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A b s t r a c t .  Incremental graph drawing is a model gaining more and more 
importance in many applications. We present algorithms that allow in- 
sertions of new vertices into an existing drawing without changing the 
position of the objects drawn so far. We prove bounds for the quality 
of our drawings and considerably improve on previous bounds. Here the 
number of bends and the used area are our quality measures. Besides we 
discuss lower bounds for this problem. 

1 Introduction 

Representing objects and the relations between them is a task arising perma- 
nently in many applications of Computer Science. Therefore the concept of 
graphs is widely used to represent the data. A graph is a set V of vertices to- 
gether with a set E C V x V of edges. Examples for the use of graphs are Petri 
nets, entity-relationship diagrams, production planning or data  flow diagrams 
in Software Engineering (see e.g. [4,3]). For human processing it is necessary to 
visualize graphs; sometimes this visualization (called graph drawing) is even the 
desired output of some computation, e.g. in VLSI design [15]. In a graph drawing 
the vertices of the graph are represented by geometric objects (points, circles, 
squares, . . . )  and the edges by simple curves connecting them. The drawing must 
fulfill certain properties which depend on the specific application. Typical prop- 
erties are: The edges must be straight lines, they must not cross each other 
(planar drawing) or they must consist only of horizontal and vertical segments 
(orthogonal drawing). Moreover the drawing should optimize some cost function; 
this could be to minimize the used area, to minimize the number of crossings 
or bends, to minimize the total edge length etc. A survey of graph drawing 
algorithms and applications can be found in [6]. 
In many cases not the total amount of data  is given in advance, but the vertices 
of the graph are added one by one and after every insertion a drawing is required. 
This situation is called incremental drawing. Thus incremental drawing has its 
own importance, moreover it is an important step to the more general concept of 
interactive drawing, where also deletions of vertices are allowed. We investigate 
incremental drawings using the model of orthogonal drawings: Here graphs with 
a maximum vertex degree of at most four are drawn in such a way that  the 
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vertices are placed on grid points of an integer grid and the edges run along 
grid lines. If the drawings are destinated for human observers, inserting a new 
vertex should not change too much the 'old' drawing. In [11] the idea of the 
user's 'mental map' is introduced (the way how a human user 'understands' a 
drawing); adding a new vertex should not destroy the user's mental map. Thus 
an incremental drawing system must guarantee a) to maintain the user's mental 
map and b) to handle a single insertion in a reasonable time (we require constant 
time per insertion). 
If adding a new vertex must not change at all the position of the objects drawn 
so far, we speak of the No-Change-Scenario (the No-Change-Scenario is the 
best way to support the maintenance of a mental map). Papakostas and Tol- 
lis [13] introduced this model and also investigated another one: The Relative- 
Coordinates-Scenario, where it is allowed to shift every drawn vertex by a con- 
stant number of units along the x- and y-axes when inserting a new vertex. They 
gave first results on the number of bends and the used area in both scenaria and 
presented some examples. 
Obviously the Relative-Coordinates-Scenario is more powerful than the No- 
Change-Scenario. All drawings in the No-Change-Scenario maintain the condi- 
tions for the Relative-Coordinates-Scenario. Hence bounds for the No-Change- 
Scenario-drawings also hold for the other model. 
In this paper we focus on the No-Change-Scenario; we refine the methods of 
[13] and considerably improve on their bounds for the number of bends and 
the used area; our algorithm even leads to better results (in general) than the 
Relative-Coordinates-drawings of Papakostas and Tollis. 
The rest of the paper is organized as follows: In Section 2 we give some definitions 
and describe the basic algorithm. In Section 3 we introduce our technique how 
we bound the value of some cost function (number of bends), and in the following 
two sections we present new methods how to improve on these bounds. Section 
6 is devoted to another important cost function (used area) and in Section 7 we 
discuss lower bounds for the problem. Finally Section 8 illustrates our algorithms 
with some examples. 

