
Minimum-Area h-v Drawings 
Binary Trees 

(Extended Abstract) 

of Complete 

P. Crescenzi * and P. Penna  

Dipartimento di Scienze dell'Informazione 
Via Salaria 113, 00198 Roma 

e~mail: {piluc, penna}@dsi.uniromal, it 

A b s t r a c t .  We study the area requirement of h-v drawings of complete 
binary trees. An h-v drawing of a binary tree t is a drawing of t such that 
(a) nodes are points with integer coordinates, (b) each edge is either a 
rightward-horizontal or a downward-vertical straight-line segment from 
a node to one of its children, (c) edges do not intersect, and (d) if tl 
and t2 are immediate subtrees of a node u, the enclosing rectangles of 
the drawings of tl and t2 are disjoint. We prove that, for any complete 
binary tree t of height h ~ 3 and with n nodes, the area of the optimum 
h-v drawing of t is equal to (a) 2.5n - 4.5 ( X / ~  1)/2 -}- 3.5 if h is odd, 
(b) 2.5n - 3.25v/-n + 1 + 3.5 otherwise. As far as we know, this is one 
of the few examples in which a closed formula for the minimum-area 
drawing of a graph has been explicitly found. Furthermore this minimum- 
area h-v drawing can be constructed in linear time. As a consequence of 
this result and the result of Trevisan (1996), we have that h-v drawings 
are provably less area-efficient than strictly upward drawings when we 
restrict ourselves to complete binary trees. We also give analogous results 
for the minimum-perimeter and the minimum-enclosing square area h-v 
drawings. 

1 Introduction 

Trees are one of  the mos t  c o m m o n  used structures in compute r  science and m a n y  
techniques for the visualization of  trees have been proposed.  These techniques 
usually aim to find a layout  satisfying specific aesthetic criteria. One of  these 
criteria is the str ict ly upward grid straight-line (in short ,  strictly upward) re- 
quirement  t ha t  imposes to m a p  each node into a point  with integer coordinates  
and each edge into a single straight-line segment,  to  place each node below its 
parent ,  and to  not  intersect two edges. This paper  deals with a slight different 
criteria, t ha t  is, the h-v requirement.  

* Starting from November 1, 1997, the author's new affiliation will be: Dipartimento 
di Sistemi ed lnformatica, Universit£ eli Firenze, Via Cesare Lombroso 6/17, 50134 
Firenze, Italy (e-mail: piluc@dsi2.dsi.unifi.it). 
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The definition of h-v drawing has been introduced in [9] and successively used 
in [2] as a tool to obtain strictly upward drawings for binary trees. Formally, an 
h-v drawing of a binary tree t is a drawing of t such that  (see Fig. 1 and 6): 

1. Nodes are points with integer coordinates. 
2. Each edge is either a rightward-horizontal or a downward-vertical straight- 

line segment from a node to one of its children (that is, an h-v drawing is 
not strictly upward). 

3. Edges do not intersect. 
4. If tl and t2 are immediate subtrees of a node u, the enclosing rectangles of 

the drawings of t l  and t2 are disjoint. 

(a) (b) 

Fig.  1. Two h-v drawings of the complete binary tree of height 3. 

The goal of this paper is to find minimum-area h-v drawings of complete 
binary trees. The width (respectively, height) of an h-v drawing is the width 
(respectively, height) of the smallest enclosing rectangle 2. In the following we 
will denote the height and the width of any h-v drawing A with H a  and WA, 
respectively. The area of A is then defined as H a  • WA. 

1.1 P r e v i o u s  R e s u l t s  

In [9] a linear-time algorithm to construct an O(n log n)-area h-v drawing of any 
binary tree with n nodes has been proposed. In [2] the authors show that  such an 
algorithm is optimal since an infinite class of binary trees requiring Y2(n toga) 
area exists. Moreover they proved that complete and Fibonacci binary trees 
admit  a linear-area h-v drawing. This latter result has been first extended to 
AVL trees in [5] and subsequently to k-unbalanced, red-black and BB[~] trees 
in [3]. A polynomial-time (respectively, efficient parallel) algorithm to find the 
h-v drawing of any binary tree that minimize any " reasonable size function" 

2 We adopt the convention that both the width and the height are measured by the 
number of grid points 
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is given in [6] (respectively, [8]). In [6] two applications of this algorithm that 
use general binary trees (not the special case of complete binary trees) to visual 
interfaces are also presented. 

