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Abst rac t .  This paper describes a reinforcement learning-based strategy 
developed for Robocup simulator league competition. In overview: each 
agent is provided a common set of skills (motor schema-based behav- 
ioral assemblages) from which it builds a task-achieving strategy using 
reinforcement learning. The agents learn individually to activate partic- 
ular behavioral assemblages given their current situation azld a reward 
signal. The entire team is jointly rewarded or penalized when they score 
or are scored against (global reinforcement). This approach provides for 
diversity in individual behavior. 

1 I n t r o d u c t i o n  

Motor schemas are an important example of behavior-based robot control. The 
motor schema paradigm is the central method in use at the Georgia Tech Mobile 
Robot Laboratory, and is the platform for this research. Motor schemas are the 
reactive component of Arkin's Autonomous Robot Architecture (AURA) [1]. 
AuRA's design integrates deliberative planning at a top level with behavior- 
based motor control at the bottom. The lower levels, concerned with executing 
the reactive behaviors are incorporated in this research. 

Individual motor schemas, or primitive behaviors, express separate goals or 
constraints for a task. As an example, important  schemas for a navigational task 
would include avo ld_obs tac le s  and move_ to -goa l .  Since schemas are indepen- 
dent, they can run concurrently, providing parallelism and speed. Sensor input is 
processed by perceptual schemas embedded in the motor behaviors. Perceptual 
processing is minimal and provides just the information pertinent to the motor  
schema. For instance, a f ind_obs tac les  perceptual schema which provides a list 
of sensed obstacles is embedded in the avo id_obs t ac l e s  motor schema. Motor 
schemas may be grouped to form more complex, emergent behaviors. Groups 
of behaviors are referred to as behavioral assemblages. One way behavioral as- 
semblages may be used in solving complex tasks is to develop an assemblage for 
each sub-task and to execute the assemblages in an appropriate sequence. The 
resulting task-solving strategy can be represented as a Finite State Automaton 
(FSA). The technique is referred to as temporal sequencing [1]. 

Even though behavior-based approaches, like the motor  schema paradigm 
are robust for many tasks and environments, they are not necessarily adaptive. 
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When feedback regarding success in a task is available, reinforcement learning 
can shift the burden of behavior refinement from the designer to the robots 
operating autonomously in their environment. For some simple tasks, given a 
sufficiently long trial, agents are even able to develop optimal policies [5]. Rather 
than attempting to design an optimal system from the start, the designer imbues 
his robots with adaptability. The robots strive continuously to improve their 
performance; finding suitable behaviors automatically as they interact with the 
environment. For these reasons reinforcement learning is becoming pervasive in 
mobile robot research. 

Q-learning is a type of reinforcement-learning in which the value of taking 
each possible action in each situation is represented as a utility function, Q(s, a). 
Where s is the state or situation and a is a possible action. If the function is 
properly computed, an agent can act optimally simply by looking up the best- 
valued action for any situation. The problem is to find the Q(s, a) that provides 
an optimal policy. Watkins provides an algorithm for determining Q(s, a) that 
converges to optimal [8]. 

The Java-based soccer control system described here (Figure 1) was originally 
developed for research using a simulator developed at Georgia Tech [4]. The 
system is being converted for operation with the Soccer Server simulation system 
developed by Noda [6]. 

Fig.  1. Examples of homo- and heterogeneous learning soccer teams. In both 
cases the learning team (dark) defends the goat on the right. The agents try to 
propel the ball across the opponent's goal by bumping it. A homogeneous team 
(left image) has converged to four identical behaviors which in this case cause 
them to group together as they move towards the ball. A heterogeneous team 
(right) has settled on diverse policies which spread them apart into the forward 
middle and back of the field. 

How can we objectively evaluate a robot soccer team? In a human game the 
object is to have scored the most points when time runs out. It is only necessary 
to score one more point than the other team. Here, we take the stance that 
greater score differentials indicate better performance (it is best to humiliate 
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tile opponent!), ttence, the performance metric for robot teams is 

P = Sus - Sthem (l) 

where S'us and Sthem are the scores of each team at the end of the game. 
The simulation proceeds in discrete steps. In each step the robots process 

their sensor data, then issue appropriate actuator commands. The simulation 
models physical interactions (robot, ball and wall collisions), sensors and motor- 
driven actuators. When the ball is bumped by a robot it immediately accelerates 
and rolls away. Rolling friction is modeled with constant deceleration after the 
bump. Each agent is provided the following synthetic sensors: 

- Velocity sensor: provides present heading and speed of the robot. 
- B u m p  sensor: returns a force vector in the direction of any bump. 
- Ball position sensor: provides an egocentric vector to the soccer ball. 
- Defended goal sensor: provides an egocentric vector back to the robot's own 

goal. 
- Team sensor: returns an array of egocentric vectors pointing to the robot's team 

members. 
- Enemy sensor: an array of egocentric vectors pointing to the robot's opponents. 
- Score sensor: indicates whether the team has just scored or was scored against. 
- Robot  ID: a unique integer from 1 to the size of the team. 

