
Interactive Orthogonal Graph Drawing:
Algorithms and Bounds

Ulrich FSflmeier

Universit£t Tiibingen, Wilhelm-Schickard-Institut, Sand 13, 72076 Tiibingen,
Germany, emaih foessmei@informatik.tmi-tuebingen.de

A b s t r a c t . Incremental graph drawing is a model gaining more and more
importance in many applications. We present algorithms that allow in-
sertions of new vertices into an existing drawing without changing the
position of the objects drawn so far. We prove bounds for the quality
of our drawings and considerably improve on previous bounds. Here the
number of bends and the used area are our quality measures. Besides we
discuss lower bounds for this problem.

1 Introduction

Representing objects and the relations between them is a task arising perma-
nently in many applications of Computer Science. Therefore the concept of
graphs is widely used to represent the data. A graph is a set V of vertices to-
gether with a set E C V x V of edges. Examples for the use of graphs are Petri
nets, entity-relationship diagrams, production planning or data flow diagrams
in Software Engineering (see e.g. [4,3]). For human processing it is necessary to
visualize graphs; sometimes this visualization (called graph drawing) is even the
desired output of some computation, e.g. in VLSI design [15]. In a graph drawing
the vertices of the graph are represented by geometric objects (points, circles,
squares, . . .) and the edges by simple curves connecting them. The drawing must
fulfill certain properties which depend on the specific application. Typical prop-
erties are: The edges must be straight lines, they must not cross each other
(planar drawing) or they must consist only of horizontal and vertical segments
(orthogonal drawing). Moreover the drawing should optimize some cost function;
this could be to minimize the used area, to minimize the number of crossings
or bends, to minimize the total edge length etc. A survey of graph drawing
algorithms and applications can be found in [6].
In many cases not the total amount of data is given in advance, but the vertices
of the graph are added one by one and after every insertion a drawing is required.
This situation is called incremental drawing. Thus incremental drawing has its
own importance, moreover it is an important step to the more general concept of
interactive drawing, where also deletions of vertices are allowed. We investigate
incremental drawings using the model of orthogonal drawings: Here graphs with
a maximum vertex degree of at most four are drawn in such a way that the

112

vertices are placed on grid points of an integer grid and the edges run along
grid lines. If the drawings are destinated for human observers, inserting a new
vertex should not change too much the 'old' drawing. In [11] the idea of the
user's 'mental map' is introduced (the way how a human user 'understands' a
drawing); adding a new vertex should not destroy the user's mental map. Thus
an incremental drawing system must guarantee a) to maintain the user's mental
map and b) to handle a single insertion in a reasonable time (we require constant
time per insertion).
If adding a new vertex must not change at all the position of the objects drawn
so far, we speak of the No-Change-Scenario (the No-Change-Scenario is the
best way to support the maintenance of a mental map). Papakostas and Tol-
lis [13] introduced this model and also investigated another one: The Relative-
Coordinates-Scenario, where it is allowed to shift every drawn vertex by a con-
stant number of units along the x- and y-axes when inserting a new vertex. They
gave first results on the number of bends and the used area in both scenaria and
presented some examples.
Obviously the Relative-Coordinates-Scenario is more powerful than the No-
Change-Scenario. All drawings in the No-Change-Scenario maintain the condi-
tions for the Relative-Coordinates-Scenario. Hence bounds for the No-Change-
Scenario-drawings also hold for the other model.
In this paper we focus on the No-Change-Scenario; we refine the methods of
[13] and considerably improve on their bounds for the number of bends and
the used area; our algorithm even leads to better results (in general) than the
Relative-Coordinates-drawings of Papakostas and Tollis.
The rest of the paper is organized as follows: In Section 2 we give some definitions
and describe the basic algorithm. In Section 3 we introduce our technique how
we bound the value of some cost function (number of bends), and in the following
two sections we present new methods how to improve on these bounds. Section
6 is devoted to another important cost function (used area) and in Section 7 we
discuss lower bounds for the problem. Finally Section 8 illustrates our algorithms
with some examples.