2 F i r s t  R e s u l t s  

Papakost&s and Tollis [13] gave a first algorithm that computes drawings in the 
s (n being the number of vertices No-Change-Scenario and proved ~ • n ~ 2.66. n 

drawn so far) as an upper bound for the number of bends produced by their 
algorithm. In [12] statistics about the practical behaviour of this algorithm are 
given. We present a more general approach that can be used to minimize any 
cost function and analyse it for the example of the number of bends being the 
cost criterion. 
We start with some definitions: 
A graph with a maximum vertex degree of at most four is called a ~-graph. 
The local degree td(v) of a vertex v is the number of incident edges at the moment 
when v is inserted. 
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A vertex v which is inserted at step t is called new at this time; in all further 
steps t t > t it will be called old. 
An old vertex v has a free direction to the top, if there is no other vertex v ~ 
having the same x-coordinate as v and a larger y-coordinate than v a n d  if there 
is no vertical edge segment above of v in the same column (this definition implies 
that  there is no edge being incident to v at its top side). Free directions to the 
bottom, left and right are defined analogously. 
A half straight line starting at an old vertex v and pointing into a free direction 
of v is called a free line (of v). 
A vertex v is called critical ff it has exactly one free direction and semi-critical 
if it has exactly two free directions. 
The bounding box of a drawing is the smallest rectangle containing the whole 
drawing. 
The four gridlines with the minimum distance to the bounding box without 
intersecting or touching it are called basic gridlines. 

To prove the correctness of our algorithms we use the following 

I n c r e m e n t a l  Inva r i an t :  Every vertex v of degree deg(v) (deg(v) < 4) in the 
current drawing has 4 - deg(v) free directions. 

L e m m a  1. An algorithm that maintains the incremental invariant can compute 
an orthogonal drawing of any 4-graph. 

Proof .  Let v be a vertex that  has to be added to the drawing and v l , . . . ,  v~d(v) 
its neighbours in the current drawing. The incremental invariant implies that  
we can draw straight lines starting at v l , . . . ,  Vld(~) that  do not cross forbidden 
objects (other vertices, parallel edges); after leaving the bounding box these lines 
may have some bends in order to join at a geometric point where we place v. ~> 

The strategy of our first algorithm is the following: Place a new vertex v at one 
of the following places: Either at the insertion of two basic gridlines ('at the 
corner' of the bounding box), or at the intersection of a basic gridline with a 
free line of v j (v' being a neighbour of v). In this case v and v ~ will be connected 
by a straight line. Since v has at most four neighbours and every neighbour has 
at most four free directions, there are at most 20 possible places for v. Also the 
bends along the new edges have to be placed at these positions. Fig. la) shows 
the possible places for a new vertex v having the neighbours vl, v~, v3. 
Our strategy is to choose the place that  optimizes the main criterion (e.g. the 
number of bends) for this insertion. Fig. lb) shows two different possibilities, 
the first one minimizing the number of bends and the second one minimizing 
edge crossings. 
In [7] we give a simple proof for the following 

L e m m a  2. An algorithm following the strategy described above maintains the 
incremental invariant. 

Next we analyse the behaviour of the algorithm with respect to the number of 
produced bends. 
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Fig. 1. a) The possible places for vertices and bends b) Minimizing bends or crossings 

3 B o u n d s  on t h e  N u m b e r  of  B e n d s  

We subdivide the vertices into different classes according to their local degree 
and to the number of bends they produce when they are inserted. 
Bij denotes the class of vertices with local degree i producing j new bends and 

b~ = IB~j I. 
In [].3] the graph is demanded to be connected at any time, since otherwise the 
bounds could not be proved. We do not want to restrict our algorithm more than 
necessary, so we allow insertions with local degree 0; such an insertion (called 
ldO-insertwn) creates a new connected component of the graph (which can join 
with other connected components in the course of the algorithm). Surprisingly, 
although an insertion of local degree 0 does not cause any bends, the upper 
bound on the number of bends increases compared to the model where the graph 
is always connected. This observation encouraged us to distinguish between two 
classes of problems: With and without ld0-insertions. The analysis of this section 
forbids vertices with local degree 0 in order to have an easy and understandable 
proof for the bound. 

We distinguish the disjoint classes B4s, B47, B46, B34, B33, B23, B22, BlO, and 
characterize the most important  classes (/346, B33 and B22 mean that  at most 6, 
3 respectively 2 bends are needed): Obviously a vertex v with local degree one 
can always be inserted without any new bends. 

