
Grappa: A GRAPh PAckage in Java

Naser S. Barghout i*
Bear, Stearns & Co., Inc.

New York, NY, USA
n a s e r ~ b e a r . c o m

John M. Mocenigo
A T & T Laboratories

F l o r h a m Park, N J, USA
john@research.ar t .corn

Wenke Lee t
Co lumbia Univers i ty
New York, NY, USA

wenke@cs.cotumbia .edu

Abstract

Grappa is an extensible graph drawing package written in Java. The package
comprises classes that implement graph representation, presentation and layout
services. It provides an application programming interface (API) on top of which
Web-based applications that need to visualize information in terms of graphs,
such as process flows, business workflows or program dependencies, can be built.
Through subclassing, the classes that implement an application inherit graph
drawing and layout services provided by Grappa; these services can be enhanced
and customized for the specific application. To illustrate its utility, a new version
of Improvise, a multimedia process modeling environment, was written on top
of Grappa.

*This a u t h o r ' s c o n t r i b u t i o n s were m a d e while employed at AT&T Labo ra to r i e s
t Th is a u t h o r ' s con t r i bu t i ons were m a d e du r ing a s u m m e r i n t e rn sh ip a t AT&T L a b o r a t o r i e s

1 Introduct ion

337

In many domains, information can be organized and visualized in terms of
graphs. Examples include process flow diagrams, software architectures, business
workflows, data dependencies in data mining, and routing information in net-
work management. Many applications supporting these domains include graph
drawing modules. Not surprisingly then, there has been a significant amount of
research on how to store, layout and display graphs most effectively.

With the increasing importance of Web-based, and, more generally, dis-
tributed computing, there has been an interest in providing packages for remote
graph drawing services. By remote graph drawing we mean the ability for an ap-
plication running on one machine to request graph drawing and layout services
from a server running on another machine anywhere on the network. North's
email-based graph service is an example of a remote graph layout service: it
receives a graph specification as input via email and returns, also via email, a
graph drawing whose layout is computed by dot [3]. The graph server at Brown
University [2] is more extensive in that it provides interactive graph drawing and
translation (among many graph drawing algorithms) via the WWW.

This paper presents a graph drawing package, Grappa, on top of which Web-
based applications requiring graph drawing services can be built. The Grappa
approach differs from the Brown graph server approach in that it provides an
Application Programming Interface (API) so that applications can be developed
to not only use its standard services, but also extend and customize them to
accomplish application-specific tasks. This alleviates the burden of writing all
the code that manages the graph drawing aspects of an application. The appli-
cation writer need only concentrate on the semantics of the application and how
to map those semantics onto graphs.

The advent of Java [1] motivated us to exploit the features it provides,
such as portability, graphical user interface generation facilities, and distributed
computing features. Therefore, we built Grappa in Java, which allows Grappa-
based applications to be built as applets that can be executed over the WWW
via any Java-enabled Web browser; this greatly facilitates the distribution of the
application software and enhances its availability.

Other client-server applications (not necessarily over the WWW) can also
be built on top of Grappa. In this case, a Grappa server provides a set of
standard graph drawing, editing and viewing functions; the front-end client can
be launched from any node in the network and be connected to the server.
This architecture has the advantage of saving computing resources since the
computational-intensive graph layout process need not be on every client ma-
chine; in addition, graph representations can be stored by the server and shared
by multiple clients.

338

Grpahical User Interface

Draw Graph Parse Graph

Client

_1 t
I Server

Graph
drawing ~ @

Graph
spec.

Figure h The Architecture of Grappa

2 The Design of Grappa

We had three main requirements in building Grappa:

1. Extensibility, which allows for a natural evolution path, where new services
can be incorporated into the package.

2. Portability, which is essential in the multi-platform world in which we live.

3. Customizability, which allows for different kinds of application to be built
on top of Grappa, re-using its facilities and avoiding re-writing a lot of
code.

We discuss how these requirements were met in the design and implemen-
tation of Grappa.

