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Abst rac t .  We have proposed a two-stage f ramework for poly- 
gon retr ieval  [12, 11] which incorpora tes  bo th  qual i ta t ive  and 
quan t i t a t ive  measures of polygons in the first and second stage 
respectively.  In this paper ,  we in t roduce  an extens ion  to our  
two-stage framework.  We propose a new polygon match ing  
technique  using Circular  Er ror  Bound  and descr ibe how this  
technique  works under  t ransla t ion and scaling of  polygons.  Base 
on this technique,  we propose a new t ransla t ion invariant  sim- 
i lari ty measure for polygons named Min imum Circular  Er ror  
Bound,  which can be used in the second stage of  the two-s tage  
f ramework.  We compare  the Min imum Circular  Er ror  Bound  
m e tho d  with the Hausdorf f  Distance me thod  and demons t r a t e  
the  advantages of  our  method .  

1 I n t r o d u c t i o n  

Shape matching and measuring similarity between shapes are important  issues in 
pattern recognition. They can be applied in many applications, such as providing 
query-by-shape facility in image database systems and constructing hand writing 
recognition systems. In this paper, we focus on the matching of polygonal shapes 
instead of arbitrary shapes, since shapes are often represented by polygons and 
polygon approximation of shapes is acceptable in many applications. 

In [12, 11], we proposed a two-stage framework for polygon retrieval in image 
databases. The first stage of the framework uses the Binary Shape Descriptor 
(BSD) [2] technique to perform polygon classification and prune the search space 
in order to speed up query processing. The second stage of the framework uses 
any available polygon similarity measuring technique for quantitat ive measure- 
ment. of the similarity between polygons. We proposed the Multi-Resolution Area 
Matching (MRAM) technique in [12, 11] as the technique to be incorporated at 
the second stage. In this paper, we propose an extension to the two-stage frame- 
work which allows systematic control on the degree of search space pruning. 

Considerable works have been carried out on the polygon matching problem. 
Most of these researches extract features from polygons and use these features 
as similarity measure [9, 6, 4, 10]. However, the similarity ranking of polygons 
produced by these methods may not coincide with human perception. In this 
paper, we propose a polygon matching technique using Circular Error Bound 
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(CEB) which is based on an intuitive human concept of polygon resemblance. 
Using the same idea, we propose a polygon similarity measure named Minimum 
Circular Error Bound (MCEB) which produces polygon rankings resembling 
human rankings. The MCEB method can be used at the second stage of the 
two-stage framework for shape matching. 

The two-stage framework is implemented in the Montage image database 
system [8] currently under development at the Chinese University of Hong Kong. 
The Montage system is an image database system designed fbr the fashion, 
textile, and clothing industry in Hong Kong. It supports feature based retrieval 
by color histogram, color sketch, shape, and texture. 

This paper is organized as follows. We present the extension to the two-stage 
framework in Section 2. We propose the polygon matching technique using Cir- 
cular Error Bound in Section 3. In Section 4, we present the Minimum Circular 
Error Bound similarity measure for polygons. The experimental results of our 
work will be discussed in Section 5. Conclusion is made in Section 6. 

2 Extension to the Two-Stage Framework 

The two-stage framework approach we proposed in [12, 11] may fail to produce 
good matching results because of the first stage filtering mechanism. In Figure 1, 
there are three polygons named P, Q, and R. Using polygon P as the target 
polygon, the proposed method will not be able to produce the result that polygon 
Q is more similar to polygon P than polygon R does. It is because polygon Q 
is not in the equivalent class as polygon P so it will not be selected at the first 
stage. On the other hand, polygon R is in the same equivalent class as polygon 
P so it is selected for the second stage matching. Yet, polygon Q appears to be 
more similar to polygon P than polygon R to polygon P. 

