gh

we can calculate

[det(My)] = [det(WMy)|/ det(W) > DF* (XY )R =10/ 21={(k+1)%/2)
— Dkz()") ) k(3k+1)/2 _ (] (\3 ) (3k+l)/2)k

Remark. Here is where we will use the fact that (XY )*? < D in this example,
it happens to be a consequence of the knowledge of (% + ¢)(logy N) bits.

From
D > |PY| = PyQu/ N1/t
XY = (PU/N1/4+6)(QO/N1/4+r — ])OQo/Nl/z""z‘

we see
Dk(Xy)m(ak‘H)/Z > (H)QO)—(IC+1‘)/2N(I«/2)+(1/4)+(2k+1)e )
Because PoQo = N(1+0(N~'/%)) we can replace PyQq by N and incur negligible

error:
])k(lx'y')-—(:%k{—l)/l N(~1/4)+(2k+1 +f)(k’N 1/4))

Recall k£ > 1/(4c). Then

Dk(}(}z)—-(lik{—])/? > N(+1/4)+€(1 +0(k1;\7—1/4)) > N1/4

)

|det(M)] > N4> 1
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The same cstimate applies to |det(Ms;)| because My was gotten from M
by elementary row operations. Also, because the lower right k* x k? submatrix
of M, is the identity and the upper right submatrix is zero, the same estimate
applies 1o the determinant of the upper left (2k 4+ 1) x (2k + 1) submatrix of M,
namely the left-hand (2k+1) x (2k+1) square submatrix of M. For the following
discussion, we call that square submiatrix L and its dimension n = 2k + 1. So
| det(L)] > N¥/*.

We apply lattice basis reduction to the row basis of L, as prescribed in [2],
to produce a reduced basis by, bg, ..., b,. From the discussion in [2], the last
element b,, of this reduced basis satisfies

[bn| > ‘det([,)ll/n2~('n_1)/4 ’

where b}, denotes the component of b,, orthogonal to the subspace spanned by
the vectors by, ... b, _;. As long as

k< %logzN—Qlogzlog2N~!2(l) ,

we will have that [bX] > |s|:

|b;| > |df‘t(/;)|1/n2—(n_l)/q > N(l‘/‘i)(l/(2k+l))2—2k/4
~ NSRS 1 > [o]

Assume this inequality holds. For any row vector t in the lattice spanned
by L, if t is not in the lattice spanned by by, ..., b, _;, then its expression as
an integer corubination of the b; involves b, nontrivially. Thus we have [t| >
br] > k+ 1 > |s|. Looked at the other way, for any t in the lattice spanned by
L, if |t] < |s|, then t is in the lattice spanned by by,... b,_1.

Consider s itself. The n = 2k + 1 entries of s corresponding to those columns
in the lefti-hand side that remain when we transform M to M, form a row vector
§ in the lattice spanned by L (since the right-hand elements of s are 0). Also,
[s| < |s]. Thus & is in the lattice spanned by by, ..., b, _|.

Membership in this subspace gives us a linear relation on the coeflicients
ron = zhyl expressing s as a linear combination of the rows of M;. This relation
is linearly independent of the k? relations given by the polynomials ¢;;(z,y)
which determined that s had right-hand side 0 and thus was in the lattice of M3
to start with. So this relation translates to a polynomial relation u(zq,y0) = 0
where u(2, y) is not a polynomial multiple of p(z, y).

Take the resultant of p(x,y) and u(r,y) with respect to y. Because p(z,y)
is irreducible and w(x, y) is not a polynomial multiple of p(z,y), we have that
Resultant, (p(x, y), w{x, y)) = v(z) is a nontrivial integer polynomial v(x) in one
variable x satisfied by xy: v(zq) = 0. Since u(x, y} has degree at most k in each
variable and p(z,y) has degree 1 in cach variable, v(z) has degree at most 2k.
Solve v(2) = 0 over Z to find a small number of candidates for zy, namely those
integer solutions satisfying the bound (x| < X.

Each candidate value of zy can be substituted into p to get an equation
p(xo,y) = 0 which we can solve for y over Z, and select those integer solutions
satisfying the bouund |yo| < Y.

8
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Thus we have proven:

Theorem 1. If we know an integer N = PQ and we know the high order (1/4+
e){logy N) buts of P, with € > 2/(log, N), then in fime polynomial in log N and
1/e we can discover P and Q.

Proof. The condition on ¢ insures that k can be chosen to satisfy

Lopoloal
4e
The complexity is due to invocation of latiice hasis reduction on a matrix of
size 2k + 1 =~ 1/(2¢), whose elements are integers with bit length bounded by
a polynomial in log N. (We have to transform our rational matrices to integer
matrices by multiplying by some integer.) a

— O(loglog N) .