The first line of Fig. 2 shows the three different cases how a new vertex v of local 
degree two can be connected to its neighbours: The two new edges can leave the 
bounding box at the same side, at different but not opposite sides or at opposite 
sides (all other situations can be obtained by rotating and reflecting one of the 
pictures in Fig. 2). According to these cases such an insertion requires one, two 
or three bends. Thus a vertex v E B23 has two neighbours requiring the incident 
edges to run in opposite directions; this implies that both neighbours must be 
critical, otherwise one of the other (cheaper) cases would work. 

In the lower part of Fig. 2 the different cases for insertions with local degree 
three and four can be seen. 
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Fig. 2. Insertions of a vertex with local degree two and more 

Table 1 shows necessary conditions what kind of neighbours a vertex v must 
have in order to (possibly) belong to a class B 0 

T a b l e  1 

Cl s im@  lm tB  l 
Icr!tical neighboursl 4 t 2 I 1 1 2 ]  

We shortly prove this fact for the example of the class B34 (the proof for the 
other classes is similar): Let vl, v2 and v3 be the neighbours of v; if none of them 
is critical then there is a pair of them (say vl and v2) having a common free 
direction; in this case the edge connecting v and v3 cannot be forced to leave 
the bounding box in the opposite direction, since va is not critical, and thus the 
conditions for case B34 cannot be fulfilled. 

In the following we try to construct a worst case (i.e. a case with a maximum 
number of bends) obeying the rules of Table 1. This case gives an upper bound 
for the number of bends needed by our algorithm (in [12] a similar technique 
was used to prove upper bounds). We use linear programming and maximize the 
number of bends under certain restrictions. A first Linear Program (LP) could 
be 

m a x  8 • b4s + 7 • b4r --F 6 .  b4~ + 4 .  b34 + 3 .  b33 + 3 • b~3 + 2 • b22 
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due to b4s + b47 + b46 + b34 -b b33 -~ b23 + b22 q- blo : n 

n is the number of vertices inserted so far. Since the solution of this LP does not 
give a non-trivial result we must add some more restrictive constraints: 

- We evaluate the data  from Table 1 and take into account that  only vertices 
that  are inserted with a local degree of at most three can ever be or become 
critical. 

- We bound the total number of edges (which is equal to the sum of all local 
degrees) by 2- n. 

This leads to the following constraints: 

crit ~_ b34 + b33 + b~3 + b22 + bl0 

4.  b48 + 2 - b47 + b34 -t- 2 • b23 ~ crit 

4- b48 q- 4 .  b47 + 4- b46 -k 3 " b34 + 3.  b33 + 2- b23 + 2.  b22 + bl0 < 2- n 

A solution of this LP gives 2.5. n as the value of the objective function with the 
variables b23 = b22 = 0.5. n, crit = n. 

As a consequence of all facts discussed in this section we state 

T h e o r e m  1. Our algorithm incrementally computes orthogonal drawings of any 
t-graph without ldO-insertions producing at most 2.5 • n bends (where n is the 
number of vertices inserted so far); every insertion can be done in constant time. 

Fig. 3 a) shows an easy example for a drawing that exactly realizes this bound: 
Vertices 1, 2, 3, 4 are already drawn. Vertex 5 has to be connected with 1 and 3, 
vertex 6 with 2 and 4, vertex 7 with 1 and 4 and vertex 8 with 2 and 3. In the 
resulting drawing the vertices 5 and 7 play the role of the vertices 1 and 2 and 
the vertices 6 and 8 play the role of the vertices 3 and 4 and thus we can iterate. 