To tackle this problem, we propose the following extension to the first stage 
of the two-stage framework. When a query is initiated, the SBSD of the target 
polygon is computed. All polygons inside the database having a SBSD within a 
user specified Hamming Distance to the SBSD of the target polygon are selected 
for the second stage processing. For example, if user specifies a Hamming Dis- 
tance of 1, both polygon Q and polygon/{ in Figure 1 will be selected for second 
stage matching so polygon Q will have the chance to be compared with polygon 
P. Whether polygon Q is said to be more similar to polygon P or not will still 
depends on the polygon similarity measuring method used at the second stage. 

This extension provides a systematic way for controlling the degree of pruning 
database entries. Small Hamming Distance value has larger pruning effect but 
with higher risk of producing worse matching results. On the other hand, large 
Hamming Distance value may produce better matching result but will result in 
inefficiency since a lot of polygons will be selected for second stage matching. 

3 Polygon Matching using Circular Error Bound 

We propose a polygon matching technique based on an intuitive human definition 
of polygon resemblance. The intuitive definition of similar polygons is as follows. 
If two polygons are similar (or matched), then each vertex of one polygon is 
close to its corresponding vertex of another polygon when the two polygons 
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are overlapped. The correspondence between vertices is an one-to-one mapping.  
Therefore, the definition and the technique we proposed only work on polygons 
tha t  have the same number of vertices. Before the two polygons are overlapped, 
translation, scaling and rotation are allowed to be performed on the polygons. 

D e f i n l t i o n l .  A polygon P is represented by an ordered list of vertex coor- 
dinates, P = (V1 , . . . ,  V,~) where Vi C IR 2 and n is the number  of vertices of 
P.  

D e f i n i t i o n  2. A transformation T is a vector, i.e. T = (t~, ty, s~, Sy, O) where t~ 
is translation in X direction, ty is translation in Y direction, s.~, is the scaling 
in X direction, sy is the scaling in Y direction, and 0 is the rotat ion about  the 
origin. T ( Q )  denotes the polygon (or vertex) obtained by applying T to Q. 

D e f i n i t i o n  3. Given a tolerance vector E = ( q , . . .  , E~), Q is said to be matched 
with P if there exists a t ransformation T such that  Q' = T ( Q )  = ( U ' , . . . ,  U'~) 
and Vl<i<,~llr~ - U)'II _< e~, where 11" II denotes the Euclidean norm. 

D e f i n i t i o n 4 .  Given V/, ei and Ui, the ith Circular Error Bound, Ci, is a circle 
with ei as its radius and (Vi - Ui) as its center. 

Note tha t  Definition 3 assumes we Mready know the pairing of vertices between 
the two polygons, i.e. Vi should match Ui. 

The polygon matching task is formulated as follows. Given two polygons P 
and Q with a tolerance vector E, the task is to determine whether a t ransforma- 
tion T exists such that  Q is said to be matched with P under Definition 3. By 
Definition 3, the t ransformation T is an arbi trary tuple ( t~, ty ,S~,  Sy, 0). How- 
ever, in nowadays applications, the transformations in polygon matching task are 
often restricted to some special cases, for example,  translation and (or) scaling 
only. With restricted transformations,  we have efficient solutions for the polygon 
matching task. In the following sections, we will present the solution for the poly- 
gon matching task when (t) only translations are allowed, (2) only translations 
and uniform scaling in X, Y direction are allowed, and (3) only translations and 
independent scaling in X, Y direction are allowed. 

3.1 Translation 

Assume that  t ransformation T in Definition 3 is restricted to T = (t~, ty, 1, 1, 0). 

P r o p o s l t i o n l .  Given P = (V1, . . . ,Vn) ,  Q = (U1 . . . .  ,U~), E = ( q , . . . , e n ) ,  
if  the n Circular Erzvr  Bounds C1, . .. , Cn of  P and Q have common intersec- 
tion, then Q is matched with P.  

