
Team G A M M A : Agent P r o g r a m m i n g on Gaea

NODA, Itsuki t
noda@etl, go. jp

ETL
Umezono 1-1-4, Tsukuba

Ibaraki 305, JAPAN

1 I n t r o d u c t i o n

We are developing a new software methodology for building large, complicated
systems out of simple units[Nakashima, 1991]. The emphasis is on the archi-
tecture used to combine the units, rather than on the intelligence of individual
units.

We call the methodology "organic programming", referring to the charac-
teristics of organic systems, context dependency and partial specification. Our
approaches toward those characteristics are situatedness and reflection. Situat-
edness corresponds to the former characteristic, and reflection to the latter.

In this paper we describe an application of organic programming language,
Gaea, to the programming of players of a multi-agent game, soccer. Our approach
to multiagent systems is recursive. Each agent is programmed in a multiagent
w~¥.

In programing a complex agent like soccer player, we need various kinds
of mechanisms of mode-change, interruption and emergency exit. We propose
"dynamic subsumption architecture" as a flexible methodology to realize such
mechanisms.

2 G a e a

Gaea[Nakashima el at., 1996] is a logic programming language using organic
programming methodology [Nakashima, 1991]. From the viewpoint of logic pro-
graining, Gaea is a variation of Prolog with the following new features:

-Multi-process (multi-thread): In Gaea, we can start a new process by
"fork(GOAL)" predicate, by which "GOAL" is solved independently from
the original process. All process share cells describes below.

- Multi-environment: In Gaea, definitions of predicates are stored in "cells".
"Cell" is similar to "module" in recent prolog systems. The main differ-
ence of cell and module is that cell-structure (environment described below)
is dynamic, while relation between module is static. Each process has an
environment that is a list of cells, and searchs for matching definitions in
the list. Moreover, the process can manipulate its and other's environment
dynamically.

Figure 1 shows a conceptual image of "processes" and "cells".

Process" I~,
P~'oces,~' A

Fr~ces,~' D
Ptvcess C

50t

Fig. 1. Multi-Process and Multi-Environment

3 P r o g r a m m i n g P l a y e r s in G a e a

3.1 Dynamic Subsumption Architecture

In programming a complex agent like a soccer player, it is essential that the
agent accepts many modes. The same agent may respond to the same input
differently according to the mode. For example, in soccer, a player may react
differently to a ball according to whether his team is on offense or defense.

The mode of tile agent must be changeable flexibly. The mode changes as a
result of agent's action and plan, and it also changes according to the change of
situation. Moreover, modes will be divided into a couple of levels. For example, in
soccer, "offensive mode" and "defensive mode" are relatively high-level modes.
On the other hands, "chase-ball mode" and "dribble mode" are relatively low-
level modes. In addition to it, we can consider a couple of types of changes of
modes. For example, an agent may "goto" a new mode, or it may "enter" a new
mode and "return" when it exits from the new mode.

In order to realize such flexible mode-change, we use an extension of subsump-
tion architecture[Brooks, 1991], called dynamic subsumption architecture. This
architecture is the combination of subsumption architecture and dynamic envi-
ronment change. Since subsumption architecture assumes fixed layers of func-
tions, it is either difficult or inefficient to implement multiple modes on top of
it. It is straightforward in organic programming, using context reflection.

We assume the following conditions for dynamic subsumption architecture:

1. Overriding is done by name
2. The same ontology (global name) is used by all cells.

Actually, dynamic subsumption archtecture is implemented using dynamic en-
vironment manipulation (Figure 2).

502

Fig. 2. Dynamic Sybsumption Archtecture in Gaea

3.2 O v e r v i e w o f t h e A r c h i t e c t u r e o f a S o c c e r P l a y e r

As described in Section 1, we program an agent in multi-agent way. A soccer
player consists of the following processes(agents):

- S e n s o r P roce s s : receives sensor informations sent from the Soccer Server,
analyzes them, and puts the results into the common cell.
C o m m a n d P r o c e s s : sends control commands to the Soccer Server. It is
controlled to send one command per 100 milli-seconds, because Soccer Server
accepts only one command per 100 milli-seconds. In other words, this process
is a resource manager of sending control commands.