The ball position, robot ID and defended goal sensors are used in the ex- 
perimental robots examined here. At present, the sensors are perfect. Future 
revisions of the simulator may address real-world issues like noise, sensor occlu- 
sion and field-of-view constraints. The following actuator interface is provided 
to the control system: 

- Set drive speed: a real value fiom -1 to 1 is sent to the robot's drive motor, 
indicating how fast the robot should go. 

- Set heading: a real value from 0 to 2rr is sent to the robot's steering actuator 
indicating the desired heading for the robot. 

The sensor and actuator interface closely parallels those available on com- 
mercial robots. An eventual goal is to verify this work by porting the system to 
four Nomadic Technologies Nomad 150 robots in Georgia Tech's Mobile Robot 
Laboratory. 

2 B e h a v i o r s  for S o c c e r  

Behavior-based approaches are well suited for robot soccer since they excel in 
dynamic and uncertain environments. The robot behaviors described here are 
implemented in Clay, an object-oriented recursive system for configuring robot 
behavior. Clay integrates primitive behaviors (motor schemas) using cooperative 
and competitive coordination operators. Both static and learning operators are 
available. The system is outlined at a high level here. For more detail the reader 
is referred to [2]. 
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Fig. 2. The control team's strategy viewed as look-up tables. The 1 in each row in- 
dicates the behavioral assemblage selected by the robot for the perceived situation 
indicated on the left. The abbreviations for the assemblages are introduced in the text. 

Experiments are conducted by engaging an experimental team against a fixed 
opponent control team in soccer contests. We begin by describing the control 
team's behavioral configuration. Since the experimental team's performance will 
be significantly impacted by the skill of its opponent,  it is important  to avoid 
variability in the control team's strategy to ensure consistent results. The control 
team will always follow a fixed policy against the teams under evaluation. 

The control team's design is based on two observations. First, points are 
scored by bumping the ball across the opponent 's  goal. Second, robots must 
avoid bumping the ball in the wrong direction, lest they score against their own 
team. A reasonable approach then, is for the robot to first ensure it is behind the 
ball, then move towards it to bump it towards the opponent 's  goal. Alternately, 
a defensive robot may opt to remain in the backfield to block an opponent's 
scoring attempt.  

To implement this design, each robot is provided a set of behavioral assem- 
blages for soccer. Each assemblage can be viewed as a distinct "skill" which, 
when sequenced with other assemblages forms a complete strategy. This style 
of behavior-based robot design, referred to as temporal sequencing, views an 
agent's strategy as a Finite State Automaton.  The strategies may be equiva- 
lently viewed as lookup tables (Figure 2). This paper will focus on the lookup 
table representation since it is also useful for discussing learned policies. The 
behavioral assemblages developed for these experiments are: 

- move_to_ball (mtb): The robot :moves directly to the ball. A collision with the ball 
will propel it away from the robot. 

- get_behind_ball (gbb): The robot mow~ to a position between the ball and the 
defended goal while dodging the ball. 

- move_to_back_field (mtbf): The robot moves to the back third of the field while 
being simultaneously attracted to the ball. 

The overall system is completed by sequencing ,the assemblages with a se- 
lector which activates an appropriate skill depending on ,the robot 's situation. 
This is accomplished by combining a boolean perceptual feature, behind_ball 
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(bb) with a selection operator. The selector picks one of the three assemblages 
for activation, depending on the current value of bb. 

The team includes three "forwards" and one "goalie." The forwards and 
goalie are distinguished by the assemblage they activate when they find them- 
selves behind the ball: the forwards move to the ball (mtb) while the goalie 
remains in the backfield (mtb]). Both types of player will try to get behind the 
ball (gbb) when they find themselves in front of it. 