2 F i r s t R e s u l t s

Papakost&s and Tollis [13] gave a first algorithm that computes drawings in the
s (n being the number of vertices No-Change-Scenario and proved ~ • n ~ 2.66. n

drawn so far) as an upper bound for the number of bends produced by their
algorithm. In [12] statistics about the practical behaviour of this algorithm are
given. We present a more general approach that can be used to minimize any
cost function and analyse it for the example of the number of bends being the
cost criterion.
We start with some definitions:
A graph with a maximum vertex degree of at most four is called a ~-graph.
The local degree td(v) of a vertex v is the number of incident edges at the moment
when v is inserted.

113

A vertex v which is inserted at step t is called new at this time; in all further
steps t t > t it will be called old.
An old vertex v has a free direction to the top, if there is no other vertex v ~
having the same x-coordinate as v and a larger y-coordinate than v a n d if there
is no vertical edge segment above of v in the same column (this definition implies
that there is no edge being incident to v at its top side). Free directions to the
bottom, left and right are defined analogously.
A half straight line starting at an old vertex v and pointing into a free direction
of v is called a free line (of v).
A vertex v is called critical ff it has exactly one free direction and semi-critical
if it has exactly two free directions.
The bounding box of a drawing is the smallest rectangle containing the whole
drawing.
The four gridlines with the minimum distance to the bounding box without
intersecting or touching it are called basic gridlines.

To prove the correctness of our algorithms we use the following

I n c r e m e n t a l Inva r i an t : Every vertex v of degree deg(v) (deg(v) < 4) in the
current drawing has 4 - deg(v) free directions.

L e m m a 1. An algorithm that maintains the incremental invariant can compute
an orthogonal drawing of any 4-graph.

Proof . Let v be a vertex that has to be added to the drawing and v l , . . . , v~d(v)
its neighbours in the current drawing. The incremental invariant implies that
we can draw straight lines starting at v l , . . . , Vld(~) that do not cross forbidden
objects (other vertices, parallel edges); after leaving the bounding box these lines
may have some bends in order to join at a geometric point where we place v. ~>

The strategy of our first algorithm is the following: Place a new vertex v at one
of the following places: Either at the insertion of two basic gridlines ('at the
corner' of the bounding box), or at the intersection of a basic gridline with a
free line of v j (v' being a neighbour of v). In this case v and v ~ will be connected
by a straight line. Since v has at most four neighbours and every neighbour has
at most four free directions, there are at most 20 possible places for v. Also the
bends along the new edges have to be placed at these positions. Fig. la) shows
the possible places for a new vertex v having the neighbours vl, v~, v3.
Our strategy is to choose the place that optimizes the main criterion (e.g. the
number of bends) for this insertion. Fig. lb) shows two different possibilities,
the first one minimizing the number of bends and the second one minimizing
edge crossings.
In [7] we give a simple proof for the following

L e m m a 2. An algorithm following the strategy described above maintains the
incremental invariant.

Next we analyse the behaviour of the algorithm with respect to the number of
produced bends.

114

X X X X X

~ J

× x x

I

I • r]
I
I

4 1 ~ I b2
I

, dL 3
I

I

| 4

Fig. 1. a) The possible places for vertices and bends b) Minimizing bends or crossings

3 B o u n d s on t h e N u m b e r of B e n d s

We subdivide the vertices into different classes according to their local degree
and to the number of bends they produce when they are inserted.
Bij denotes the class of vertices with local degree i producing j new bends and

b~ = IB~j I.
In [].3] the graph is demanded to be connected at any time, since otherwise the
bounds could not be proved. We do not want to restrict our algorithm more than
necessary, so we allow insertions with local degree 0; such an insertion (called
ldO-insertwn) creates a new connected component of the graph (which can join
with other connected components in the course of the algorithm). Surprisingly,
although an insertion of local degree 0 does not cause any bends, the upper
bound on the number of bends increases compared to the model where the graph
is always connected. This observation encouraged us to distinguish between two
classes of problems: With and without ld0-insertions. The analysis of this section
forbids vertices with local degree 0 in order to have an easy and understandable
proof for the bound.