Corollary 2. If we know an integer N = PQ and we know the high order
(1/4)(log, N) bils of P, then in time polynomial in log N we can discover P
and Q.

Proof. Set ¢ = 4/log, N and do exhaustive search on O(1) unknown high order
bits of xy (or middle bits of P). a

3 Discussion on lattice methods

"The lattice basis reduction method is inherently linear. If we want to relate sev-
eral unknowns by a polynomial equation p(z, y) = Zgh pena®y" = 0, one natural
approach is to replace each monomial x%y" by a new independent variable rgp,
and let p become a linear relation among several independent bounded variables:
2 gh PanTgh = 0, |rgn| < XOY" = Ry, In order to get results, we would need
the desired vector to be among the shortest of the lattice; we would need its
length to be smaller than the root of the determinant of the appropriate square
matrix. 'This requirement translates to (approximately) [ Ryn < D, and this
would imply severe restrictions on .Y and ¥, namely (XY )(6+1)°6/2 < D where
p(x,y) has degree § in each variable. This is essentially the technique used by
[6] in the modular setting.

In the present paper we have extended this approach by using several poly-
nomials g;; bul reusing the same independent bounded variables rg;. We are
able to amortize the cost of the several variables over several equations. This
accounts for the success of the present method in increasing the feasible sizes
of X and Y. Specifically, each unknown ryp, contributes a factor of X9y " to
det(M,), while each equation 2ij(x,y) = 0 contributes a factor of X'Y7D. In
order for our techniques to work, we require det(M|) > 1, which yields a bound
ou X and Y iu terms of [). Because we have several polynomial equations, each
contributing positively to the determinant, this bound is relatively mild; we can
tolerate larger ranges X, Y on our variables (in terms of D) than with other
methods, namely (XY )3/2 < D, as we will see in the next section.
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4 Other bivariate polynomials

Similar techniques can be applied successfully to other polynomial equations
besides the given p(x, y) = 0. They are not guaranteed for polynomials of more
than two variables; see Section 5.

Even in the case of two variables, the present technique is sensitive to the
form of the polynomial p(z, y). For an arbitrary quadratic polynomial we could
not tolerate ranges X, Y for the unknowns x, ¥ quite as large as we did here. In
the case that we used for our example, although p(x, y) has degree two, it does
not have terms involving x2 or ¥°, only xy.

We sketch here how the bounds X and Y depend on D and the form of
p. When we estimated |det(M))| by dividing the estimate of |det(W M1)| by
det(WW), there was considerable cancellation in the powers of X and Y. The
term | det(W M,)| had a factor X'Y7/D for cach pair (i,;) with 0 < 4,j < k;
these pairs represented the monomials £’y by which p(x, y) was multiplied. The
term det(W) had a factor X9V " for each pair (g, h) with 0 < g, h < k+ 1; these
pairs represented the monomials 27y" appearing in these products z'y p(z, y).
The range on g exceeds the range on i by 1 because p has degree 1 in z. If p
had an «? term, we would have needed to enlarge the range of g. The powers of
X and Y appearing in the ratio | det(W M,)|/ det(W) arise from the pairs (g, h)
outside the range of (7, j), namely

{tg.M)lg =k 0<h<kIU{(g. P)h=k0<g<k} .

The inclusion of an x? term would have enlarged that region by another layer.
This would have led directly to a stricter requirement on the sizes of X and Y.

If our polynomial p(x,y) has degree § in # and 7 1 y, then we can tolerate
ranges X and Y satistying

N[ Dy T+
by using polynomials ¢;;(z, y) in the range 0 < 4, j < k. More generally, for any
j & & y
positive value of the parameter «v we can tolerate X and Y with
‘\76+(ar/2)}f1'+(6/(2(1)) <D

by allowing 0 < ¢ < ko and 0 < j < k.
If p(x, y) has total degree é then we can tolerate about

D> (XY)

by allowing pairs (¢, j) with ¢ > 0, > 0, and 74+ j < k. This is better than the
previous approach if p is a general bivariate polynomial of total degree &, but
worse if (like the current example) it is really of degree §/2 separately in cach
variable.