3 L e a r n i n g  S o c c e r  

To isolate the impact of learning on performance, the learning teams were de- 
veloped using the same behavioral assemblages and perceptual features as the 
control team, thus: t h e  r e l a t ive  p e r f o r m a n c e  of  a l e a r n i n g  t e a m  ve r sus  
t h e  con t ro l  t e a m  is d u e  on ly  t o  l ea rn ing .  

Recall that Clay (the system used for configuring the robots) includes both 
fixed (non-learning) and learning coordination operators. The control team's 
configuration uses a fixed selector for coordination. Learning is introduced by 
replacing the fixed mechanism with a learning selector. A Q-learning [8] mod- 
ule is embedded in the learning selector. It is acknowledged that other types 
of reinforcement learning approaches are also appropriate for this system. Q- 
learning was selected arbitrarily for this initial study. Future investigations may 
be undertaken to evaluate the impact of learning type on robotic systems. 

At each step, the learning module is provided the current reward and percep- 
tual state, it returns an integer indicating which assemblage the selector should 
activate. Tile Q-learner automatically tracks previous perceptions and rewards 
to refine its policy. 

The policy an agent learns depends directly on the reward function used 
to train it. One objective of this research is to discover how local versus global 
reinforcement impacts the diversity and performance of learning teams. Global 
reinforcement refers to the cause where a single reinforcement signal is simul- 
taneously delivered to all agents, while with local reinforcement each agent is 
rewarded individually. To that end, we consider two reinforcement functions for 
learning soccer robots. Assuming the game proceeds in discrete steps, the global 
reinforcement function at timestep t is: 

1 if the team scores, 
Rglobal(l  ) = --1 if the opponent scores, 

0 otherwise. 

This function will reward all team members when any one of them scores. Thus a 
goalie will be rewarded when a forward scores, and the forward will be punished 
when the goalie misses a block. Observe that the global reinforcement function 
and the performance metric (Equation 1) are related by: 

t = N  

P = E Rglobal(t) 
t : O  
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where N is the number of steps in the game. A close correlation between reward 
function and performance metric is helpful, since reinforcement learning mecha- 
nisms seek to maximize their reward. If the reward and the performance measure 
are similar, the agent stands a better  chance of maximizing its performance. Now, 
consider a local function where each agent is rewarded individually: 

1 if the agent was closest to the ball 
when its team scores, 

Rloc~l(t) = --1 if the agent was closest to the ball 
when the opposing team scores, 

0 otherwise. 

This function will reward the agent that scores and punish an agent that allows 
an opponent to score. There may not be much benefit, in terms of reward, for 
a robot to serve a defensive role in this model since it would receive frequent 
negative but no positive rewards. 

4 R e s u l t s  

A static (non-learning) version of our Java-based soccer system was completed 
and utilized in the RoboCup-97 competition. Unfortunately, there was not enough 
time to integrate the learning system. The results reported below were generated 
in Georgia Tech's Java-based simulator. 

Experimental da ta  were gathered by simulating thousands of soccer games 
and monitoring robot performance. The learning robots are evaluated on three 
criteria: objective performance (score), policy convergence, and diversity of be- 
havior. 

For each trial, the learning robots are initialized with a default policy (all Q- 
values set to zero). A series of 100 10-point games are played with information on 
policy convergence and score recorded after each game. The robots retain their 
learning set between games. An experiment is composed of 10 trials, or a total 
of 1000 10-point games. Eazh trial uses the same initial parameters but different 
random number seeds (the simulations are not stochastic, but Q-learning is). 

4.1 O b j e c t i v e  P e r f o r m a n c e  

When rewarded using the global reinforcement signal Rglobah the learning teams 
out-score the control team by an average of 6 points to 4. The average is for all 
games, even during the initial phase of training. The winning margin is notable 
since the losing control team was hand-coded. When trained using the local 
reward Rlocah the learning teams lose by an average of 4 points to 6. 

4.2 Policy Convergence 

Convergence is tracked by monitoring how frequently an agent's policy changes. 
Consider a robot that  may have been following a policy of moving to the ball 
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Fig.  3. The nine soccer robot policies possible for the learning agents discussed 
in the text. Each policy is composed of one row for each of the two possible 
perceptual states (not behind ball or behind ball - bb). The position of the 1 in 
a row indicates which assemblage is activated for that  policy in that situation. 
The policies of the goalie and forward robots introduced earlier (Figure 2) are 
in bold. 

when behind it, but due to a recent reinforcement it switches to the get_behind_ball 

assemblage instead. These switches are tracked as policy changes. 
The data  for robots rewarded using the tocM signM shows good convergence. 