We distinguish the disjoint classes B4s, B47, B46, B34, B33, B23, B22, BlO, and
characterize the most important classes (/346, B33 and B22 mean that at most 6,
3 respectively 2 bends are needed): Obviously a vertex v with local degree one
can always be inserted without any new bends.

The first line of Fig. 2 shows the three different cases how a new vertex v of local
degree two can be connected to its neighbours: The two new edges can leave the
bounding box at the same side, at different but not opposite sides or at opposite
sides (all other situations can be obtained by rotating and reflecting one of the
pictures in Fig. 2). According to these cases such an insertion requires one, two
or three bends. Thus a vertex v E B23 has two neighbours requiring the incident
edges to run in opposite directions; this implies that both neighbours must be
critical, otherwise one of the other (cheaper) cases would work.

In the lower part of Fig. 2 the different cases for insertions with local degree
three and four can be seen.

115

. _~_,

Vl , v

A ¥

"!T
. 2

' v l ~ v
: v3i

J
v

i , . - i i = i 5 . ! i~ :~ : v

iv1 : v
: ~, v21

Fig. 2. Insertions of a vertex with local degree two and more

Table 1 shows necessary conditions what kind of neighbours a vertex v must
have in order to (possibly) belong to a class B 0

T a b l e 1

Cl s im@ lm tB l
Icr!tical neighboursl 4 t 2 I 1 1 2]

We shortly prove this fact for the example of the class B34 (the proof for the
other classes is similar): Let vl, v2 and v3 be the neighbours of v; if none of them
is critical then there is a pair of them (say vl and v2) having a common free
direction; in this case the edge connecting v and v3 cannot be forced to leave
the bounding box in the opposite direction, since va is not critical, and thus the
conditions for case B34 cannot be fulfilled.

In the following we try to construct a worst case (i.e. a case with a maximum
number of bends) obeying the rules of Table 1. This case gives an upper bound
for the number of bends needed by our algorithm (in [12] a similar technique
was used to prove upper bounds). We use linear programming and maximize the
number of bends under certain restrictions. A first Linear Program (LP) could
be

m a x 8 • b4s + 7 • b4r --F 6 . b4~ + 4 . b34 + 3 . b33 + 3 • b~3 + 2 • b22

116

due to b4s + b47 + b46 + b34 -b b33 -~ b23 + b22 q- blo : n

n is the number of vertices inserted so far. Since the solution of this LP does not
give a non-trivial result we must add some more restrictive constraints:

- We evaluate the data from Table 1 and take into account that only vertices
that are inserted with a local degree of at most three can ever be or become
critical.

- We bound the total number of edges (which is equal to the sum of all local
degrees) by 2- n.

This leads to the following constraints:

crit ~_ b34 + b33 + b~3 + b22 + bl0

4. b48 + 2 - b47 + b34 -t- 2 • b23 ~ crit

4- b48 q- 4 . b47 + 4- b46 -k 3 " b34 + 3. b33 + 2- b23 + 2. b22 + bl0 < 2- n

A solution of this LP gives 2.5. n as the value of the objective function with the
variables b23 = b22 = 0.5. n, crit = n.

As a consequence of all facts discussed in this section we state

T h e o r e m 1. Our algorithm incrementally computes orthogonal drawings of any
t-graph without ldO-insertions producing at most 2.5 • n bends (where n is the
number of vertices inserted so far); every insertion can be done in constant time.

