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Abstract. Let G = (V~,VI,E) be a connected bipartite graph, where 
V0, ~ is the bipartition of the vertex set V(G) into independent sets. A 
bipartite drawing of G consists of placing the vertices of ~ and ~ into 
distinct points on two parallel lines zo, zl, respectively, and then drawing 
each edge with one straight line segment which connects the points of z0 
and zl where the endvertices of the edge were placed. The bipartite cross- 
in# number of G, denoted by bcr(G) is the minimum number of crossings 
of edges over all bipartite d~awings of G. We develop a new lower bound 
method for estimating bcr(G). It relates bipartite crossing numbers to 
edge isoperimetric inequalities and Laplaclan eigenvalues of graphs. We 
apply the method, which is suitable for "well structured" graphs, to hy- 
percubes and 2-dimensional meshes. E.g. for the n-dimensional hyper- 
cube graph we get n4 "-~ - 0(4") <_ bcr(Q~) < n4 "-1. We also consider 
a more general setting of the method which uses eigenvalues, but as a 
trade-off for generality, often gives weaker results. 

1 Introduction 

Let G - (V0,~,E) be a connected bipartite graph, where V0,~ is the bipar- 
tition of vertices into independent sets. A bipartite drawing of G consists of 
placing the vertices of ~ and V1 into distinct points on two parallel lines zo,zl ,  
respectively, and then drawing ear~ edge with one straight line segment which 
connects the points of z0 and Zl where the endvertices of the edge were placed. 
The bipartite crossing number of G, denoted by bcr(G) is the minimum number 
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of crossings of edges over all bipartite drawings of G. The bipartite crossing num- 
ber is one of the parameters which strongly influences the aesthetics of drawings 
of hierarchical graphs. 

The problem of finding the bipartite crossing number is a variant of the stan- 
dard crossing number problem, see e.g. [21], and was first ~ntmduced by Harary 
[13] and Harary and Schwenk [14]. In [14], they proved bow(G) -- 0 iff G is 
a caterpillar. Further, they obtained the exact values of the bipartite crossing 
numbers of subdivisions of complete and complete bipartite graphs. For even 
cycles they showed ~r(C2,)  -- n - 1. The bipartite crossing number problem 
w a s  also proposed by Watldn.~ [26] independently. Some basic observations on 
~r(G) were made by May and Szlmtula [19]. The bipartite crossing number 
problem is known to be NP-complete [12] but can be solved in polynomial time 
for bipartite permutation graphs [22], and trees [20]. A great deal of research has 
been devoted to the design of algorithrn.q and heuristics for solving this problem 
[7, 11, 16, 23, 25]. Brandenburg, J/inger und Mutzel [6] have called for some 
entirely new approaches because the usual heuristics do not give good results 
for the bipartite crossing number. The latest progress in tiffs area was made 
in [20] in which we have shown an intimate relationship between the bipartite 
crossing number problem and the optimal linear arrangement problem. These 
result have led to the first provably good approximation algorithm.~ for comput- 
ing ~r(G). The restricted problem when the positions of the vertices of V0 are 
given is also NP-complete [11] and frequently appears in drawing of hierarchical 
graphs [7, 25], see also the survey [10]. Eades and Wormald [11] designed a poly- 
nomial time algorithm which approximates the bipartite crossing number within 
a multiplieative factor of 3 in this restricted problem. 

In this paper we develop a new lower bound argument which is suitable for 
"well structured graphs". The argument relates the bipartite crossing number 
of a graph to the edge isoperimetric inequality of the graph. We apply our new 
lower bound technique for two instances of important graphs: hypercubes and 
two-dimensional meshes. We obtain here substantially better lower bounds on the 
bipartite crossing number of theses graphs than the bounds that one can obtain 
by using the general results in [20]. For the meshes we get s~2~4 . . . . .  - -  lrn34"" - -  2 ~ l T t n  - -  

~m2-3m <_ ber(M(m, n)) _< ~m~'n, and for the n-dimensional hypercube graph 
we get n4 "-2 -0 (4" )  <_ bcr(Q,~) _< n4 ~-1. It is worth mentioning that especia]ly 
for the 3 x n mesh M(3,n) we get an exact result b c r ( M ( 3 , n ) )  -- 5n  - 6. 

We dose the paper by describing a general framework to give lower bounds 
for bipartite crossing n~lmbers using Laplaeian eigenvalues and we develop our 
ideas on the two examples. 

2 Notations and Definitions 

Let ~ and A denote m ~ n i r n u m  and maximum degrees of G, respectively. The 
degree of vertex v will be denoted by d(w). For X C_ V'(G), let vol(X) denote 
~ - ~ x  d(v). For a bipartite drawing D(G) of a graph G, let ber(D(G)) denote 
the number of the crossings in D(G) (i.e. the number of unordered pairs of 
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crossing edges), and define the bipartite crossing number of G by bet(G) = 
mlao(G) bcr(O(G) ). 