Proof. Assuming Vi = (ai, bi) and Ui = (ci, d~), by Definition 4, Circular Error 
Bound Ci is a circle with ci as its radius and (ai - ci, bi - di) as its center. If  
C1 , . . .  , C~ have common intersection, then for any point (tz, ty) in the common 
intersection, the distance between this point and the center of any Ci is larger 
or equal to the radius of C~. Figure 2(a) illustrates this idea when both P and Q 
are triangles. Thus, Vl_<i<n, [(ai - ei) - t~] ~ + [(bi - di) - ty] ~ < ci 2. Re-arranging 
this equation, we have [ai - (ei +t~)] 2 + [hi - (di +ty)]  2 <_ ¢i 2 which is equivalent 
to I ] ~ -  U~I] < c~ where U i' = T(Ui)  and T = (t~,ty,  1, 1,0). By Definition 3, Q 
is matched with P.  
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3.2 T r a n s l a t i o n  a n d  u n i f o r m  scal ing in X ,  Y d i r e c t i o n  

Assume that  transformation T in Definition 3 is restricted to T = (tx,  ty,  s, s, 0). 
Let Ui - (ci, di) and apply the scaling transformation S = (0, 0, s, s, 0) to Q, we 
have U[ = S(Ui) = (sci,  sdi) .  Thus, Circular Error Bound Ci of P and Q', where 

= (hi, bi), is a circle with ci as its radius and (hi - s c i ,  b~ - sdi) as its center. 
Two Circular Error Bounds Ci and Cj intersect each other if and only if 

[(a~ - Be,) - (as - se~)] ~ + [(b~ - sd~) - ( b  - sdh)] ~ -< (~  + ~ ) ~  (1) 

Re-arranging Equation (1), we have 

[(ci - cj) 2 + (& - dj)2]s 2 - 2[(hi - a~)(ei - cy) + (b~ - bj)(dl  - dj)]s (2) 
+ [(el - cj)  2 + (di - dj)  2 - (el + ej) 2] _< 0 

Solving Equation (2), we get a range, ~ij ,  for s that  the inequality holds (Fig- 
u re  2 (b ) ) .  

P r o p o s i t i o n 2 .  I f  ~l<_i,j< ~ Si j  ~ O, then Q is matched with P .  

Proof. If N~<_i,j<_~ 5~J ~ ~, then 3S = (0, 0, s, s, 0) G ~ < _ i , j , < , ~ j  such that  
Circular Error Bounds C~, . . .  , C~ of P and Q~ have common intersection, where 
Q' = S ( Q ) .  By Proposition 1, Q' is matched with P. Thus, BT = ( t , ,  ty ,  1, 1, O) 
such that V~<i<,~HV~ - U['[[ <_ e~ where U[' = T(U[) .  Therefore, ~T ~ = T o 
S = ( t ~ , t y , S , s , O )  such that  V~<_~<nNV~ - U['H <_ ~i where U[' = T ' (Ui ) .  By 
Definition 3, Q is matched with P. 

3.3 T r a n s l a t i o n  a n d  i n d e p e n d e n t  scal ing in  X ,  Y d i r e c t i o n  

Assume that  transformation T in Definition 3 is restricted to T = (t~, tu, s~, By, 0). 
Let Ui = (ci, di) and apply the scaling transformation S = (0, 0., s~, By, 0) to Q, 
we have U[ = S(Ui)  = (s~ci, sydi) .  Thus, Circular Error Bound ~Ci of P and Q', 
where Vi = (ai, b~.), is a circle with c~ as its radius and (hi - s~ci, bi - sydi)  as its 
center. Two Circular Error Bounds Ci and Cj intersect "each other if and only if 

[(a~ - sxe~)  - (a~ - s~c~)]  ~ + [(b~ - syd~)  - ( b  - s y d j ) ]  2 < ( ~  + ~ ) ~  (3)  

Re-arranging Equation (3), we have 

[(ai - a j )  - (ci - cj)sx] 2 + [(hi - bj) - (di - dj)sy] 2 <_ (ei -}- ej) 2 (4) 

Equation (4) defines an ellipse, ~ j ,  on the s~-Sy plane. A point (s~, By) in F4j 
defines a transformation S = (0,0, s~, By,0 ) such that  when S is applied to 
Q, the Circular Error Bounds Ci and Cj, of S ( Q )  and P, intersect each other 
(Figure 2(c)). 