Fig. 3 a) shows an easy example for a drawing that exactly realizes this bound:
Vertices 1, 2, 3, 4 are already drawn. Vertex 5 has to be connected with 1 and 3,
vertex 6 with 2 and 4, vertex 7 with 1 and 4 and vertex 8 with 2 and 3. In the
resulting drawing the vertices 5 and 7 play the role of the vertices 1 and 2 and
the vertices 6 and 8 play the role of the vertices 3 and 4 and thus we can iterate.

2

3

Fig. 3. a) An example with 2.5 • n bends b) A drawing with less bends

117

4 A First Improvement

In the drawing of Fig. 3 a) there are many insertions of type B23 using critical
vertices having their free direction at opposite sides. If all critical vertices would
have the same shape this bad example could not arise. Thus our strategy is to
produce always the same type of critical and semi-critical vertices, if possible.
In the example of Fig. 3 a) this means that the insertions of type B22 (e.g. 5
and 6) create the same type of critical vertices, say vertices being free to the
left or to the bottom. Following this strategy the vertices 5, 6, 7 and 8 could be
inserted with 8 bends (instead of 10 bends) and the resulting drawing has four
semi-critical vertices of the same shape, thus making following insertions even
cheaper. Following the iteration the graph can be drawn with n bends instead
of 2.5. n bends (see Fig. 3 b)).

This effect can also be proved theoretically: We take into account that e.g. an
insertion of type Bs3 not only needs two critical vertices but two critical vertices
having the free direction at opposite sides. Thus in the LP two types of B23
insertions are distinguished. One of them consumes a critical vertex with free
direction to the left and a critical vertex with free direction to the right, and
the other one consumes each a critical vertex being free to the top and to the
bottom. Both types of insertion create a semi-critical vertex. Here it is a free
choice of the algorithm whether this semi-critical vertex is free to a) the left and
to the top, b) the top and to the right, c) the right and to the bottom or d) the
bottom and to the left. If e.g. the two critical neighbours of the new vertex u
are free to the left (Vl) resp. to the right (v2), the algorithm can realize case a)
by placing u in the left upper corner of the bounding box, case b) by placing u
at the right upper corner of the bounding box etc.
In the LP we establish a variable for every type of insertion (e.g. new vertex
with local degree two, both neighbours are critical, one of them being free to
the left, the other to the right), and an equality for every type of vertex (e.g.
critical being free to the right). These equalities ensure that the same number of
vertices of some type is consumed and created. The resulting LP consists of 16
equalities and 3073 variables and can be constructed automatically (in order to
avoid mistakes that are inevitable when dealing with so many data by hand).
In order to create vertices of the same shape we give a cost to every vertex
type: For critical vertices this cost function prefers vertices being free to the left
and increases monotonically for vertices being free to the bottom, to the top
and to the right (in this order). It is important that the cheapest and the most
expensive type are free in opposite directions because having vertices of both
types makes insertions with many bends possible. Similarly the cost function for
semi-critical vertices increases monotonically from vertices being free to the left
and to the bottom via the other shapes until the most expensive vertices being
free to the right and to the top. Note that these costs are favourable compared
with a cost function where vertices being free e.g. to the bottom and to the right
are cheap because such vertices could become expensive critical vertices with
the free direction to the right after future insertions, whereas the cheapest semi-

1!8

critical vertex of our cost function always becomes a relatively cheap critical
vertex in the future. This consideration indicates that the chosen cost function
is optimal with respect to a worst-case analysis. For practical examples also a
randomized variant could be interesting.
Using the optimizing system CPLEX [5] the LP can be solved in about half a
second;• the value of the objective function (i.e. the number of bends) is K-n~92
2.24. n if the graph is always connected and aaaa • n ~ 2.77. n if insertions with
local degree 0 are allowed.
Using this method we get not only an upper bound but also a family of examples
realizing this bound (in the case of an always connected graph this example
consists of a series of 41 insertions that can be iterated and need 92 bends per
iteration). So we are sure that the upper bound is tight with respect to the
algorithm.