2 

3 

Fig. 3. a) An example with 2.5 • n bends b) A drawing with less bends 
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4 A First Improvement 

In the drawing of Fig. 3 a) there are many insertions of type B23 using critical 
vertices having their free direction at opposite sides. If all critical vertices would 
have the same shape this bad example could not arise. Thus our strategy is to 
produce always the same type of critical and semi-critical vertices, if possible. 
In the example of Fig. 3 a) this means that the insertions of type B22 (e.g. 5 
and 6) create the same type of critical vertices, say vertices being free to the 
left or to the bottom. Following this strategy the vertices 5, 6, 7 and 8 could be 
inserted with 8 bends (instead of 10 bends) and the resulting drawing has four 
semi-critical vertices of the same shape, thus making following insertions even 
cheaper. Following the iteration the graph can be drawn with n bends instead 
of 2.5. n bends (see Fig. 3 b)). 

This effect can also be proved theoretically: We take into account that e.g. an 
insertion of type Bs3 not only needs two critical vertices but two critical vertices 
having the free direction at opposite sides. Thus in the LP two types of B23 
insertions are distinguished. One of them consumes a critical vertex with free 
direction to the left and a critical vertex with free direction to the right, and 
the other one consumes each a critical vertex being free to the top and to the 
bottom. Both types of insertion create a semi-critical vertex. Here it is a free 
choice of the algorithm whether this semi-critical vertex is free to a) the left and 
to the top, b) the top and to the right, c) the right and to the bottom or d) the 
bottom and to the left. If e.g. the two critical neighbours of the new vertex u 
are free to the left (Vl) resp. to the right (v2), the algorithm can realize case a) 
by placing u in the left upper corner of the bounding box, case b) by placing u 
at the right upper corner of the bounding box etc. 
In the LP we establish a variable for every type of insertion (e.g. new vertex 
with local degree two, both neighbours are critical, one of them being free to 
the left, the other to the right), and an equality for every type of vertex (e.g. 
critical being free to the right). These equalities ensure that the same number of 
vertices of some type is consumed and created. The resulting LP consists of 16 
equalities and 3073 variables and can be constructed automatically (in order to 
avoid mistakes that are inevitable when dealing with so many data by hand). 
In order to create vertices of the same shape we give a cost to every vertex 
type: For critical vertices this cost function prefers vertices being free to the left 
and increases monotonically for vertices being free to the bottom, to the top 
and to the right (in this order). It is important that the cheapest and the most 
expensive type are free in opposite directions because having vertices of both 
types makes insertions with many bends possible. Similarly the cost function for 
semi-critical vertices increases monotonically from vertices being free to the left 
and to the bottom via the other shapes until the most expensive vertices being 
free to the right and to the top. Note that these costs are favourable compared 
with a cost function where vertices being free e.g. to the bottom and to the right 
are cheap because such vertices could become expensive critical vertices with 
the free direction to the right after future insertions, whereas the cheapest semi- 
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critical vertex of our cost function always becomes a relatively cheap critical 
vertex in the future. This consideration indicates that  the chosen cost function 
is optimal with respect to a worst-case analysis. For practical examples also a 
randomized variant could be interesting. 
Using the optimizing system CPLEX [5] the LP can be solved in about half a 
second;• the value of the objective function (i.e. the number of bends) is K-n~92 
2.24. n if the graph is always connected and aaaa • n ~ 2.77. n if insertions with 
local degree 0 are allowed. 
Using this method we get not only an upper bound but also a family of examples 
realizing this bound (in the case of an always connected graph this example 
consists of a series of 41 insertions that can be iterated and need 92 bends per 
iteration). So we are sure that the upper bound is tight with respect to the 
algorithm. 

5 Placing Vertices inside of the Bounding Box 

Our final method to improve on the upper bounds for cost functions is very 
powerful in practice and even leads to an improvement of the theoretic bounds: 
We allow a new vertex to be placed inside of the bounding box if this placement 
does not violate the incremental invariant. 

L e m m a  3. Placing a new vertex v at the intersection of free lines of two neigh- 
boars vl and v2 of v does not violate the incremental invariant. 