P r o p o s i t i o n 3 .  ] f  Vl<_i,j<_nlV-4j have common  intersection,  then Q is matched  
with P .  

Proo f  If V l < i j < _ ~ j  have common intersection, then for any point (s~ ,Sy)  in 
the intersection, Circular Error Bounds C 1 , . . . ,  C~ of P and Q~, intersect each 
other where Q' = S ( Q )  and S = (0, O, sx, sy, 0). By Proposition 1, Q' is matched 

" <: W 1,0 such that  Vl<i<~, ~ - U. c~ here U~. w i t h P .  Thus, 3 T = ( t ~ , t y , 1 ,  ) _ _  II ~ l l _  , = 
T(U[) .  Therefore, 3T' = T o S  = ( t x , t y ,  sx, By, 0) such that Vi<i<~, IIVi-U['ll  <_ cl 
where U[' = T ' (Ui ) .  By Definition 3, Q is matched with P. 
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4 M i n i m u m  C i r c u l a r  E r r o r  B o u n d  

The results presented in Section 3.1, 3.2, and 3.3 only deal with queries of 
whether a polygon Q is matched with another polygon P subject to some toler- 
ances and under certain transformation restrictions. It  is also useful to find out 
how similar a polygon Q is comparing to another polygon P.  For example,  we 
may  want to rank a list of polygons according to the similarity between these 
polygons and a target  polygon. We propose a translation invariant similarity 
measure of polygons named Minimum Circular Error Bound (MCEB) based on 
the Circular Error Bound technique we described above. 

D e f i n i t i o n  5. The Minimum Circular Error Bound of a polygon Q = (U1,. • • , U~) 
comparing to another polygon P = (V1,. . .  , Vn) is defined as 

= min max  [ IV/-  T(Ui)ll 
V t x , , ~ T = ( t = , t ~ )  l <_i<_n 

can be calculated as follows. Let ld = (ai, bi) and Ui = (ci, di). Further assume 
that  the tolerance vector E = ( q , . . . ,  e~) where q . . . . .  c~. The Circular 
Error Bound Ci is a circle with e:i as its radius and ( a i  - -  c i ,  bi - di )  as its center. 
If  two Circular Error Bounds Ci and (5) intersect each other, we have 

[(ai  - c i )  - ( a j  - cj)] 2 + [(bi - d i )  - (bj  - dj)] 2 < (¢i + e j )  ~" (5) 

Since ei = e j ,  we denote the value of ei and ej as e i j .  The minimal value of el j  that  
Equation (5) holds is ei j  = ½V/[(ai - ci)  - ( a j  - c j ) ]  2 + [(bi - d i )  - (bj  - d j ) ]  2. 
The MCEB of the two polygons Q and P is ( = maxl_<i,j_<n ¢i j ,  such tha t  
for el  = . . . .  ~,~ >_ ~, V l < i , j < n  C i  and C j  intersect each other. Tha t  is, for 
Q . . . . .  en > ~, Circular Error Bounds C1 , . . .  , C'n of Q and P have common 
intersection and Q is matched with P under Proposition 1. 

5 E x p e r i m e n t a l  R e s u l t s  

We compare  the MCEB method with the Hausdorff Distance method [3, 5]. 

D e f i n i t i o n 6 .  Given two finite point  sets A = { a l , . . . ,  a,,} and B = { b t , . . . ,  bin}, 
the Hausdorff Distance is defined as H ( A ,  B) = max(h(A,  B ) ,  h ( B ,  A ) ) ,  where 
h ( A ,  B) = maxaeA minbeB [[a -- bl[ and 11" [[ is some underlying norm on the 
points of A and B. 