5 Placing Vertices inside of the Bounding Box

Our final method to improve on the upper bounds for cost functions is very
powerful in practice and even leads to an improvement of the theoretic bounds:
We allow a new vertex to be placed inside of the bounding box if this placement
does not violate the incremental invariant.

L e m m a 3. Placing a new vertex v at the intersection of free lines of two neigh-
boars vl and v2 of v does not violate the incremental invariant.

P r o o f . Since v will be placed at the intersection point of two free lines there
are no other vertices on these gridlines in the used directions. Thus v cannot
destroy a free direction of other vertices than vl and v2. After the insertion v is
free in the two directions in which vl and v2 were free before the insertion, so
the invariant holds for v. ~}

An insertion of a vertex having local degree two now in some cases can be done
without producing a new bend, while this is impossible following the insertion
rules of Section 2 and 4. Vertices 10 and 13 in Fig. 6 are examples for such
insertions. The enormous practical profit of this idea is clear: Especially large
graphs with many vertices having a degree of less than four define a large number
of such intersection points, such that the probability that the new idea can
save bends is very high. Applying the new insertion method to improve on the
theoretic bound is tricky: The number of intersection points does not depend
only of the number and shape of the vertices drawn so far, but also of their
geometric position: If there are e.g. a critical vertex vl having its free direction
to the left and a critical vertex v2 having its free direction to the top, then they
only define an intersection point if vl is placed to the right of and above v2.
These conditions cannot be expressed by constraints of a linear program.
But there are situations where two vertices always define an intersection point:
If vertex vl is free to the left and to the right and vertex v2 is free to the top
and to the bot tom, the corresponding free lines Mways intersect independently

119

of the placement of the vertices. Thus many insertions using two such vertices
as neighbours get cheaper when placing the new vertex inside of the bounding
bOX.

Our algorithm tries to create semi-critical vertices having their free directions at
opposite sides whenever possible, in order to increase the number of intersection
points. For example the insertion of a vertex v of local degree one can always
create a semi-critical vertex of the desired shape if the neighbour of v has degree
one. Thus the cost function introduced in Section 4 must be slightly modified for
semi-critical vertices. Of course vertices of degree one often define intersection
points, too.
The number of variables of the LP increases considerably because the recipro-
cal geometric position of the vertices now plays a role: The placement of the
intersection points determines the shape of the new vertices (see Fig. 4 for an
example). After the insertion the vertices in question are free to the left, to the
bottom and (semi-critical) to the top and right (left drawing) or to the top, to
the right and (semi-critical) to the left and bottom (right drawing).

.u vz

Fig . 4. Placing a new vertex u inside of the bounding box creates different situations.

The large number of cases (especially when the new vertex has local degree four)
makes a complete analysis of the problem extraordenarily difficult. Inserting only
the necessary rules by hand (i.e. the rules concerning types of insertions that
arise in worst examples of the always-connected case) leads to an LP with 3119
variables (without ld0-insertions).

T h e o r e m 2. Every l-graph without IdO-insertions allows an incremental or.
thogonaI drawing where the number of bends is bounded by ~ • n ~ 2.22- n at
any time, n being the actual number of vertices. Every insertion can be done in
constant time.

Proof . The value of the bound is the solution of the new Linear Program.
The time bound follows from the fact that the number of intersection points is
bounded by 12: There are at most four vertical gridlines that can define intersec-
tion points (the x-coordinates of the at most four neighbours of the new vertex),
and on each of them there can arise at most three intersection points (having
the y-coordinates of the other three neighbours). Thus the algorithm must check
at most 20 + 12 = 32 positions where the new vertex can be placed (see [9] for
an exact case analysis).

",20

When allowing ldO-insertions the number of cases is so high that we did not
succeed in establishing a corresponding LP by hand. We conjecture that the
insertions of isolated vertices are always cheap such that the value of the objective
function should be very close to the case of an always connected graph.

