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Abst rac t .  The problem of a real-time pose estimation between a 3D 
scene and a camera is a fundamental task in most 3D computer vision 
and robotics applications such as object tracking, visual servoing, and 
virtual reality. In this paper we present a fast method for estimating the 
3D pose using 2D to 3D point and line correspondences. This method is 
inspired by DeMenthon's method (1995) which consists of determining 
the pose from point correspondences. In this method the pose is itera- 
tively improved with a weak perspective camera model, at convergence 
the computed pose corresponds to the perspective camera model. Our 
method is based on the iterative use of a paraperspective camera model 
which is a first order approximation of perspective. Experiments involv- 
ing synthetic data as well as real range data indicate the feasibility and 
robustness of this method. 

1 Introduction and motivation 

The problem of object pose from 2D to 3D correspondences has received a lot of 
attention both in the photogrammetry and computer vision literatures. Various 
approaches to the object pose (or external camera parameters) problem fall 
into 2 distinct categories: closed-form solutions and non-linear solutions. Closed- 
form solutions may be applied only to a limited number of correspondences [2], 
[5]. Whenever the number of correspondences is larger than 4 then closed-form 
solutions are not efficient and iterative non-linear solutions are necessary [7]. The 
latter approaches have two drawbacks: i) they need a good initial estimate of the 
true solution and ii) they are time consuming. Therefore, such approaches can 
not be used in tasks that  require high speed performance (visual servoing, object 
tracking, ...) [3]. To our knowledge, the method proposed by DeMenthon & Davis 
[1] is among the first a t tempts  to use linear techniques, associated with the weak 
perspective camera model in order to obtain the pose that  is associated with the 
perspective camera, model. The method starts with computing the object pose 
using weak perspective model and after a few iterations converges towards a 
pose estimated under perspective. 

In this paper we establish a link between paraperspective model and per- 
spective model in order to estimate the pose using both points and straight 
lines. It has been argued that  since features like straight lines are determined 
by a large number of pixels, the redundancy makes it possible to locate them 
accurately in the image. Furthermore, lines can be extracted even if they are 
partially occulted. 
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2 B a c k g r o u n d  a n d  n o t a t i o n s  

Object frame 

%'t • / PI 

/ • Y 
/ '  X 

Imago plane u / 
r~,..,~ / / up~cal ax,$ 

C k 
Center of ] ~  
projection 

Fig. 1. The pin-hole camera model. 

We denote by Pi a 3D point with coordinates (Xi ,  Yi, Zi)  in a frame that  is 
attached to the object - the object frame. The origin of this frame is the object 
point P0. We denote by ~Pj a 3D line that is described parametrically by its 
direction Vj and by a point vector Wj .  We suppose that  the observed scene 
contains n points (P1, ..., Pn) (in addition to the reference point P0) and m 
straight lines (/)1, ..., 79,~). These points and lines are expressed in the object 
frame (see Figure 1). 

An object point Pi projects onto the image in pi with normalized camera 
coordinates xi and Yi. An object line 7)j projects onto the image in dj with 
normalized coefficient (aj, bj, ej). We denote by Pi  the vector from point P0 to 
point Pi. The normalized camera coordinates of pi are given by: 

X~i i .  P i  + t= 
xi -- Zci - k .  Pi  + tz (1) 

Yci j • P i + ty 
Yi - Z¢i -- k .  P i  + tz (2) 

These equations describe the classical perspective camera model where the rigid 
transformation from the object frame to the camera frame is: 

jT  ty R 
T =  kT  : 0 0 0  

0 0 0  
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The relationship between the normalized camera coordinates and the image 
coordinates may be obtained by introducing the intrinsic camera parameters: 

~ti ~--- O/u Xi "~ Uc 

Vi = ~v  Yi q- Vc 

In these equations a~ and a~ are the horizontal and vertical scale factors and 
ue and vc are the image coordinates of the intersection of the optical axis with 
the image plane. 

Similarly one can express the normalized perspective projection of the straight 
line ~)j as:  

d~ : a ~ x + b j y + c ~ = O  (3) 
Where z and y are related to the pose parameters by these 2 equations: 

i" Pj  + t= 
x - (4) 

k .  Pj  + G  

j .  Pj  + ty (5) 
Y -  k .  Pj  + t z  

with P j  being a point on the line :Dj. 