We sutumarize these results:
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Theorem 3. Lel p(z,y) = i pijx'y be a bivariate polynomial over Z of de-
gree 8 mn x and 7 in y. Assume p 1s irreducible over Z. Let X and Y be bounds
on desired solutions |ro| and |yo|. Define D = max;j |pij|X'Y7. Choose o > 0.
Assume

XHar/yr4(8/(20)) o 1y 9=3(87+77)-2

In time polynomzal in 6, 7 and logy D, our algorithm will produce all integer
pairs (xo, yo) with |zo] < X, |yol <V, and p(xo,yo) = 0.
Let p(x,y) be as before, but with total degree 6. Assume

(XYY < Dx 2582

In teme polynomial in 6 and logy D, our algorithm will produce all integer pairs
(ro,yo) weth lvo] < X, |yo| < Y, and p(xo,y0) = 0.

Proof. The proof will be given in the full paper, but is quite similar to that of
Theorem 1 and Corollary 2. O

5 More variables

Suppose we have a polynomial p(«,y, z) in three variables. We can miumnic the
present approach. If the ranges X, Y, Z are small enough, we will end up with a
polynomial relation u(z,y, z), not a multiple of p, satisfied by (o, yo, z0). Then
the resultant of p and u with respect to z will give a polynomial v(x,y) in two
variables. We can then try to solve » by the current methods. But. the degree of
v will be quite high, so that the ranges X and ¥ which can be tolerated will be
quite small. This approach will be unsatisfactory in general.

We still have a heuristic procedure which might work for a given multivariate
polynomial. We are guaranteed to find a space of codimension 1 (a hyperplane)
containing all the short vectors of the lattice M3. But we might easily find a
space of larger codimension. (There is a good possibility that for many basis
vectors by, the orthogonal component [bf| exceeds our known upper bound on
[s|, and each one increases the codimension of the space which contains all the
short vectors.) We develop several polynomial equations w;(z,y, z) satisfying
w; (20, Yo, o) = O; the number of such equations is equal to the codimension of
this space. We can then take resultants and ged’s of the various u; and p and
hope to produce a single polynomial equation in a single variable v(zq) = 0,
which we solve over Z. This is only a heuristic approach, which might or might
not work for a given polynomial p. (Even if we can generatc several equations,
they may not be independent.)

There must be limits to the success of this approach in general. Manders
and Adleman [3] show that finding suitably bounded solutions to pn(z,y,2) =
x2—yN —z = 0is NP-hard. Nonetheless the approach might work for a particular
polynomial, and it is worth trying.
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6 Comparison with the univariate modular algorithm

In a companion paper [{], the author applies a very similar algorithm for the
solution of a univariate modular polynomial.

Two differences between the algorithms are worth noticing. In the modular
case, the size X of the acceptable solutions zy was related to the modulus N. In
the present integer case, there is no such natural measure as N, and we needed
to develop a bound in terms of D.

A second difference is that in the modular case, we were able to define poly-
nontials ¢i;(x) = 2'p(x) and assert that g;;(x¢) =0 (mod N7); the extra in-
formation (modN7 versus mod N) improved our bound on X from N/2e-1)
to N'/* In the present integer case, using the polynomial equations gijele, y) =
£y p(e, y)* = 0 would not help, because (for the appropriate ranges of indices
i, j, k) the inlcger linear combinations of the polynomials ¢;; are exaetly the same
as those of the polynomials ¢;;%. For example, with the given p(x,y), 6 = 1, and
setting k& = 4, the integer linear combinations of

gisle,y) =x'ypley), 0<4,)<4
are the same as the integer linear combinations of

poap, 2 p, 22p, yp, e, 0, 07 ap? 27pt R vt PP ep? ypt t

so that we cnd up defining the same matrix M (up to elementary column
operations). (If p is not monic, we appear to gain something from the high
coefficient of p, but we actually lose a corresponding amount in the proof, so that
using powers of p still neither helps nor hurts us.) This much is also true in the
modular case; however, there we gain the extra advantage of working mod N7 as
opposed to working modN, and here in the integer case we can derive no such
advantage.

7 Comparison with previous work

Rivest and Shamir [5] solve the problem of factorization if given (log, NV )/3 bits
rather than (log, N)/4 bits as we do. They too use lattice nmethods, but only
one polynomial guo(x, y) = p(z, ¥).

Vallée et al. [6] employ a method similar to [5] in the case of modular poly-
nomials, again using only oue polynomial.

Maurer [4] uses a different approach, related 1o factoring algorithms based
on smooth integers, to ask (clog, N) yes/no oracle questions and determine the
factorization of N with failure probability O (¥ ~/?).