P r o o f .  Since v will be placed at the intersection point of two free lines there 
are no other vertices on these gridlines in the used directions. Thus v cannot 
destroy a free direction of other vertices than vl and v2. After the insertion v is 
free in the two directions in which vl and v2 were free before the insertion, so 
the invariant holds for v. ~} 

An insertion of a vertex having local degree two now in some cases can be done 
without producing a new bend, while this is impossible following the insertion 
rules of Section 2 and 4. Vertices 10 and 13 in Fig. 6 are examples for such 
insertions. The enormous practical profit of this idea is clear: Especially large 
graphs with many vertices having a degree of less than four define a large number 
of such intersection points, such that  the probability that  the new idea can 
save bends is very high. Applying the new insertion method to improve on the 
theoretic bound is tricky: The number of intersection points does not depend 
only of the number and shape of the vertices drawn so far, but  also of their 
geometric position: If there are e.g. a critical vertex vl having its free direction 
to the left and a critical vertex v2 having its free direction to the top, then they 
only define an intersection point if vl is placed to the right of and above v2. 
These conditions cannot be expressed by constraints of a linear program. 
But there are situations where two vertices always define an intersection point: 
If vertex vl is free to the left and to the right and vertex v2 is free to the top 
and to the bot tom, the corresponding free lines Mways intersect independently 
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of the placement of the vertices. Thus many insertions using two such vertices 
as neighbours get cheaper when placing the new vertex inside of the bounding 
bOX. 

Our algorithm tries to create semi-critical vertices having their free directions at 
opposite sides whenever possible, in order to increase the number of intersection 
points. For example the insertion of a vertex v of local degree one can always 
create a semi-critical vertex of the desired shape if the neighbour of v has degree 
one. Thus the cost function introduced in Section 4 must be slightly modified for 
semi-critical vertices. Of course vertices of degree one often define intersection 
points, too. 
The number of variables of the LP increases considerably because the recipro- 
cal geometric position of the vertices now plays a role: The placement of the 
intersection points determines the shape of the new vertices (see Fig. 4 for an 
example). After the insertion the vertices in question are free to the left, to the 
bottom and (semi-critical) to the top and right (left drawing) or to the top, to 
the right and (semi-critical) to the left and bottom (right drawing). 

.u vz 

Fig .  4. Placing a new vertex u inside of the bounding box creates different situations. 

The large number of cases (especially when the new vertex has local degree four) 
makes a complete analysis of the problem extraordenarily difficult. Inserting only 
the necessary rules by hand (i.e. the rules concerning types of insertions that 
arise in worst examples of the always-connected case) leads to an LP with 3119 
variables (without ld0-insertions). 

T h e o r e m  2. Every l-graph without IdO-insertions allows an incremental or. 
thogonaI drawing where the number of bends is bounded by ~ • n ~ 2.22- n at 
any time, n being the actual number of vertices. Every insertion can be done in 
constant time. 

Proof .  The value of the bound is the solution of the new Linear Program. 
The time bound follows from the fact that the number of intersection points is 
bounded by 12: There are at most four vertical gridlines that can define intersec- 
tion points (the x-coordinates of the at most four neighbours of the new vertex), 
and on each of them there can arise at most three intersection points (having 
the y-coordinates of the other three neighbours). Thus the algorithm must check 
at most 20 + 12 = 32 positions where the new vertex can be placed (see [9] for 
an exact case analysis). 
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When allowing ldO-insertions the number of cases is so high that  we did not 
succeed in establishing a corresponding LP by hand. We conjecture that  the 
insertions of isolated vertices are always cheap such that  the value of the objective 
function should be very close to the case of an always connected graph. 

6 B o u n d s  f o r  t h e  U s e d  A r e a  

We can bound the area used by our drawings using a method similar to the 
bend minimizing strategy: The criterion where to place a new vertex now is 
not the number of new bends but the number of new gridlines. We bound the 
total  number of gridlines used by the drawing and argue that  a drawing using k 
gridlines cannot require more than (~)2 area. This is because the bounding box 
of the drawing has a circumference of 2 - k and the rectangle with the largest 
area having a circumference of 2.  k is the square with a side length of k 

2"  
In our LP we only have to change the objective function (which now must count 
the number of new gridlines instead of the number of new bends) and get a result 
of 0.937. n 2 resp. 1.057. n ~ (allowing ld0-insertions or not), whereas Papakostas 
and Tollis only can guarantee an area of at most 1.77. n 2. The profit of the idea 
described in Section 5 for the used area is obvious: a new vertex placed inside of 
the bounding box does not require new gridlines because it uses old ones. For the 
area it is not surprising that insertions of vertices with local degree 0 increase 
the upper bound because such an insertion always needs two new gridlines in 
order to guarantee four free directions of the new vertex, whereas an insertion 
of a vertex of local degree 1 requires only one new gridline. Again the bounds 
are tight for the algorithm. 
In Section 7 we present the results on the area when using the different ap- 
proaches desribed in this paper. 

