
JavaSoccer

Tucker Balch

Mobile Robot Laboratory
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-208 USA

Abs t rac t . Hardwaxe-only development of complex robot behavior is
often slow because robot experiments are time-consuming and robotic
hardware is subject to failure. The problem is exacerbated in multi-
robot tasks like robot soccer where successfifl experiments require sev-
eral robots to operate correctly simultaneously. Robotics research pro-
ceeds more quickly through a cycle of experimentation in simulation and
implementation on hardware than through hardware-only implementa-
tion. To facilitate research in the RoboCup soccer domain we introduce
JavaSoccer, a portable system supporting development of multi-robot
control systems in simulation and, potentially, on soccer robots. In simu-
lation, JavaSoccer emulates the dynamics and dimensions of a regulation
RoboCup small size robot league game.

1 I n t r o d u c t i o n

Soccer is an increasingly active domain for mobile multiagent robotics research.
Tile soccer task is simple and familiar to most people, yet provides opportuni t ies
for diversity and cooperation in tile individual team members [5, 3, 2]. No mat t e r
the domain, multi-robot team design is challenging because success depends on
coordination between complex machines. Since robot hardware is subject to
frequent failure and experimentation is t ime consuming, hardware-only robot
development is difficult.

To address these issues many resee~rchers turn to a cycle of simulation and
robot experiments to develop their systems. Behaviors are prototyped in sinmla-
tion, then implemented on robots. Even though further refinement of the control
system is often required for use on robots, simulation can rapidly accelerate con-
trol system development. To facilitate experimentat ion in RoboCup soccer, we
introduce JavaSoccer, a dynamic sinm]ation of RoboCup small size league play.

3avaSoccer is part of the JavaBots software distribution available from the
Mobile Robot Laboratory at Georgia Tech. JavaBots is a new system for de-
veloping and executing control systems on mobile robots and in simulation.
Individual and multi-robot simulations are supported, including multiple robot
types sinmltaneously. The JavaBot system's modular and object-oriented design
enables researchers to easily integrate sensors, machine learning and hardware
with robot architectures. Additionally, since 3avaBots is coded in Java, it is eas-
ily ported to many operating environments. To date it has run under Windows
95, Linux, SunOS, Solaris and Irix without modification.

182

The JavaBot system is being utilized in several ongoing research efforts at
Georgia Tech, including RoboCup robot soccer, foraging robot teams and a
"robotic pet" development effort. At present, control systems developed in Jav-
aBots can run in simulation and on Nomad 150 robots. Hardware support will
soon be provided for ISR Pebbles as well. In the future we hope to expand this
capability to small soccer robots, so that behaviors tested in the JavaSoccer
simulation will run directly on hardware.

Another important soccer simulator, the SoccerServer developed by Noda
is used in simulation competition at RoboCup events [6]. While JavaSoccer is
focused on simulation and control of existing, physical robots, SoccerServer is
targeted at simulation of more futuristic, human-like players. The SoccerServer
is coded in C++ and runs in most Unix/X environments. JavaSoccer also runs in
Unix/X environments, but it benefits from the high degree of portability afforded
by Java, allowing it to run in Windows 95 and NT machines ms well.

The remainder of this chapter will describe JavaSoccer in detail, including the
simulation kernel, JavaSoccer rules, robot capabilities and directions for future
work.

Fig. 1. A JavaSoccer game in progress.

2 T h e S i m u l a t i o n S y s t e m

JavaSoccer runs in the JavaBotSim simulator distributed with JavaBots. At
runtime, the simulator reads in a description file that describes which objects will
be present in the simulation and where they should appear in the environment.
Obstacles, small soccer robots, Nomad 150 robots, golf balls and "squiggle"
balls have all been implemented to date. A description file appropriate to soccer
simulation is included with JavaBots in the JavaSoccer directory (robocup.dsc).
Simple modifications to the description file enable users to change the robot type
and control systems used as well as adjust the color scheme of the robots.

183

Each object in the simulation includes two important components: a drawing
method and a dynamics simulation method. The simulation kernel, or core, runs
in a loop, calling the two methods for all the objects in turn at each step.
The kernel also keeps track of time, and passes elapsed t ime to the dynamics
methods so they know how far to move their associated simulated objects. The
simulation can run in real-time or faster or slower than real-time according the
t i m e parameter set in the description file.

In addition to the drawing and dynamics methods, each robot has an asso-
ciated control system object that considers sensor inputs and makes actuator
outputs for the robot. A soccer robot control system is coded in Java by ex-
tending the ControlSysteraSS class (SS stands for Small Soccer robot). Several
example control systems are provided with the software. The intent is for these
examples to be modified by researchers for the purpose of testing their own
soccer strategies.