We divide both the numerator and the denominator of eqs. (1), (2), (4), and 
(5) by G. We introduce the following notations: 

- I = i /G is the first row of the rotation matrix scaled by the z-component of 
the translation vector; 

- :I = j / G  is the second row of the rotation matrix scaled by the z-component 
of the translation vector; 

- zo = t= / t z  and yo = t y / G  are the normalized camera coordinates of p0 which 
is the projection of P0 (the origin of the object frame); 

- ei = k .  P J t z .  

One can notice that I and J encapsulate the pose parameters (R and t). We 
now rewrite the perspective equations (1), (2), and (3) as: 

l. Pi+zo 
x i  = (6)  

l+e~  

J" Pi + Y0 (7) 
Yi = l + e i  

aj (I- P j  + x0) + bj ( J .  P j  + Yo) + cj ( 1+  k - P j / t z )  = 0 (8) 

Each line ~Pj is described parametrically by its direction Vj and by a point 
vector Wj .  Thus, we can write: 

P j - - W j + A j V j  (~j E ~ )  
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By substituting this expression into eq. (8) and considering that this equation 
holds true for all A j ,  we obtain the following two constraints: 

a j W j . I + b j W j - J + a j x 0 + b j Y 0 + c j ( l + ~ j ) : 0  (9) 

a j V j  . I + b j V j  . J - . ~ - c j ~ j  = 0  (10) 

where rlj and ~j are given by: 

rlj = k .  W j / t z  and ~j = k .  VN/tz 

3 P o s e  b y  p a r a p e r s p e c t i v e  i t e r a t i o n s  

3.1 D e f i n i t i o n  a n d  equations 

The notion of paraperspective projection was introduced by Ohta et al.[6]. Para- 
perspective may be viewed as a first-order approximation of perspective: 

1 
- - , ~ l - c i  Vi, iE {1...n} 
l + e i  

By using this approximation in eqs. (6) and (7) we obtain the paraperspective 
projection of Pi: 

x~ = ( I .  e i  + x0)(1 - el) 

I • P i  + xo - XoCi 

i .  P i  k • P i  
- + x o  - x o - -  

t z  tz  

where the term 1/ t~  was neglected. There is a similar expression for ~ .  By 
identification with eqs. (6) and (7) we obtain the relationship between the para- 
perspective and the perspective projections of Pi: 

v ( l + e i )  xoel  x i = x i  - (11) 

= ~ (1 + ~)  - y0~i (12) 

The paraperspective coordinates are related to the pose parameters by: 

i - x 0 k  v - - .  Pi  (13) X i -- XO ---- tz  

-- Y0 = j -- y0____~k. Pi  (14) 
t z  

By substituting eqs. (11) and (12) in eqs. (13) and (14), we obtain: 

P i  " I ,  = ( x i  - xo)(1 + ci) (15) 

P i  " J p  = (Yi - y0)(1 + ei) (16) 

with: 

i - z 0  k j - Y 0  k 
- - -  and J p -  (17) 

t z  tz  
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By using these relationships between vectors (I = i/t~, J = j / t~)  and vectors 
(Ip, Jp) in eqs. (9) and (10), these ones become: 

aj W j .  Ip + bj W j . J p  + (aj xo + bj Yo + cj) (1 + ~/j) = 0 (18) 

a j V j . I p + b j V j . J p + ( a j x o + b j Y o + c j ) ~ j  = 0  (19) 

In brief, each point correspondence provides the 2 constraints (15) and (16), 
and each line correspondence provides the 2 constraints (18) and (19). In matrix 
form these equations can be written as: 

c ,p 
V J p  v 

(2n-l-2m) X 6 (2r t+2m) × 1 

where G and zp are a (2n+2m)x6 matrix and a (2n+2m) vector respectively: 

(20) 

G = 

pT 0 T 

: 

0 T pT 

: 

wr 

V7 

zp  = 

( x i  - xo)(1 + ei) 

(w  - vo)(1 + ~) 

- ( a j  xo + bj Vo + cj) (1 + 7/j) 

--(aj xO + bj Yo + cj) ~j 

3.2 P o s e  b y  succes s ive  a p p r o x i m a t i o n s  

One may notice if ei, ~/j, and ~j are set to zero then (i) equation (20) becomes 
linear in Ip and Jp and (ii) the image features are supposed to be obtained with 
a paraperspective camera model (see eqs. (11) and (12)). Therefore, it is possible 
to solve this equation by successive linear approximations. In the following we 
show how the pose parameters can be computed from Ip and Jp. 

P o s e  p a r a m e t e r s  The pose parameters (R and t) can be derived from Ip and 
Jp as follows. 