8 Application to RSA variant

Vanstone and Zuccherato [7] propose an identity-based variant of RSA in which
the user’s modulus N is related to his identity. For example, the high order bits
of N may bhe the user’s name encoded in ASCII.
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Unfortunately, the modulus N is generated in such a way that somewhat
more than the high order ((1/4)log, N) bits of P are revealed to the public.
This enables the present attack to discover the factorization of each modulus
and break the scheme.
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10 Appendix

In this appendix we give a proof of the technical result needed in Section 2: that
several columns of the matrix WM, are “nearly orthogonal”. A modification of
this proof would apply to any Toeplitz matrix.

We develop the corresponding result for a general bivariate polynomial. Let
M4 be the right-hand block of WM. Let p(z,y) have degree § in each variable
separately. Define indexing functions vy and p for M4: The rows of M, are indexed
by y(g,h) = (k+8)g+h for 0 < g, h < k+ 4, and the columns by u(i,j) = ki+j
for 0 < i,j < k. Define p(x,y) = p(Xz,Yy), so that pgy = XY °pg and
maxgp |[pas| = D.
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Lemmad4. There is a k® x k* submatric of My whose determinant has absolute
value at least
Dk22—6k262—:2k2

If the lnrgest coeffictent of p ts one of Pao, Pus, Psa oF Pss, then the absoluie value
of the determinant is exactly DF

Proof. Select indices (a, b) so that D = |pas| is the largest coefficient of p. Select
mdices (¢, d) to maximize the quantity

8(f—a)2+(d—b)2|l;rd| )
Select the rows
Yetid+j)0<i,j<k
of My to create the desired submatrix M. The rows and columns of M are
indexed by u(i,J) = ki + j. The matrix element ]W,M nyutingy 18 the coeflicient
of ¢yt in 2y plr, y), namely

Mucgnyuig) = Po—iteh—j+d

Multiply the p(g,h) row of M by 82(e=®)g+2(d=0)h and multiply the p(i,j) col-
umn by 8§~ 2(7=ali=2(d=b)j t; create a new matrix M’ with the same determinant.
Its typical element is

2Ar—a)(g—-i)+2(d=b)(h—7)
A[u(qh u(?])‘pg i+eh—j+a8 :

From maximality of (¢, d) we find

- —itec—a)’(h—j+d-b)? ~ —a)4(d—b)?
'pg—i+c,h.-j+d|8"q ite—a)+(h—j+ ) < !Pcdls‘r a) 4 ) ‘

from which
|ﬁg—i+c h—j+dl82(lg“i)(6_a‘)+2(h_j )d—b) < ‘pcdlS—(g_i)z_(h_j)z_

Thus cach diagonal entry of M’ i is Deds and each off-diagonal entry is bounded
in absolute value by [pq|8=9~9"~(*=)" This implies that M’ is diagonally
dominant, because the absolute values of the off-diagonal entries in its p(s, j)
row suin to at most

[Beal X 310 mzi® (=) =(h=J) = |Peal % 30, b)#(0, 0)8—a b
= I]Brd| X Tw] + Z(ajb)S_GZ_bé] e |[),-dl x [—J + Zd &=a } < %Iﬁz—dl

Each eigenvalue of M’ is within %Iﬁcdl of p.q, and so exceeds ;,13|ﬁcd| in absolute
value. By choice of (¢,d) we know

e a)? _py2 - -
8(L a) +(d b) |Pcd’ 2 80|pub| — D

|Peal > 82D
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k2 k2
| det(M")] 2 (%w) > Gsp)  pRiy-eks ok

For the second claim of the lemma: If the largest coeflicient of fi is either pgp or
Pss, set (¢,d) = (a,b) and notice that M is an (upper or lower) triangular matrix
whose diagonal entries have absolute value 1. If the largest coefficient is either
Pos or pso, redefine the indexing function on columns as yu(7, j) = ki4(k—1—j) so
that again M 1s a triangular matrix whose diagonal entries have absolute value
D. Similar results hold if (@, b) is any corner of the Newton polygon associated
with p.

For the particular case p(z,y) = (Po+ 2z} Qo+ y) — N, we have 6 = 1, and
the only non-zero coefficients of p are pog, Pos, Pso and pss; thus the second claim
must hold. O

The lemma gives a k2 x k% submatrix M of My, where My is the right-hand
(k + 8)? x k% block of WM. To apply the lemma, we need to find &2 column
indices in the left-hand block of W M; whose deletion leaves a (k+6)% x (k+8)?
submatrix WA, of WA, with | det‘(W]\;Il ) = det(N[) . We simply delete those
columns whose indices match those of the k? rows accepted in M. Recall that the
left-hand side of WM} is the identity imatrix, so each remaining left-hand column
has a single 1| among the 0’s, and expansion by minors gives |det(WM;)| =
| det(M)] as desired.
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