The h-v drawing criterion is a restriction of the orthogonal straight-line one 
in which each edge of the tree is mapped to either a vertical (not necessarily 
downward) or an horizontal (not necessarily rightward) straight-line segment. 
Algorithms to obtain area-efficient orthogonal straight-line drawings of trees can 
be found in [1, 7, 10]. 

1.2 Our  Results  

The algorithm given in [2] for complete binary trees produces an h-v drawing 
whose area is at most 3n. It is then natural to ask whether such an area is 
the minimum one. On the other hand, even if the algorithm in [6] shows that 
the minimum-area h-v drawing of a complete binary tree can be computed in 
polynomial time, no closed formula for this area function is known. 

In this paper we both show that the algorithm in [2] is not the optimum 
one and give a closed formula for the minimum.area requirement to h-v draw 
a complete binary tree. In particular, for any such tree t of height h _> 3 and 
with n nodes, the area of the optimum h-v drawing of t is equal to (a) 2.5n - 
4.5~/(n + 1)/2 + 3.5 if h is odd, (b) 2.5n - 3.25v/~ + 1 + 3.5 otherwise. 

This result suggests an interesting comparison with the result of [11]. Indeed, 
in that paper it is shown that any complete binary tree admits an (n+o(n))-area 
strictly upward drawing. Our result thus shows that h-v drawings are provably 
less area efficient than strictly upward drawings when we restrict ourselves to 
complete binary trees. Indeed, it is not difficult to define other less "natural" 
infinite class of binary trees for which h-v drawings are less area efficient than 
strictly upward drawings. On the other hand, it is also possible to define an 
infinite class of binary trees for which strictly upward drawings are less area 
efficient than h-v drawings (the proof of these two last statements are here 
omitted: they will be included in the final version of the paper). 

Finally, we also observe that analogous results hold for two other size func- 
tions defined in [6]: the perimeter and the enclosing-square area. 

1.3 Pre l iminar ies  

In the following Ch denotes the complete binary tree of height h and nh denotes 
the number of nodes of Ch. 

For any h > 1, given two h-v drawings A 1 and A2 of Ch-1, we denote by 
/11 O/12 and/11 Q/12 the h-v drawings of Ch obtained by combining /I 1 and 
A2 as shown in Fig. 2(a) and 2(b), respectively. More precisely, the h-v drawing 
/11 O A2 is obtained by translating to the right/12 by as many grid points as 
Wzil and by translating/11 to the bottom by one grid point. The semantic of 
A1 (3 A2 is defined similarly. 
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.41 
A~ A2 

,41 

(a) (b) 

Fig. 2. The two h-v drawing operations. 

2 The Algor i thm 

In this section we describe the algorithm to obtain an h-v drawing for a complete 
binary tree and we analyze its area requirement. In the next one we prove that 
this algorithm is optimal. 

The algorithm constructs the h-v drawing following a bottom-up approach. 
More precisely, for each tree Ch, two different h-v drawings are produced: the 
optimum and the "useful" one. Intuitively, the basic property satisfied by these 
two drawings is that the width (respectively, height) of the useful drawing is equal 
to the width (respectively, height) of the optimum drawing minus (respectively, 
plus) one. On the ground of this property, the two drawings, denoted by Oh and 
Uh, respectively, are then combined in order to obtain Oh+l and Uh+I. 

Let us first observe that, since we are dealing with complete binary trees, the 
following fact holds. 

L e m m a  1. For any h and for any h-v drawing A of Ch, a "reverse" h-v drawing 
A ~ of Ch exists such that War = HA and Ha~ = Wa. 

Proof. The proof is by induction on h. If h = 1 then we simply let A r be equal 
to A. Otherwise, if A = A 1 O A2 (respectively, A _= A] ® A2) then we define 
A r = A~ ® A~ (respectively, A r = A~ 0 A~). [] 

The algorithm to construct the two h-v drawings Oh and Uh for Ch (with 
h > 3) is described in Fig. 3 where A3 and A~ denote the h-v drawings shown 
in Fig. l(a) and l(b), respectively. 