We choose Hausdorff Distance method for comparison since both methods  mea- 
sure polygon similarity based on the distance between polygon vertices. We will 
compare their similarity ranking results as well as the running t ime complexity. 

5.1 Similarity Ranking 

We compare the polygon rankings produced by the MCEB and the Hausdorff 
Distance method.  The experiments are conducted as follows. In each experiment,  
two polygons are selected for generating the input polygons. For example,  Fig- 
ure 3(a) and Figure 3(b) show the two polygons used in one of experiments where 
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Figure 3(a) is used as the first polygon and Figure 3(b) is used as the last one. 
By interpolating these two polygons, 48 intermediate polygons are generated, 
which gives us 50 polygons in total. 

Using this method, we obtain a list of polygons ranked by their relative 
similarity to the first polygon, which resembles human ranking. We then rank 
these 50 polygons using the MCEB method and the Hausdorff Distance method 
accordingly using the first polygon as the target polygon. We use the number 
of polygons having different relative ranking fl'om the original list as the quality 
measure of the rankings produced. A small number indicates a good ranking 
which means that the ranking produced is similar to the original list as well as 
human visual ranking. 

Figure 3(e) and Figure 3(f) show the rankings produced by the MCEB 
method and the nausdorff Distance method using Figure 3(a) and Figure 3(b) as 
the input data. The quality measure of the two rankings are 0 and 9 respectively. 
Figure 3(g) and Figure 3(h) show the rankings produced by the MCEB method 
and the Hansdorff Distance method using Figure 3(e) and Figure 3(d) as the 
input data. The quality measure of the two rankings are 0 and 13 respectively. 
In these two experiments, the MCEB method produces better rankings than the 
Hausdorff Distance method. 

5.2 Running Time Complexity 

The computational complexity of the Hausdorff Distance is O(n ~) and it is O(n ~) 
for the MCEB method, if the correspondence of vertices is known, or O(n 3) if the 
correspondence of vertices is unknown since we have to exhaust the n possible 
correspondences in order to find out the overall MCEB for a n-gon. However, note 
that the MCEB method gives similarity measure between two polygons under the 
optimal translation, but the Hausdorff Distance method does not. We may want 
to use the Hausdorff Distance under optimal translation for ranking polygons 
instead of the original Hausdorff Distance in order to produce better ranking of 
polygons. The computational complexity for optimal Hausdorff Distance under 
translation is O(n41og3(n2)) [1], which is much larger than that of the MCEB 
method. 

Table 1 shows the average query processing time of the MCEB method, 
the Hansdorff Distance method and the MRAM method we that proposed in 
[12, 11]. The experiments are conducted using the simple system we described 
in [12]. There are 9000 polygons in each testing database and each database is 
consisted of polygons with a specific number of sides, from 3 to 8. The table 
shows that MCEB has an average query processing time less than the Hausdorff 
Distance method, while the MRAM has the smallest average query processing 
time among the three methods. 

6 C o n c l u s i o n  

In this paper, we introduce an extension to the two-stage framework for polygon 
retrieval we proposed to augment the framework with systematic control on 
search space pruning. We also propose a new polygon matching technique using 
Circular Error Bound (CEB) method which is based on an intuitive human 
idea of polygon resemblance. Based on CEB, we propose a translation invariant 
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similarity measure of polygons named Minimum Circular Error Bound (MCEB). 
We find that the MCEB method gives rankings of polygons similar to human 
rankings and it is more efficient than the Hausdorff Distance method. 

Right now, the CEB method only handles polygon matching under trans- 
lation and scaling. A natural extension to the CEB method is to incorporate 
rotation. Another possible extension to our work is to enhance the translation 
invariant MCEB method such that it is scaling invariant as well. 
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Fig. 3. Similar ranking experiments 
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