The average number of changes per game drops to 0.05 after 100 games. An indi- 
vidual simulation to 1000 games resulted in convergence to zero. The number of 
policy changes for robots using Rglob~l initially decreases, but does not converge 
in the first 100 games. The average number of policy changes is 0.25 per game 
after 100 games. Future simulation studies will include longer simulation runs 
to investigate whether convergence occurs eventually. 

4.3 B e h a v i o r a l  Diw~rsi ty 

After tile training phase, robots are evaluated for behavioral diversity by examin- 
ing their policies. The teams are classified as hetero- or homogeneous depending 
on whether the robot's policies are the same. Altogether there are 9 possible 
policies for the learning agents since for each of the two perceptual states, they 
may select one of three assemblages. Figure 3 summarizes the possible policies. 
Based on these nine policies there are a total of 6561 possible 4 robot teams. 

Two example teams, one homogeneous, the other heterogeneous are illus- 
trated in Figure 1. Tile team on the left has converged to identical policies. In 
fact, all robots on the 10 locally-reinforced teams converged to the same "for- 
ward" policy used by the control team (Figure 2). All 10 teams converged to 
fully homogeneous behavior. 

In contrast, all of the 10 globMly-reinforced teams diversify to heterogeneous 
behavior. In all cases, the agents settle on one of three particular policies. All 
the teams include one robot that converges to the same "forward" policy used 
by the control team; they also include at least one agent that follows the same 
policy as the control team's "goalie." The other robots settle on a policy of always 
selecting the get_behind_ball assemblage, no matter  the situation (for convenience 
this policy is referred to as a "mid-back') .  In cases where the team had not hilly 
converged (zero policy changes per game), investigation reveals that  the changes 



490 

are due to one agent alternating between the "goalie" and "mid-back" policies. 
In summary the gl0bally-reinforced teams always converged to one "forward," 
one or two "mid-backs" and one or two "goalies." 

To help quantify the varying degree of diversity in these teams, Social Entropy 
[3] is used as a measure of behavioral heterogeneity. Social Entropy, inspired by 
Shannon's Information Entropy [7], evaluates the diversity of a robot society 
based on the number of behavioral castes it includes and the relative size of 
each. Het(7~), the Social Entropy of the robot society 7~, ranges from a minimum 
of zero, when all agents are identical, to a maximum when each robot forms a 
different caste. The maximum entropy for a team of four soccer robots is 2.0. 
Het(T~) = 0 for the homogeneous teams trained using local reinforcement and 
Het(7~) = 1.5 for the heterogeneous teams. For more detail on Social Entropy, 
the reader is referred to [3]. 

5 Discussion and Conclusion 

The results reported above show that  in this task local reinforcement provides 
quicker learning, while global reinforcement leads to better  performance and 
greater diversity. The globally-reinforced teams perform significantly better than 
the human-designed control team. 

The locally-reinforced teams converge to "greedy" behaviors that  maximize 
their individual reward, but lead to poor team performance. This is probably 
because defensive play is important  in soccer but there is no incentive for a 
robot to fill a defensive role. With the local reward strategy a goalie would be 
"punished" every time the opponent scores and never receive a positive rein- 
forcement. Quick convergence in the locally-reinforced teams is due to the close 
relationship between an individual agent's actions and the rewards it receives 
with local reinforcement strategies. 

The globally-reinforced teams perform better but do not converge to stable 
policies. It may be that  longer experimental runs will show convergence with 
Rg]ob~] reinforcement. It may also be that for complex multi-robot domains, 
convergence does not always occur. Either way, convergence is not a requirement 
for good performance: the globally rewarded teams perform significantly better  
than the locally reinforced teams in spite of a lack of convergence. 

To conclude, the relative benefits of local versus global reinforcement in learn- 
ing robot soccer teams has been evaluated in terms of team performance, learn- 
ing rate, and social entropy in the resulting team. The teams were evaluated as 
they engaged a fixed opponent team over thousands of trials. In summary, the 
primary results are: 

- Individual learning robots will, in many cases, automatically diversify to fill differ- 
ent roles on a team. 

- Teams of learlfing robots can better the performance of human-designed teams. 
- Global reinforcement leads to better performance and greater diversity, but slow 

policy convergence for robot teams. 
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- Local reinforcement leads to poorer performance and fully homogeneous behavior, 
but fast policy convergence. 

The  author  thanks Ron Arkin, Chris Atkeson, Gary  Boone, John  Pani  and 
Juan  Carlos San tamar i a  for their comments  on this work. 
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