T h e o r e m 2 .  For any h > 3, the drawing Oh of Ch produced by function MACBT 
with input h has area equal to 
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f u n c t i o n  MACBT(h:integer): h-v drawings Oh and Uh of Ch; 
b e g i n  

i f  h = 3 t h e n  
MACBT.Oh:--A3; 
MACBT.Uh::A~; 

e lse  
MACBT.Oh:=(MACBT(h- 1).Uh-1) r G (MACBT(h-  1).Oh_l)r; 
MACBT.Uh:=(MACBT(h -- 1).Oh_l) r 0 (MACBT(h -- 1).Oh_l)r; 

e nd ;  

Fig.  3. Algorithm to construct Oh and Uh. 

2.5nh - 4.SX/(nh + 1)/2 + 3.5 ifh is odd, 
2.5nh 3 .25~-~  + 1 + 3.5 otherwise. 

Proof. The proof is by induction on h. For h = 3, the proof is straightforward. 
Let h >_ 3 and let us assume that  the theorem is true for any height less than 
h + 1. Let us first observe that,  if we denote with Lh and lh the longer and the 
shorter side of Oh, respectively, then the longer and the shorter side of Uh is 
equal to Lh -- 1 and lh + 1, respectively (see Fig. 4). 

Furthermore by the definition of function MACBT we obtain the following 
recurrence: 

Lh = 4  if h =  3, 
th = 3 if h = 3, 
Lh = 21h_l -{- 1 if h > 3, 
lh = Lh-1 if h > 3. 

The solution of this recurrence is: 

2 . 5 . 2 ~  - 1 if h i d  odd, 
Lh ~ 2 -- I if h is even, 

and 

f 2h--~ ~ -- 1 if h i d  odd, 

lh = ~ 2 . 5 . 2 ~  -~ -- 1 if h is even. 

It is then easy to see that  the area of Oh, that is Lhlh, is equal to 

2.5nh -- 4.5~/(nh + 1)/2 + 3.5 if h is odd, 
2.5nh -- 3.25Vf~ + 1 + 3.5 otherwise. 

[] 
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Oh ULI 0~_~ lh = Lh-1 

Lh = 21h-1 + 1 

Uh = O r 
h-1 

21h-1 
It  

Lh-1 + 1 

Fig. 4. The composition of Oh-1 and Uh-t  to obtain Oh and Uh. 

3 The Proof  of Optimality 

In this section we prove that the h-v drawing Oh is the minimum-area one. To 
this aim we first need the following definition. 

Def in i t ion3  [6]. An h-v drawing z5 for Ch is an atom if, for any other h-v 
drawing A' of Ch, either Wa, > Wa or Ha, > Ha.  

It is easy to see that the minimum-area h-v drawing of Ch can be obtained 
only by combining atoms. We shall therefore suppose in the following that all 
the drawings are atoms. 

L e m m a 4 .  Let A be an h-v drawing for Ch such that Wa<_Ha. Then an h-v 
drawing A ~ for the same tree exists such that 

1. Wa,  <_ I/Va. 
2 A' = A'~ O A'~, for  some ~'~ and ~'~ 
3. The area of A t is less than or equal to the area of A .  
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Proof. The proof is by induction on h. For h = 1 the theorem is obviously true. 
Let A = A t O A2 (otherwise we can simply define A' = A ). We distinguish the 
following two cases. 

1. At  = A2. From the inductive hypothesis we can assume that  At = A1,1 ® 
A1,2, for some A1,1 and A1,2 (see Fig. 5(a)). 
Let A' be the h-v drawing defined as (see Fig. 5(b)) 

/V --- (Z~I,1 ~ Z~I,1) ~) (Z~1,1 (~ Z~l,2)" 

If A14 = Z~t,2, then 

Ha,  = Ha, , ,  + 1 +  Ha~,, + 1 = Ha~,, + 1 +  Ha~,, + 1 = H a  + 1 

and 

Wa, = 2Wa,, ,  + 1 = 2Wa~,= + 2 - 1 = Wa - 1. 

Hence the area of A' is equal to 

( Ha  + 1)(Wa - 1) = H a W a  + W a  - Ha  - 1 < H a W a  

where the last inequality is due to the fact that  Wax < H a .  
Otherwise, if A1,1 ¢ A1,2, it is easy to see that  HAt, 1 < Hzal,~ - 1. Indeed, 
since A1 is an atom we have that  Wa~.~ > Wa~a (otherwise, A1,2 ® Al,i  
would include A1). From the fact that  A1,1 and A1,1 are atoms it follows 
that  Hax,, < H a , a  - 1. We then have that 

H~  = Hal,1 + 1 + H a l a  = H a  

and 

Wa, = 2Wal,,  = Wa. 