- A c t i o n P r o c e s s : controls low-level modes of player 's action by manipulat-
ing the environment of the command process.

- O b j e c t D e t e c t i o n P r o c e s s : checks the way to the target of chasing or kick-
ing, and changes the behavior by modifying the environment of the command
process, if there are objects on the way,

- C o m m u n i c a t i o n P r o c e s s : controls high-level modes of player 's action ac-
cording to the message from referee and teammates.

The top level of each process is a loop that repeatedly calls " c y c l e (t o p) ' . I t is
defined in the "ba s i c " cell, that is shared all processes, as follows:

/* In "basic" cell */
toplevel() := repeat(cycle(top)).

3.3 Bas ic A c t i o n M o d e s

A player is si tuated in certain action modes, such as chase-ball, dribble, shoot,
pass, and so on, during the play. Each mode is defined in one or in a set of cells.

503

The mode is changed by pushing cells into the environment of the command
process of the player. For example, in chase-ball mode, the role process pushes
the following "chase" cell into the environment of the action process. In each
cell, " c y c l e (t o p) " for the command process is defined accordingly.

/* In "chase" cell * /
cycle(top) : :=

target (Target),
/* turn to the target */

cycle (turn (Target)),
/* and dash * /

cycle (dash (Target)).
cycle(turn(Target)) ::=

direction(Target ,Dir),
turn(Dir) . / * send turn com. * /

c y c l e (d a s h (T a r g e t)) : :=
distance (Target ,Dist),
dash(Dist)./* send dash com. */

target (ball).

In Gaea, tile environment of a process can be manipulated by the process
itself and also by other processes. In out program, the action process manipulates
the environment of the command process in order to control basic action mode.
The followings are a sample of definition of " c y c l e (t o p) " for the action process.

/* In "dribbler" cell */
cycle (top) :

distance(ball,BDist), BDist < 2,
/* if ball is near */

distance(goal,GDist), GDist < 10 :=
/* and in front of goal */

change_command_env ([shoot]).
/* then shoot !! * /

cycle(top) :
distance(ball,BDist), BDist < 2 :=

/* if ball is near */
change_comms_nd_env ([dribble]).

/* then start, dribble * /
c y c l e (t o p) : =

change_command_env ([chase]) .
/* otherwise chase the ball * /
/* Replacing new mode cells */
/* into the environment of * /
/* the command process * /

change_command_env (N ewMode) :

504

coraraand_process(PID),
environment(Env,PID),
include(Ne~Mode,Env) :=

change_conunand_env(Ne~Mode) :
command_process(PID),
environment(Env,PID),
remove_mode_cell(Env,~Env),
append(NewMode,NEnv,Ne~Env),
set_snvironment(NewEnv,PID).

In this program, the action process checks the situation of the field, selects one
"shoot", "dribble" and "chase" cells, and swaps it with the current mode cell
in the environment of the command process.

The merit of this architecture, in which the action process manipulate the
environment of the command process, is that the command process can send
commands constantly even if it take a lot of time for the action process to check
the situation.

Control of high-level mode is also realized in the same manner. In this case,
communication process manipulate the environment of the action process in
order to change higher-level of behavior like "chasing ball" and "supporting"
(Figure 3).

A cti~, n

I~Jnsert i surety1
III ~ " . , , , , , , . ~ i c y c Z e U z o p (P)) :
m ~i cycle { support (P)) , ! *

::::!:!::~ ~ : ; : ; ~ :: c y c l e (chaise (P)) t
i c y c l e (s u p p o r t (P }) , ~.

Fig. 3. Changing Behavior by Communication Process

3.4 Modifying Basic Actions

It is easy to realize small modification of behavior by manipulating environments.
in order to avoid objects, the object detection process pushes the following

"avoid" celt into the environment of the command process.

505

/* In "avoid" cell */
target(Target) :

remove_cell(avoid),
/* remove this cell */

t a rge t (T1),
/* find original target */

Target = TI + re l_d i r (60) .
/* shift relative angle in 60 */

This cell only override the definition of " t a rge t (Targe t) " rather than
"cycle(top)" . Moreover, this definition is used only once, because the "avoid"
cell is removed when " ta rge t (Targe t) " is called. (See remove_cell.)