7 L o w e r  B o u n d s  a n d  O f l i i n e  B o u n d s  

A classification of our results requires the comparison with existing results about  
upper bounds for the offiine-version of the corresponding problems as well as 
the comparison with lower bounds. Table 2 shows some results on the number 
of bends and on the used area: 

T a b l e  2 

Bends Area 
Upper bound offline 1.9. n 0.8- n 2 
Lower bound offline 1.83. n /2(n 2) 
Papakostas and Tollis 2.66. n 1.77. n ~ 
Basic algorithm 2.5 • n 1.44. n 2 
Section 4 always connected 2.24- n 0.937- n ~ 
Section 5 always connected 2.22- n 0.937- n 2 
Section 4 general 2.77- n 1.057 • n ~ 
Section 5 general ?? ?? 
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The lower bound for the number of bends given in Table 2 is a lower bound for 
offiine drawings and is established in [1]. For the area no good lower bound is 
known. In [15] a lower bound of f2(n 2) is proved and in [2] the author precises 
the constant of this bound to be about 10 -6 . Thus this bound is not very useful 
for comparisons. The offline upper bounds in Table 2 are established in [14]. It is 
worth to mention that the minimization problems for the number of bends and 
for the used area are both A/~-complete [8,10]. 
The upper bounds for the area and the number of bends in incrementM drawings 
are not much worse than the corresponding offiine-bound. In [7] we prove a lower 
bound of 2. n for the number of bends in incremental drawings. This result makes 
the upper bound of 2.22.  n even more valuable. 
For the last line of the table the exact values are not known, but we conjecture 
that they are very close to the always-connected case. 

8 E x a m p l e s  a n d  P r a c t i c a l  R e s u l t s  

To estimate the practical significance of the algorithm we compared some draw- 
ings with 
a) drawings got by the algorithm in [13]; 
b) drawings got by an offiine-algorithm. 
Having a closer look at the results in [13] and [12] it can be seen that the No- 
Change-Scenario was mainly developped in order to apply an easy and effective 
technique of analysis, whereas the Relative-Coordinate-Scenario was developped 
for practical applications. This is the reason for the bad upper bounds of the 
Relative-Coordinates-algorithm (3 • n for the number of bends, 2.25. n 2 for the 
area) compared to the weaker model. Thus a comparison of our drawings with 
No-Change-drawings of Papakostas and Toltis would not be fair. But our draw- 
ings are even better than the Relative-Coordinates-drawings of Papakostas and 
Tollis in most cases, although we guarantee the rules of the No-Change-Scenario. 
Fig. 5 and 6 show three drawings of the same graph produced by the three algo- 
rithms. The No-Change-drawing needs 16 bends and 13 x 13 area, the Relative- 
Coordinates-drawing 12 bends and 11 x 11 area and our algorithm produces 
only 9 bends on an area of 9 x 10. Further tests have shown that these numbers 
show a typical relation between the three algorithms. 

9 E x t e n s i o n s  

The algorithms described so far are all implemented in our system [9]. The 
methods are very flexible such that it is easily possible to think about extensions 
in order to have algorithms that can be used in a large field of applications. 
In [7] a detailed discussion about possible extensions can be found. The goals 
a r e  

- to provide interactive drawings, i.e. also deletions of vertices and edges; 
- to optimize other cost functions; 
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- to realize the ideas of Relative-Coordinates; 
- to draw graphs with an arbitrary vertex degree. 

Especially the last point is important in order to have an algorithm that  is 
universally applicable to arbitrary graphs. 

A c k n o w l e d g e m e n t :  I wish to thank Michael Kaufmann and Frank Jahrmarkt  
for useful discussions, Frank Jahrmarkt  for the implementation and Achilleas 
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