Thus the area of A' is equal to that  of A. 
2. A1 ~k A2. Observe that ,  since A is an atom we have that  Ha2 > H a l  

(otherwise, A2 O A1 would include A). From the fact tha t  A1 and A2 are 
atoms it follows that  Wa2 < WA,. Let us then replace A with ~ = A2~3A 2. 
The height of z] is at most HA + 1 while its width is less than Wa. That  is, 
the area of /~ is less than or equal to that  of A. We can now deal with z3 as 
in the previous case. 

In both the above cases we have shown that  the area of A'  is less than or 
equal to that  of A and the lemma thus follows. [] 

Informally, the next lemma states that  if we shorten the longer side of Oh 
by c units, then its shorter side increases by at least c units. Conversely, if we 
shorten its shorter side by c units, then the other side increases by at least 2c 
units. More formally the following fact holds. 
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i 

Ali,i 

A A 
w 

A1,3 

Ail,i 

Z~1,1 

Z~l'l i 

A1,2 

/~1,1 

(a) (b) 

Fig.  5. The transformation of A into A'. 

L e m m a  5. For any h-v drawing A of Ch (with h > 3), whose longer and shorter 
side are L and l, respectively, either 

(L <_ Lh) A (l > lh + Lh -- L) 

o r  

(I ~_ Ih) A (L >_ Lh + 2(lh -- I)). 

Proof. The proof is by induction on h. For h _ 3 the proof is straightforward. 
Let us suppose that  the lemma holds for any complete tree of height at most h 
with h > 3 and let A be an h-v drawing for Ch+l. 

From Lemmas 1 and 4 we can assume, without loss of generality, that  the 
longer side of A corresponds to its width and that A = A 1 O A2, for some A1 
and A2. 

Since A is an atom, either L = Lh+I and l = Ih+l (in which case the lemma 
clearly follows) or one of the following two cases must hold. 

1. L < Lh+l = 21h q- 1. In this case we have that  

Wal _< lb. 

Indeed, if Wal  > lh then Was < lh (since Wa,  + Was --- L ~ 21h). From 
the inductive hypothesis it follows that  Ha2 >__ Lh + 2(lh -- Was) > Lb. 
Replacing A1 with Oh yields an h-v drawing for Ch+l which is included in 
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A thus contradicting the fact that  A is an atom. Similarly, we can prove 
that  

Was _< lb. 

From the inductive hypothesis, it then follows that  

Hal  > Lh + 2(lh - Wa~) 

and 

Hence 

Has >_ Lh + 2(/h -- Was). 

. 

l = max(Ha ,  + 1, Ha2) 

> Lh + 2lh + max(1 -- 2 W a , , - 2 W a s )  

= 2lh + Lh -- min(2Wa~ - 1, 2Was) 

) 21h + Lh + 1 -- L = Lh+l + lh+l -- L, 

where the last inequality follows from the fact that  L = Wal + Wa2 >__ 
min(2Wal - 1, 2Was) + 1. 
l < lh+l. In this case, the shorter sides of both A1 and ,52 are less than lh. 
From the inductive hypothesis, it follows that 

L i > Lh +2(lh --1 i) 

where L i and I i denote the longer and the shorter side of Ai, respectively, 
for i = 1, 2. Since I i < lh, the above inequality implies that  

Hence, we have that  

and 

L i + 1 i > Lh + lb. 

Wal  > lh --]- Lh -- Ha~ 

Wa2 > lh + Lh - Ha2. 

Since H a l  + 1 _< ! and Has  _< l, we finally have that  

L = Wal  + Was > 21h + 2Lh -- 2l + 1 = Lh+1 + 2(lh+1 -- l). 

The lemma thus follows. 

We are now in a position to prove the main result of this section. 

T h e o r e m 6 .  For any h > 3, Oh is the minimum area h-v drawing for Ch. 

[] 
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Proof. The proof is by induction on h. For h = 3 the proof is straightforward. 
Let h > 3 and let us assume that the theorem is true for any tree of height less 
than h + 1. 