2.1 T h e C o m p o n e n t s o f Grappa

Grappa is a class package written in Java. The classes implement a client-server
architecture that is inherited by applications. Figure 1 shows the main archi-
tectural components of Grappa. The server processes client requests (received
in the form of messages) for graph layout. The server creates a Java thread to
process each client message. The header of each message specifies the request
type, and the body contains a graph specification (in dot format). The server

339

invokes dot to compute a graph layout (drawing). The server then sends dot's
output, a graph drawing (also in dot format), back to the client.

Client classes handle most of the interactions with the end user. Its graph-
ical user interface is constructed using the standard Java Abstract Windowing
Toolkit (AWT), with pull-down menus, and canvasses for graph objects. The
contents of the menus and the functions to perform menu operations can be
changed for specific applications.

The Grappa client classes are organized in three hierarchies, as shown in
Figure 2. The first hierarchy, whose root is the class DotGraph, contains classes
for graph definition (i.e., for defining graphs, subgraphs, nodes, edges, and asso-
ciating attributes with nodes and edges). DotGraph defines a graph as a set of
DotElements, each of which is a node, an edge, or a subgraph. Each instance of
DotElement has set of attributes associated with it, such as shape, style, color,
and so on. DotGraph also refers to the class DrawPane, whose instances contain
information about displayed instances of DotGraph.

The second hierarchy, whose root is the abstract class DrawObject, includes
classes for graph drawing. Class definitions for drawing 36 node shapes (Box,
Circle, Ellipse, etc.) and several edge types are included in this hierarchy. Each
instance of DrawObject refers to a specific GraphicContext, which provides in-
formation for drawing an object on specific canvas.

2 .2 T h e Grappa A P I

The third hierarchy, rooted at AppObject, is a place holder for application-specific
classes, and it constitutes the application program interface (API) for Grappa.
An instance of AppObjeet refers to an instance of DotElement and has a refer-
ence to an instance of DrawObject; depending on the value of the type attribute
of the object (e.g., the node shape), the methods of the appropriate subclass of
DrawObject are called to draw the object on the client canvas. Application pro-
grammers can extend and customize Grappa by following the same approach of
extending standard Java APIs. In particular, application-specific classes should
be added as subclasses of AppObject. Application-specific behavior can then be
implemented by adding data members and methods to these subclasses, over-
riding existing behavior.

Grappa application objects may have different drawing styles and opera-
tions for different types of application-specific information entities. For exam-
ple, a program structure application may define a class Module as a subclass of
AppObject and assign the value "Ellipse" to its shape attribute (which is auto-
matically defined because every AppObject refers to a DotElement). The class
Module may then define new attributes, such as name, description and owner,
that are specific to software modules. Finally, it may specialize the draw method

¢D
 ? O

 ©

,"

.
.

.
.

.
.

.

.
"-

i j
lo

l

i
D

ot
El

em
en

t
)

-~
-"

 D
ra

w
O

bj
ec

t"
 "

~

..
..

..
 N

~
 "

~

~
-

....
....

... ~
'~

~

-J
.

"i
D

ra
w

Ed
ge

 i
"

"i
D

ra
w

N
od

e
~-

/
....

...
iii

!d

H
il

B
ox

I

se

/
,

C
irc

le

In
ve

rte
dT

ra
pe

zi
m

p/

...

.
D

ia
m

on
d

D
ou

bl
eC

irc
le

M

C
irc

le

'~
L

in
e)

D

ou
bl

eO
ct

ag
on

M

D
ia

m
on

d
Eg

g
M

Sq
ua

re

El
lip

se

M
Ta

bl
e

H
ex

ag
on

O

ct
ag

on

~.,

H
ou

se

Pa
ra

lle
lo

gr
am

)e
z

lu
m

In
ve

rte
dT

ria
ng

le

• '
D

ra
w

Su
bg

ra
ph

 "
:

Pe
nt

ag
on

"

P~
a!~

Te
~t

\
Ro

un
de

dB
ox

X

,

Sq
ua

re

Ta
bl

e
(.

Su
bg

ra
ph

)
Tr

ap
ez

iu
m

Tr

ia
ng

le

Y
rip

le
O

ct
ag

on

W
ed

ge

.~

341

Figure 3: Improvise Template Objects

of class Ellipse (which is a subclass of DrawNode) to draw two horizontal lines
to divide up the ellipse into three sections, and display the module's name,
description, and owner in the three sections respectively.