6 B o u n d s f o r t h e U s e d A r e a

We can bound the area used by our drawings using a method similar to the
bend minimizing strategy: The criterion where to place a new vertex now is
not the number of new bends but the number of new gridlines. We bound the
total number of gridlines used by the drawing and argue that a drawing using k
gridlines cannot require more than (~)2 area. This is because the bounding box
of the drawing has a circumference of 2 - k and the rectangle with the largest
area having a circumference of 2. k is the square with a side length of k

2"
In our LP we only have to change the objective function (which now must count
the number of new gridlines instead of the number of new bends) and get a result
of 0.937. n 2 resp. 1.057. n ~ (allowing ld0-insertions or not), whereas Papakostas
and Tollis only can guarantee an area of at most 1.77. n 2. The profit of the idea
described in Section 5 for the used area is obvious: a new vertex placed inside of
the bounding box does not require new gridlines because it uses old ones. For the
area it is not surprising that insertions of vertices with local degree 0 increase
the upper bound because such an insertion always needs two new gridlines in
order to guarantee four free directions of the new vertex, whereas an insertion
of a vertex of local degree 1 requires only one new gridline. Again the bounds
are tight for the algorithm.
In Section 7 we present the results on the area when using the different ap-
proaches desribed in this paper.

7 L o w e r B o u n d s a n d O f l i i n e B o u n d s

A classification of our results requires the comparison with existing results about
upper bounds for the offiine-version of the corresponding problems as well as
the comparison with lower bounds. Table 2 shows some results on the number
of bends and on the used area:

T a b l e 2

Bends Area
Upper bound offline 1.9. n 0.8- n 2
Lower bound offline 1.83. n /2(n 2)
Papakostas and Tollis 2.66. n 1.77. n ~
Basic algorithm 2.5 • n 1.44. n 2
Section 4 always connected 2.24- n 0.937- n ~
Section 5 always connected 2.22- n 0.937- n 2
Section 4 general 2.77- n 1.057 • n ~
Section 5 general ?? ??

121

The lower bound for the number of bends given in Table 2 is a lower bound for
offiine drawings and is established in [1]. For the area no good lower bound is
known. In [15] a lower bound of f2(n 2) is proved and in [2] the author precises
the constant of this bound to be about 10 -6 . Thus this bound is not very useful
for comparisons. The offline upper bounds in Table 2 are established in [14]. It is
worth to mention that the minimization problems for the number of bends and
for the used area are both A/~-complete [8,10].
The upper bounds for the area and the number of bends in incrementM drawings
are not much worse than the corresponding offiine-bound. In [7] we prove a lower
bound of 2. n for the number of bends in incremental drawings. This result makes
the upper bound of 2.22. n even more valuable.
For the last line of the table the exact values are not known, but we conjecture
that they are very close to the always-connected case.

8 E x a m p l e s a n d P r a c t i c a l R e s u l t s

To estimate the practical significance of the algorithm we compared some draw-
ings with
a) drawings got by the algorithm in [13];
b) drawings got by an offiine-algorithm.
Having a closer look at the results in [13] and [12] it can be seen that the No-
Change-Scenario was mainly developped in order to apply an easy and effective
technique of analysis, whereas the Relative-Coordinate-Scenario was developped
for practical applications. This is the reason for the bad upper bounds of the
Relative-Coordinates-algorithm (3 • n for the number of bends, 2.25. n 2 for the
area) compared to the weaker model. Thus a comparison of our drawings with
No-Change-drawings of Papakostas and Toltis would not be fair. But our draw-
ings are even better than the Relative-Coordinates-drawings of Papakostas and
Tollis in most cases, although we guarantee the rules of the No-Change-Scenario.
Fig. 5 and 6 show three drawings of the same graph produced by the three algo-
rithms. The No-Change-drawing needs 16 bends and 13 x 13 area, the Relative-
Coordinates-drawing 12 bends and 11 x 11 area and our algorithm produces
only 9 bends on an area of 9 x 10. Further tests have shown that these numbers
show a typical relation between the three algorithms.