Given an arbitrary graph G = (V, E), and a bijection F : V -~ {1, 2, 3, ..., IVl}, 
define the length of F,  as ~-]~e~ IF(u) - F(v)[. The optimal linear arrangeme~ 
problem is to find a bijection F ,  of minimum length. This minimum value is 
denoted by L(G), the optimal linear arrangement value of G. 

For X C_ V define 

O(X)  = {uv  e E : u e X , v  e V - X } .  

We call O(X) the edge boundary of X. The general objective is to find a good 
approximating and easily described real function f(z) such that [O(X)I >_ f(IXI), 
for all X C_ V ( G). Such an inequality is called an edge isoperimetric inequality 
[2, 3]; edge isoperimetric inequalities have several applications in graph theory 
and computer science. 

For X, Y C V define cut(X, Y) to be a smallest size set of edges in G which 
separates X from Y in G. Note that ]cut(X,Y)l <_ IO(X){. 

For m < n, let M(m, n) denote the 2-dimensional mesh i.e. the graph defined 
by the Cartesian product of an m-ver tex  path with an n-vertex path. Let Q,  
denote the n-dlmensional hypercube graph, i.e. the Cartesian product of n 2- 
vertex paths. 

3 Meshes 

In [20] we have shown that 

~ L(G) < bcr(G) < ZiL(G), (I) 

for 6 > 2 (the lower bound holds for IE(G)I > 1.051V(G)I and in [20] the 
constant in the lower bound actually was 1/60). By composing our formula (1) 
with a result from [18]: 

(m ~/2- Ima) + O(mn): LCMCm,.)) = : .  3 

we get lower and upper bounds for bcr(M(m, n)). The issue here is to improve 
these bounds by constant multiplicative factors. 

Now we will improve the upper bound by a "column after column" drawing 
and the lower bound by a new lower bound argument. 

T h e o r e m  3.1 For a mesh M(m, n), 4 < m < n it holds: 

3 m 2 n _ l m 3  7 1 2 9 3 2 - -~mn - ~m 4- 6n + ~m < bcr(M(m, n)) <_ -~m n. 
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Proof .  Upper bound. First place the vertices of M(m,n) on the line z0 by the 
column after column manner. Then project the vertices of V1 on xl. The result 
of the theorem follows by counting the crossings between every two consecutive 
col, mn.q. Their number equals (3m 2 - 7m + 4)/2. 
Lower bound. For the sake of simplicity assume that both m and n are even. Con- 
sider a bipartite drawing of M(m, n). Then IVo[ = ran~2. For k = 1, 2, ..., ran~2, 
let Ai denote the set of the first k vertices on Xo from the left. A variant of the 
Menger's theorem [24] says that the maximum number of edge disjoint paths 
between Ah and V0 - Ah equals lcut(Ai, Vo - Ak)]. 
Claim. Each of these paths, except for those ending in the (k + 1)-st vertex 
vk+i on zo from the left, must cross all but one edges adjacent to the (k + 1)-st 
vertex Vk-i-1. 

Define a function 

[ 2v , is o < _< . 2t4, 
fCx) = m, if  214 _< x _< mn - 

[ 2vrm"n ----x, if mn - m2/4 < z < ran. 

Now we use an edge isoperimetric inequality for meshes. It is known [i, 4] that for 
any X C M(m~n), la(X)l >_ f(IX]) holds. The set cut(Ak, Vo - A k )  partitions 
V(G) into X and V(G) - X  such that Ak C X and V0 - A ~  C V(G) - X .  
(Actually X = X(Ah) depends on Ak, but for the sake of simplicity we do not 
show this dependence in our notation.) Clearly ]cut(Ah, Vo -Ak) l  = [O(X)I. As 
Ak C X C V(G) - (Vo - Aa), the concavity of f gives 

mn k lcut(Ak, Vo-A,)I >_ min{f(lAkD, j'(IV(G)--(V0-Ak)I)} = min{/(k), f ( - ~ - +  )}. 