The program for the object detection process is as follows:

/* In "check_object" cell */
cycle(top) :

command_process (PID),
environment (Env ,PID),
in (Env, target (Target)),

/* get Target information */
/* in the command environment */

not_clear_to (Target),
/* check if the target direction */
/* is clear */

add_act ion_env ([avoid]).
/* add avoid into the */
/* command environment */

3.5 In t e r rup t ion

Interruption is a kind of temporal change of modes. The feature of interruption
is to suspend current job, execute another job, and return to execute the current
job.

For example, consider the case that the player must reply its position im-
mediately when a teammate says " t e l l your pos i t ion" . This behavior can
be realized by pushing the following cell into the environment of the command
process.

/* Ill "tell_pos" cell */
cycle(_) :

estimate_current_pos (X, Y),
unum(UNum),
say([Ullum, posit ion, X ,Y]),
remove_cell (t ell_pos),
fail.

506

This definition is used whenever "cycle/l" is called, and discarded after the
execution in failure. Then original definition of "cycle/l" is called.

We can control the level of interruption by specifying the argument of
"cycle/l ' . For example, consider the case the player loses site of a ball when
it is chasing the ball. In this case, the other process will interrupt the com-
mand process to search the ball. In the chase mode, the command process
calls " c y c l e (t u r n) " and " c y c l e (d a s h) " sequentially. If the interruption is de-
fined as " cyc l e (_) " like the above example, the definition is executed when
" c y c l e (d a s h) " is called. But the interruption of searching ball will change
player's direction, so that the 'p layer may dash to the wrong direction. In or-
der to avoid this, we can simply define this interruption as "cycle(top)" as
follows:

/* In "search" cell * /
cycle(top) :

target (Target),
cycle(look(Target)),
remove_cell (search).

cycle(look(Target)) :-
cycle (turn(Target)),
cycle (wait_visual_sensor),
new_inf o (Target), cut.

cyc I e (io ok (Target)) • -
cycle (search(Target)).

cycle(search(Target)) "-
turn(90),
cycle (wait_visual_sensor),
new_info (Target), cut.

cycle (search(Target)) ' -
cycle (search (Target)).

cycle(wait_visual_sensor) :-
current_l; ime (CTime),
repeat,
usleep(I00000),
cycle (v_s ensor_uewer (CTime)), cut.

cycle(v_sensor_newer(CTime)) :
visual_sensor_time (VTime),
VTime > CTime,cut.

We can use any kinds of infon on the argument of "cycle/l ' , so that it is able
to realize flexible control of interruption.

3.6 Emergency Exit

It is also possible to reMize emergency exit of execution of plays. For example,
consider the case that the player must go back to its own goal immediately be-
cause of the clutch. This behavior is realized by pushing emergency, guard_goal

507

and chase cells into the environment of the command process, where these cells
have the following definitions.

/* In "emergency" cell */
cyc l e (top) :

/* when cycle(top) is called, */
/* exit emergency */

remove_cell(emergency) :=
fail.

/* all other cycle(_) fails */
cycle(_) : : fail.

/* In "guard_goal" cell * /
t a rg e t (owngo a l) .

4 C o n c l u s i o n

Thorough our experience of programming soccer players in Gaea, we are con-
vinced that the language is suitable for complex multiagent programming.

In programing complex agents, we need various kinds of mechanisms of mode-
change, interruption and emergency exit. We proposed "dynamic subsumption
architecture" as a flexible methodology to reMize such mechanisms.

We could also program the system in layer-by-layer manner, from a simple
behavior to more complex ones, taking full advantage of subsumption architec-
ture design.

References

[Brooks, 1991] Rodney A. Brooks. Intelligence without representation. Artificial In-
telligcncc , 47:139-160, 1991.

[Nakashima et al., 1996] tIideyuki Nakashima, Itsuki Noda, Kenichi Handa, and John
Fry. GAEA programming manual. TR-96-11, ETL, 1996. Gaea system is available
from ht tp : / /cape . e t l . go. jp/gaea/.

[Nakashima, 1991] Hideyuki Nakashima. New models for software architecture project.
New Generation Computing, 9(3,4):475-477, 1991.