9 E x t e n s i o n s

The algorithms described so far are all implemented in our system [9]. The
methods are very flexible such that it is easily possible to think about extensions
in order to have algorithms that can be used in a large field of applications.
In [7] a detailed discussion about possible extensions can be found. The goals
a r e

- to provide interactive drawings, i.e. also deletions of vertices and edges;
- to optimize other cost functions;

to~o~aale ~va ~zu~eqo-oN "9 "~!~I

~H[OL/S~3~O~lUa~d ~o~uipaooD-oA!~uioH pu~ S[llOJb/~gso~Iua~ct ~wzqo-o N -~ "~!~I

j

123

- to realize the ideas of Relative-Coordinates;
- to draw graphs with an arbitrary vertex degree.

Especially the last point is important in order to have an algorithm that is
universally applicable to arbitrary graphs.

A c k n o w l e d g e m e n t : I wish to thank Michael Kaufmann and Frank Jahrmarkt
for useful discussions, Frank Jahrmarkt for the implementation and Achilleas
Papakostas, Janet Six and Ioannis Tollis for getting some drawings of their
algorithms for comparisons.

References

1. Bied], T.C., New Lower Bounds for Orthogonal Graph Drawings, Proceedings on
GD'95, Passau, 28-39, 1995.

2. Biedl, T.C., Orthogonal Graph Drawing, Algorithms and Lower Bounds, Diploma
Thesis TU Berlin, 1995.

3. Batini, C., E. Nardelli and R. Tamassia, A Layout Algorithm for Data-Flow Dia-
grams, IEEE Trans. on Software Engineering, Vol. SE-12 (4), 538-546, 1986.

4. Batini, C., M. Talamo and R. Tamassia, Computer Aided Layout of Entity-
Relationship Diagrams, The Journal of Systems and Software, Vol. 4, 163-173,
1984.

5. CPLEX optimization, Inc. Using the CPLEX Base System. CPLEX Optimization,
Inc., 1995.

6. DiBattista G., P. Eades, R. Tamassia and I.G. Tollis, Algorithms for Drawing
Graphs: An Annotated Bibliography, Computational Geometry: Theory and Appfi-
cations, vol. 4, no 5, 235-282, 1994.

7. F6f~meier U., Interactive Orthogonal Graph Drawing: Algorithms and Bounds,
Technical Report WSI-97-12, University of Tfibingen.

8. Garg, A., R. Tamassia, On the computational complexity of upward and rectilinear
planarity testing, Proceedings of GD'94, Princeton, 286-297, 1994.

9. Jahrmarkt, F., Knickminimierende Verfahren]iir interaktives orthogonales
Graphenzeichnen, Diplomarbeit Universit~t Tiibingen, 1997 (in German language).

10. Kramer M.R., J. van Leeuwen, The complexity o] wire routing and finding minimum
area layouts for arbitrary VLSI circuits, Advances in Computer Research, Vol. 2:
VLSI Theory~ Jai Press, Reading, MA, 129-146, 1992.

11. Misue, K., P. Eades, W. Lai and K. Sugiyama, Layout Adjustment and the Mental
Map, Journal of Visual Languages and Computing, vol. 6, 183 - 210, 1995.

12. Papakostas, A., J. M. Six, I. G. Tollis, Experimental and Theoretical Results in
Interactive Orthogonal Graph Drawing, Proceedings on GD'96, Berkeley, 371-386,
1996.

13. Papakostas, A. and I.G. Tollis, Issues in Interactive Orthogonal Graph Drawing,
Proceedings on GD'95, Passau, 419-430, 1995.

14. Papakostas, A. and I.G. Tollis, Improved Algorithms and Bounds for Orthogonat
Drawings, Proceedings on GD'94, Princeton, 40-51, 1994.

15. Valiant, L. G., Universality considerations in VLSI circuits, tEEE Trans. Comput.,
C-30, 135-140, 1981.