There are at most m + n vertices in V0 whose degree is less than 4. We are going 
to give a lower bound for the number of crossings that happe~l to edges adjacent 
to vh+l. It is convenient not counting the contribution of vertices v~+l whose 
degree is less than 4. Hence if k runs from I to ran~2-1, using only vertices v~+l 
whose degree is 4, the Claim yields that all (A~, Vo - Ak) paths but 4 intersect 
at least 3 of the edges adjacent to vk+1. Below a sum with a prime indicates 
m + a missing terms. We obtain 

r ~ - i  

bcr(MCm , n)) > E t(lc~t(Ak, V0 - Aa)I - 4) 
k=l 

The denominator 2 occurs before the sum is because each crossing is counted at 
most twice. Further, 

~ - 1  
3 mn 

bcr(M(m,n)) >_ ~ E imin{/(k),/(--~- + k)} - 3mn 

= /min{f(k), f ( - ~  + k)} 
k----1 k= z~ +I 



1.1 

P 

a~a-1 
3 

4 

k----1 

> 6 v~dx  + (m2n - m 3 - 4m) - 3ran - (m + n)-~-  

> m,n_¼m3 3 , 
- - r a n  - - 3m. _ ~ m  

We excluded from Theorem 3.1 the cases ra = 2, 3. The result bcr(M(2,n)) = 
n- I can be easily deduced from the optimal bipartite drawing of the even cycle 
C,., [14]. 

T h e o r e m  3.2 For n >_ 3 it holds: 

bcr(M(3, n)) = 5n - 6. 

Proof i  Upper bound. First place all vertices of M(3, u) on xo in a column aS-rex 
column manner. Then project the vertices of V1 on xz. It is easy to see by 
induction on n that the resulting drawing has 5n - 6 crossings. 

2,1 

1,2 3,2 1,2 1,3 2.1 

2~. .>,3 

32. 3,3 

1,1 3,1 2,2 1,3 

Fig. 1 : Mesh M(3, 3) and its optimal bipartite drawing 

3,1 
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2,3 

3,3 

Lower bound. Imagine that M(3, n) consists of 3 row and ra column vertices. Let 
M(3, 3) denote the submesh induced by the last 3 column vertices. We proceed by 
induction on n. By a case analysis we can show that bcr(M(3, 3)) = 9. Suppose 
that bcr(M(3, n -  1)) _> 5 ( n -  1) - 6 ,  for n >_ 4 and consider M(3, n). Using a case 
analysis again one can show that the edges incident to the last column vertices 
in M(3, n) contain at least 5 crossings. In fact this can be verified considering 
the submesh M(3, 3) only. Therefore 

bcr(MC3,n)) >_ bcrCM(3, n - l ) ) + 5  >_ 5n-6 .  O 
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4 H y p e r c u b e s  

For hypercubes we could apply again our result (1) from [201 and compose it with 
a result of Harper who showed in [151 that: L(Q.)  = 2~-1(2" - 1). This would 
give us lower and upper bounds on bcr(Q.). The issue here is to obtain better 
bounds than those. The upper bound is given by a recursive drawing. Then we 
adjust the lower bound argument from the previous section to hypercubes. 

T h e o r e m  4.1 For n >_ 3 it holds: 

n4 "-2 - O(4") < ber(Q.) _< n4 " - I  

Proof .  Upper bound. Draw Q .  recuraively. The drawing of Q2 is unique. Assume 
that we have a drawing D ( Q . - I )  with 

~ ( D ( Q . - I ) )  < ( 2 n  - 5 )2  ~"-~  - ( (n  - 1) ~ - (n  - 1) - I )2  " - ~ .  

Place a copy of the drawing D ( Q . - I )  next to the drawing D(Q. - I )  and add 
2 " - I  new edges to complete the drawing of D(Q. ) .  There are 2 2"-4 crossings 
of new edges with new edges and (n - 1)2"-1(2 "-5 - 1) crossings of new edges 
with old edges. See Fig. 2. We have: 

bcr(D(Q.))  <_ 2bcrCD(Q._1)) + 2 2n-4 Jr (r~ - -  I)2"-I(2 "-2 - 1) 

= (2n - 3)2 2"-3 - (n 2 - n - 1)2 n-2 < n4 "-I .  

Fig.  2 : Bipartite drawings of Q2 and Q3. 

Lower bound. We apply the same argument as for 2-dimensional meshes. Con- 
sider a bipartite drawing of Q , .  Note that [Vol = 2 "-1. For k = 1, 2, ..., 2 "-1 - 1, 
let Ak C V0 denote the set of the first k vertices on z0 frcm the left. Following 
Bollobfis and Leader [5] define a function f(x) as follows: 

S x ( n -  logz), if I < z < 2 "-I 
/ ( x )  = [ ( 2 - -  ~ ) ( . - l o g ( 2 -  -~ ) ) ,  if 'z--1 < ~ < 2-. 