Let A be an h-v drawing for Cn+l. Let us denote with L and l the longer 
and the shorter side of A, respectively. Since A is an atom, either L = Lh+l and 
l = lh+l (in which case the theorem clearly follows) or one of the following two 
cases must hold. 

1. 1 < lh+l. 

(a) I < lb. From Lemmas I and 4, we can assume, without loss of generality, 
that  WA = L and HA = l and that  A = A 1 O A2, for some 31 and A2. 
Because of the inductive hypothesis, we have that  

Lhlh 
Wa, > ~ > Lb. 

Thus 

IL >_ Hal Wa, + HA2WA2 + WAI > 2Lhlh + Lh = Lh+llh+l. 

(b) l > lb. Because of Lamina 5 we have that  

L ~ Lh+l -~ 21h+l -- 21. 

Thus 

IL >_ l(Lh+l +21h+1-2/) = Lh+llh+l +(Ih+l-l)(21-Lh+l)  > Lh+llh+l, 

where the last inequality follows from the fact that  l > lh + 1 > Lh+l/2. 

2. L < Lh+l. From Lemma 5 it follows that 

l >_ lh+l + Lh+l -- L > lh+l. 

Thus 

IL > (lh+l -4- Lh+l -- L)L = Ih+lLh+l + (Lh+l -- L ) (L - lh+l )  > lh+lLh+l. 

Hence, we have proved that  the area of A is at least equal to the area of 
Oh+l. The theorem thus follows. D 

In Fig. 6(a) and 6(b) the h-v drawing obtained by the algorithm proposed in 
[2] and the minimum-area h-v drawing, respectively, for C5 are shown 3. Observe 
that  the area of the first h-v drawing is 70 while the area of the minimum one 
is 63. 

3 An "animation" of our algorithm with input C5 is available from the WEB home 
page of the first author: h t tp  ://www. dsi .uniromat. i t / ' p i l u c /  
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:i 

Fig. 6. Two h-v drawings for C5. 

4 T w o  M o r e  S i z e  F u n c t i o n s  

In this section we consider two other size functions among those defined in [6]. 
In particular, for any h-v drawing A, we define 

1. perimeter(A) = Ha + Wa. 
2. square(a) = max(Ha, Wa). 

Let us first observe that from Lemma 5, we have that perimeter(A) > lh + Lh, 
for any drawing A of Ch. It thus follows that Oh also minimizes the perimeter(.) 
function. 

Let us now consider the square(.) function. Again using Lemma 5 we have 
that, for any h-v drawing A of Ch, square(A) >_ th+L_______~h. In order to find the h-v 
drawing for which square(.) is minimized, we define 

Uh i f h < 5 ,  
Sh = (Uh-2 O Uh-~) ® (Uh-2 O U;_~) if h = 6, 

(Sh-2 O Sh-2) Q (~rh-2 O Sh-2) otherwise, 

where 
Oh if h _< 5, 

(/h = (Oh-2 0 Uh-2) ® (Uh-2 0 Uh-2) if h = 6, 
(Uh-2 0 Sh-~) ® (Uh-2 O Sh-2) otherwise. 
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It is easy to see that,  for any h with 3 < h < 5, Sa is the minimum enclosing 
square drawing. Moreover, for h _ 6, we have that  its longer side is equal to 
lh +Lh, which implies that  Sh is the minimum-enclosing square area h-v drawing. 

2 
It is interesting to note that  the constant factor of Sh is different depending on 
the fact that  h is odd or even. 

5 Open Questions 

The first problem left open by this paper is that of obtaining similar results 
for other balanced trees (e.g. Fibonaeci trees). Indeed, we conjecture that  the 
algorithm to construct h-v drawings of Fibonacci trees presented in [2] computes 
the minimum-area h-v drawings of such trees. 

Secondly, the upper bound known for AVL trees, whose class includes both 
complete and Fibonacci trees, is 18n [4], that  is, much more than the lower 
bound we proved in this paper. We think that  for this class, the gap between the 
upper and the lower bound could be reduced by focusing on a particular kind of 
AVL tree, requiring more area than any other AVL tree with the same height. 

Finally, it may also be interesting to find a linear-time algorithm computing 
the minimum area h-v drawing of any binary tree. Observe that ,  for the complete 
and Fibonacci binary trees, this fact already holds. 
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