Since the API between the control system and a simulated robot is the same
as for actual hardware, the same control algorithm can be tested in simulation
and in real robot runs. The capability for running soccer robot control systems
on small robot hardware is not available yet, but users can develop and run
systems for Nomad 150 robots.

3 RoboCup Rules in JavaSoccer

Rules for JavaSoccer play are based on RoboCup's regulations for the small
size robot league [4]. Some differences are necessary in JavaSoccer due to the
simulation environment. Any differences are noted below:

F i e l d d i m e n s i o n s The field is 152.5cm by 274cm. Each goal is 50crn wide. The
defen~ zone, centered on the goal, is 100cm wide by 22.5cm deep.

D e f e n s e zone A defense zone surrounds the goal on each side. It is 22.5cm
from the goal line and 100ca wide. Only one defense robot can enter this
area. Note: this is not enforced by JavaSoccer, but it will be eventually.

C o o r d i n a t e s y s t e m The center of the field is (0, 0) with + x to the right (east)
and +y up (north). The team that starts on the left side is called the "west"
t eam and the team on the right is called tile "east" team. At the beginning
of play, the ball is placed at (0, 0).

R o b o t s Robots are circular and 12cm in diameter. Ill RoboCup rules 15ca is
the max imum size. The simulated robots can move at 0.3 meters/sec and
turn at 360 degrees/sec.

T e a m A team consists of no more than 5 robots.

184

Bal l The simulated ball represents an orange golf ball. It is 40mm in diameter
and it can move at a maximum of 0.5 meters/sec when kicked. It deceler-
ates at 0.1 meters/sec/sec. Ball collisions with walls and robots are perfectly
elastic.

F i e ld C o l o r i n g Coloring of the field doesn't really mat ter in the simulation,
but the image drawn on the screen matches the RoboCup regulations.

R o b o t m a r k i n g Robots are marked with a two-color checkerboard pattern. In
RoboCup rules they are marked with two colored ping-pong balls.

L e n g t h o f t h e g a m e At present, once the game starts, it runs forever. This
will be changed to conform with the 10 minute halves of RoboCup.

Wal l A wall is placed around all the field, except the goals. Ball collisions with
walls are perfectly elastic. Robots may slide along walls if they aren't headed
directly into them.

C o m m u n i c a t i o n There is presently no facility for robot to robot communica-
tion, but this may be added if researchers are interested in the capability.

G o a l k e e p e r s At present, the goal keeper has no means for grasping the ball.
This feature may be added later.

Kick-off/Restart~Stop Kick-off, restart and stop of the game are managed
automatically. The west team gets to kick-off fist, with subsequent kick-offs
made by the scored-against team.

R o b o t p o s i t i o n s a t k ick-of f The robots are automatically positioned as shown
in Figure 2 at kick-off. The numbers next to the players indicate values re-
turned by the g e t P l a y e r N t m b e r () method. Specific positions are not speci-
fied in the RoboCup rules, except that only the kick-off team can be within
15cm of the ball.

F o u l s / C h a r g i n g Currently no fouls are enforced by JavaSoccer. There is how-
ever a "shot clock." At the beginning of a point, the clock is set to count
down from 60 seconds. If no score occurs in that time, the ball is returned to
the center of the field. The ball is also returned to the center if it gets stuck
for a period of time. Those types of fouls that can be evaluated objectively
by the running program will eventually be added. RoboCup rules include
several fouls and charging violations.

185

west east goal

Fig. 2. Starting positions for a JavaSoccer kickoff. The west team is kicking off.

4 C a p a b i l i t i e s o f a J a v a S o c c e r R o b o t

The interface between the robot 's control system or "brain," and its sensors and
actuators is provided by an API defined in the SocSmai1 Java class. The most
complete description of the interface is in the javadoc-generated documentation
for SocSmall, and SocSmall 's parent class, Simple, but a synopsis is provided
here:

--- S e n s o r s

• Detect whether the robot is in a position to kick the ball.
• Get a vector pointing to tile ball.
• Get a vector pointing to the team's goal.
• Get a vector pointing to the opponents ' goal.
• Get an array of vectors pointing to all the other players.
• Get an array of vectors pointing just to the robot's teammates.
• Get an array' of vectors pointing just to the robot 's opponents.
• Get the player's nmnber on tile team (0 - 4), 0 is the goalie.
• Get the player's position on the field.
• Get the player's heading.
• Get the time in milliseconds since the game started.