(Here log denotes logarithm based 2.) An edge isoperimetric inequality for hy- 
percubes (see e.g [9]) says that  for any X C Qn, the inequality IO(X)I >_ f ( IX l )  
holds. Following the reasoning applied for meshes (i.e. !cut(A~, Vo - Al,)[ >_ 
min (f(k),  f (2  "-1 + k)) for 1 < k < 2 " - I )  we show that 

lout("k,  Vo - A~)t >_ rain{k(.  - logk), (2 " - I  - k)(n - iog(2 "-1 - k))}. 
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Hence if k runs from 1 to 2 n-1 - 1 we get 

2,,-t_1 
n - - 1  

__> " 7 -  ~ (IcutCA,, Vo - -  AI,)I - -  ~) 
k=l  

2 ~-~-I >n-I 
- --T-- ~ m~uTkCn - 1ogk), C 2"-~ - klCn - log(2 "-~ - k))} - n(n - 112 "-~ 

k----I 
2--~_1 

>_ (n - I) ~ k ( n  - logk) + (n - 1)2 "-2 - n ( n  - 1)2 '~-2 
k= l  

2"-2_1 
= nCn - 1)2"-3(2 "-2 - 1) + (n - 1)2 "-2 - nCn - I)2 '`-2 - ( r , -  1) Z kbogk, 

where we used that for k _< 2 "`-2 it holds k(n-logk) <_ (2 n-1 -k ) (n - log(2  n-x - 
k)). Observe that 

2 " - ~ - 1  f 2"-2 1 
klogk < ::logxdx = (n- 2)2 2"`-5 - 1 2:'`_ s ÷ 

/c=I #I Lu2- 41n2" 

Substituting this into the previous inequality we get the result. D 

5 A general lower bound method based on eigenv~ues 

Our basic reference to spectral graph theory is Fan Chung's recent book [8]. 
We use Laplacian eigenvalues of a graph like [8] and define AG as the smallest 
positive Laplacian eigenvalue of the graph G. 

The connection between eigenvalues and isoperimetric inequalities has been 
subject of study since long. We recall the following theorem from Section 2.2 of 
[8]: For X C V(G) 

IOXl > m!n(va(x),   ol(v(a) - x) ) .  
- 2 

(2) 

Assume now G = (Vo, Vh E) is a bipartite graph in an optimal bipartite drawing 
D. We apply to bet(G) the lower bound technique developed for hypercubes and 
meshes. Let vi denote the i-th vertex in Vo and A~ denotes the set of the first i 
vertices in Vo. 

[~t(A, ,  Vo - A~)I = tOX (A~)I > -'_.v_~ m i n ( v a ( X  ( A~) ), vol(V ( G) - X (Ai) ) ) (3) 
- 2 

>_ - ~  mln(vol(A,), vd(Vo - A~)). (4) 
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Using (2) for estimating ]OX], instead of an explicit function f(z) that is rarely 
known, we end up with the estimate 

Wol-1 
2bcr(G) > ~ ( d ( v , + i ) - 1 ) ( A 2 m i n ( v o t ( A i ) , v o l ( V o - A , ) ) - d ( v i + i ) ) . ( 5 )  

Formula (5) applies very easily when all degrees in V0 are the same. This is the 
case, for example, for hypercubes. In this case AQ. = 2/n (p. 6 in [8]) and we 
easily can derive the lower bound of our Theorem 4.1 with a slightly weaker 
(halved) multiplicative constant. 

It is instructive to see how far can we get with eigenvalues if we try this 
approar~ to meshes. The first problem that we face is that the graph is not 
regular. It is unclear how to give good lower bounds for ~ i  aibi in the RHS of 
(5) in general. This problem can be overcome since almost M1 degrees are 4 if 
both n, m grow large. 

The bigger problem is that  AM(,~,,~) is simply not large enough. The stoma]lest 
positive Laplacian eigenvalue of an n-vertex path is 1 - cos ~ - i  = O(A~) [8], p. 
6. By the results of [8], p. 37, AM(,,,~) = 8(1 -- co s t_ i )  = ~(_i) ,  since n > m. 
Therefore in this way we cannot get anything as good as our lower bound in 
Theorem 3.1. 

Note that [17] has developed a lower bound for the linear arrangement value 
of a graph in terms of the smallest positive Laplacian eigenvalue. This lower 
bound can be combined with (1) to obtain a bound (5). However, due to the 
large constant in (1), formula (5) is expected zo ~ve tighter bounds. 

6 Concluding Remarks 

We introduced a new method for establishing lower bounds on bipartite cross- 
ing numbers. The method is based on edge isoperimetric inequalities. By means 
of the new method we essentially improved the previous lower bounds for meshes 
and hypercubes. The method is especially well suited for *'well structured graphs", 
for which good edge isoperimetfic inequalities and/or the smali~t positive Lapla- 
cian eigeavalue are known [2]. Our upper and lower bounds still leave space for 
possible improvements. We believe that  the upper bounds are closer to the op- 
timM values than the lower bounds. 

A c k n o w l e d g m e n t .  The research was partly done while the second and fourth 
authors were visiting Department of Mathematics and Info.~matics of University 
in Passau. They tbanl¢ Prof. F.-J. Brandenburg for invitation and for the inspir- 
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