First, one may notice that: 

ilipl] 2 = ( i -  xo k) .  ( i -  zo k) 
t~ 

1 +y0  2 
IIJplI2 - t~ 

l + x 0  2 
m 

t~ 
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We obtain: 

1 ~ o  + ; tx = xotz"  ty = yotz  
t~ = -~ IIIVll 

Second, we derive the three orthogonal unit vectors i, j ,  and k. From (17) we 
can write: 

i = t, IV + z0 k (21) 
j = tz Jp +yo  k (22) 

The third vector, k is the cross-product of these two vectors: 

k = i x j  

= t 2 I v x Jp + GYo IV x k - t zxo Jp x k 

Let ~ (a )  be the skew-symmetric matrix associated with a 3-vector a and 
I3x3 the identity matrix. The previous expression can now be written as follows: 

(I3x3 - -  t~yo D(IV) + t z x o / 2 ( J r ) )  k = tz 2 I v x Jv (23) 

This equation allows us to compute k since it has full rank. Therefore, one can 
easily determine k using eq. (23) and i and j using eqs. (21) and (22). 

Pose  by  success ive  a p p r o x i m a t i o n s  The algorithm can be written as follows. 

1. For all i and j,  i E {1...n}, j E {1...m}, (n + m) >_ 3, ci = O, rlj = O, ( j  = O. 
2. Solve the overconstrained linear system (20) which provides an estimation 

of vectors IV and J p :  

[I;] 
3. Compute the pose parameters, i.e. the position (G,  tv, and tz) and orienta- 

tion (i, j ,  and k) as explained above; 
4. For all i and j ,  compute: 

k . P i  k.  Wj (j k . V j  
c i -  tz , 7 2 -  t ~ - - '  - tz 

If the changes in ci, r/j, and ~j in two consecutive iterations are below a fixed 
threshold then stop the procedure, otherwise go to step 2. 

The matrix G has full rank since it is assumed that  the observed scene is non 
eoplanar. One may notice that the pseudo-inverse of G (i.e. ( G T G ) - I G  T) can be 
computed once for all and hence it can be computed independently of the loop 
presented above. Therefore, the estimation of IV and Jp is particularly efficient. 
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4 Exper iment s  

Figure 2 shows an example of convergence of the paraperspective algorithm 
when it is applied to compute the pose of a cube. The first iteration of the algo- 
rithm found a paraperspective pose (left). After only six iterations the algorithm 
correctly determined the pose of the cube (right). This computation takes 6 it- 
erations (3.1 ms on an Ultra-Sparc). Figure 3 illustrates the pose estimation of 
a cube (its size is 7 cm) and a gripper by the paraperspective algorithm. The 
gripper is identified by 5 vertices and 5 edges, the cube is identified by 6 vertices 
and 7 edges. By combining the 2 obtained poses one can obtain the relative po- 
sition and orientation of the gripper with respect to the cube. For example, the 
relative position which is given by the translation vector gripper-cube has been 
found to be : (20cm, 1.9cm, -5.9cm) T. The origins of the 2 coordinate systems 
are shown by big crosses (see Figure 3 (right)). Therefore, by tracking the grip- 
per location in the image, one can apply visual servoing approaches in order to 
guide the gripper such that  it can grasp the cube [4]. Table 1 gives the residual 
errors in the image plane between the true features and the projected 3D model 
associated with the 2 computed poses (gripper and cube). 

5 Conclus ion 

In this paper we focused on the problem of pose computation from 2D to 3D 
point and line correspondences. We propose a fast method which establishes a 
link between paraperspective and perspective. The resulting method is very el- 
egant, very fast, and quite accurate. It can be included in real-time vision and 
robotics applications. The iterative paraperspective method has better conver- 
gence properties than the iterative weak perspective method. 

 i iii!ii!iiiiiiiiiiiiii   

first iteration second iteration sixth iteration 

Fig. 2. An example of applying the iterative paraperspective algorithm to a cube using 
7 vertices and 6 edges (peripheral). This computation takes 6 iterations (3.1 ms on an 
Ultra-Sparc). 
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first iteration third iteration 

Fig.  3. An example of applying the paraperspective algorithm to both a gripper and a 
cube. The 2 obtained poses allow one to compute the relative position and orientation 
between them. 

IResidu l error (i age  pace)llg ipperlcub I 
Vertices locations (pixels) 0.8 0.9 
Edges orientations (deg.) 0.38 1.4 
Edges locations (pixels) 0.72 6.0 

Number of iterations 231 235 
CPU time (ms) 

Table  1. Pose estimation of both the gripper and the cube using the paraperspective 
algorithm, the computer being used is an Ultra-Sparc. 
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