Actuators
• Kick the ball at 0.5 meters/sec.
• Push the ball by driving over it.
• Set desired heading. The robot can turn at 360 degrees/see.
• Set desired speed, up to 0.3 n~mters/sec.

Each of these capabilities is implemented as a method, or function call, in
the SocSmall class.

186

5 Developing New Team Behaviors

New team behaviors are implemented by extending the ¢on t ro lSys temSS class.
The easiest way for a developer to accomplish this is by revising of one of the
existing teams provided with JavaSoccer in the J a v a S o c c e r / t e a ms directory.
Some of the example teams were developed using Clay, a behavior-based con-
figuration system [1]. While developers may find Clay helpful in designing their
strategies, it is not required.

Two methods must be implemented to complete a control system: Conf igu re ()
and TakeS tep() . Conf igure is called once at set-up time to provide for initial-
ization and configuration of the control system. TakeStep() is called repeatedly
by the simulation kernel to allow sensor polling and action selection. Sensors are
read by calls to a b s t r a c t _ r o b o t . g e t * methods, actuator commands are sent by
calls to a b s t r a c t _ r o b o t , s e t* methods.

Sensor example:

abstract_robot, getBall (curr time)

reads the ball sensor and returns a 2-dimensional vector towards it. The
curr_t i rae parameter is a t imestamp that helps prevent redundant sensor ac-
cesses (this is more important for use on real robots than in simulation). All
other sensor methods are similar in form.

Actuator example:

abstract_robot, s etSteerHeading (curr_t ime, 0)

In this call, the second argument is the direction for the robot to head, in
radians. So the robot will steer in the east, or +z , direction. Readers are invited
to look at the example teams for more detail on sensor and actuator methods.

6 Simulating New Hardware

One of the advantages of the JavaBot system is the ease with which new objects
and robot types may be added to the simulation system. It is a fairly simple
mat ter to revise an existing class to emulate new robot hardware. For instance,
to create a new, larger simulated robot with the same capabilities as a Socsman,
one need only extend the SocSraall class and revise the RADIUS variable. Other
more complex changes are still straightforward, the developer need only ensure
that all the methods defined by the S imula ted0b j e c t interface are implemented.

7 Installing and Running

The entire JavaBots distribution, including JavaSoccer is available as a "zip"
file on the world-wide-web. Installation entails downloading the distribution and
un-zipping it. Instructions are available at

http:/lwww.cc.gatech.edu/'tucker/JavaBots

187

8 Future Directions

Our goal in building JavaBots and JavaSoccer is to accelerate the development of
behaviors for physically-embodied robots by supporting identical control system
code in simulation and on robot hardware. At present, for small soccer robots,
the control systems are only supported in simulation. An important next step
will be to implement the API for small mobile robot hardware. This has already
been demonstrated in JavaBots for Nomad 150 robots.

Other potential improvements include: closer conformance to RoboCup regu-
lations, simulation of several robot types actually used in RoboCup competi t ion,
and new simulation features such as robot position traces and player number dis-
play.

9 Acknowledgments

The author is indebted to Ron Arkin, director of the Mobile Robot Laboratory
for access to computer and robot hardware used in the development of JavaBots.
Itsuki Noda's SoccerServer provided an excellent example soccer simulation sys-
tem [6]. I also wish to thank Peter Stone, Manueta Veloso, Hiroaki Ki tano and
Maria Hybinette for their advice in this endeavor.

References

1. T. Balch. Clay: Integrating motor schemas and reinforcement learning. College
of Computing Technical Report GIT-CC-97-11, Georgia Institute of Technology,
Atlanta, Georgia, March 1997.

2. T. Balch. Social entropy: a new metric for learning multi-robot teams. In Proc.
lOth International FLAIRS Con]erence (FLAIRS-97), May 1997.

3. Tucker Balch. Learning roles: BehaviorM diversity in robot teams. In AAAI-O7
Workshop on Multiagent Learning, Palo Alto, CA, 19.97. AAAI.

4. RoboCup Cormnittee. Robocup real robot league regulations.
http://www.csl.sony.co.jp/person/kitano/RoboCup/rule.htral, 1997.

5. H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. Robocup: The robot
world cup initiative. In Proc. Autonomous Agents 9Z ACM, 1997. Marina Del Rey,
California.

6. Itsuki Noda. Soccer server: a simulator for robocup. In JSAI AI-Symposium 95:
Special Session on RoboCup, 1995.