3 Example: Improvise

Improvise is a multimedia process (workflow) modeling and analysis tool. It
represents a process (a partially-ordered set of activities) is terms of a graph.
It was first implemented on top of the graph editor dotty [4]. Improvise pro-
vides a graphical modeling notation that defines a set of object (node) types
that represent various entities in a workflow, such as ManualTask, Data, and
AbstractProcess; two edge types are also defined. These object types are dis-
played in an object palette. The user selects the type of object from the palette
and clicks on an un-occupied area of a drawing canvas to create an instance of
the type. An edge is drawn by clicking on an existing node and dragging the
mouse to another node. Repeated selection and clicking (without worrying about
placement of nodes and edges) results in a process flow diagram; on demand,
the diagram is sent to dot to compute a graph drawing that is then displayed on
the canvas, replacing the previous diagram.

Last year, we made a decision to re-implement Improvise in Java and make
it executable (in a client-server manner) over the WWW, One alternative was
to re-code Improvise in Java from scratch, The second alternative was to build
it on top of Grappa, which was being designed at that time. We opted for the
second option because it would relieve us from writing all the graph drawing and
layout code.

Compared with using dotty, our experience shows that the Grappa API is
more elegant because of four reasons: 1) the graph object hierarchy is intuitive
and easy to extend; 2) Grappa hides the implementation details of graph drawing
and layout, which are not the main concern of Improvise; 3) the dynamic features
of Java enable Grappa to evolve in parallel and independently with application
development (i.e., the layout algorithm can be changed without affecting Impro-

3A2

Figure 4: Improvise Menu and Canvas Showing a Workflow

vise); and 4) being web-based, the new version of Improvise does not require any
software distribution, and new versions are immediately available.

4 Conclusion

We presented Grappa, an extensible graph drawing package written in Java.
Grappa comprises a set of classes that implement graph representation and pre-
sentation services. It also provides an API for applications that require graph
drawing, editing and browsing services. Application classes are defined as sub-
classes of Grappa classes; the subclasses can specialize the base classes to support
application-specific behavior.

One of the motivations of our work was to explore and experiment with
Java. Although still very young and evolving, Java has a lot of advanced fea-
tures that will make it a success. As discussed throughout this paper, Java's
object-oriented, multi-threading, and dynamic features are most important to
the design of Grappa. Its exception handling feature can also be used as a very
useful programming aid: an error stack trace which includes file names and line
numbers can be printed out when an exception is raised, so that bugs can be
easily located and fixed. A worth noting phenomenon that have fueled the rapid
adoption of Java is that a lot of Java enthusiasts have made their programs freely

343

available on the Internet. A lot of these programs are not just "cool", but they
actually provide needed features that are not yet supported by the standard
Java packages. For example, our Grappa parser was constructed using JavaCup,
a LALR(1) parser generator developed by Scott Hudson in Georgia Institute of
Technology.

Our overall experiences with Java is quite positive. We were able to imple-
ment Grappa in about 10k lines of Java code in two and a half months, dot was
not ported to Java; rather, we use it as a native program (in the native host
environment) that is invoked from the Grappa server.

5 Acknowledgment

The authors would like to thank Eleftherios Koutsofios, Stephen North and
Robin Chen of AT&T Labs - Research, and Jeff Korn of Princeton University
for their helpful discussions.

References

[1] Ken Arnold and James Gosling. The Java Programming Language. Addison
Wesley, Reading, MA, 1996.

[2] Stina Bridgeman, Ashim Garg, and Roberto Tamassia. A Graph Draw-
ing and Translation Service on the WWW. In Proc. of Symposium on
Graph Drawing GD'96, Berkeley, CA, USA, September 1999. The URL
is http://toki.cs.brown.edu:8081/graphserver/home.html.

[3] Emden Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-Phong
Vo. A Technique for Drawing Directed Graphs. IEEE Transactions on Soft-
ware Engineering, 19(3), March 1993.

[4] Stephen C. North and Eleftherios Koutsofios. Applications of Graph Visu-
alization. In Proc. of Graphics Interface '9~, pages 235-245, Banff, Alberta,
1994.

