
Object Pose by Affine Iterations

Fadi Dornaika and Christophe Garcia

Institute For System Design Technology
GMD - German National Research Center for Information Technology

Sankt Augustin, Germany, E-ma~l: Christophe.Garcia@gmd.de

Abst rac t . The problem of a real-time pose estimation between a 3D
scene and a camera is a fundamental task in most 3D computer vision
and robotics applications such as object tracking, visual servoing, and
virtual reality. In this paper we present a fast method for estimating the
3D pose using 2D to 3D point and line correspondences. This method is
inspired by DeMenthon's method (1995) which consists of determining
the pose from point correspondences. In this method the pose is itera-
tively improved with a weak perspective camera model, at convergence
the computed pose corresponds to the perspective camera model. Our
method is based on the iterative use of a paraperspective camera model
which is a first order approximation of perspective. Experiments involv-
ing synthetic data as well as real range data indicate the feasibility and
robustness of this method.

1 Introduction and motivation

The problem of object pose from 2D to 3D correspondences has received a lot of
attention both in the photogrammetry and computer vision literatures. Various
approaches to the object pose (or external camera parameters) problem fall
into 2 distinct categories: closed-form solutions and non-linear solutions. Closed-
form solutions may be applied only to a limited number of correspondences [2],
[5]. Whenever the number of correspondences is larger than 4 then closed-form
solutions are not efficient and iterative non-linear solutions are necessary [7]. The
latter approaches have two drawbacks: i) they need a good initial estimate of the
true solution and ii) they are time consuming. Therefore, such approaches can
not be used in tasks that require high speed performance (visual servoing, object
tracking, ...) [3]. To our knowledge, the method proposed by DeMenthon & Davis
[1] is among the first a t tempts to use linear techniques, associated with the weak
perspective camera model in order to obtain the pose that is associated with the
perspective camera, model. The method starts with computing the object pose
using weak perspective model and after a few iterations converges towards a
pose estimated under perspective.

In this paper we establish a link between paraperspective model and per-
spective model in order to estimate the pose using both points and straight
lines. It has been argued that since features like straight lines are determined
by a large number of pixels, the redundancy makes it possible to locate them
accurately in the image. Furthermore, lines can be extracted even if they are
partially occulted.

479

2 B a c k g r o u n d a n d n o t a t i o n s

Object frame

%'t • / PI

/ • Y
/ ' X

Imago plane u /
r~,..,~ / / up~cal ax,$

C k
Center of] ~
projection

Fig. 1. The pin-hole camera model.

We denote by Pi a 3D point with coordinates (Xi , Yi, Zi) in a frame that is
attached to the object - the object frame. The origin of this frame is the object
point P0. We denote by ~Pj a 3D line that is described parametrically by its
direction Vj and by a point vector Wj . We suppose that the observed scene
contains n points (P1, ..., Pn) (in addition to the reference point P0) and m
straight lines (/)1, ..., 79,~). These points and lines are expressed in the object
frame (see Figure 1).

An object point Pi projects onto the image in pi with normalized camera
coordinates xi and Yi. An object line 7)j projects onto the image in dj with
normalized coefficient (aj, bj, ej). We denote by Pi the vector from point P0 to
point Pi. The normalized camera coordinates of pi are given by:

X~i i . P i + t=
xi -- Zci - k . Pi + tz (1)

Yci j • P i + ty
Yi - Z¢i -- k . P i + tz (2)

These equations describe the classical perspective camera model where the rigid
transformation from the object frame to the camera frame is:

jT ty R
T = kT : 0 0 0

0 0 0

480

The relationship between the normalized camera coordinates and the image
coordinates may be obtained by introducing the intrinsic camera parameters:

~ti ~--- O/u Xi "~ Uc

Vi = ~v Yi q- Vc

In these equations a~ and a~ are the horizontal and vertical scale factors and
ue and vc are the image coordinates of the intersection of the optical axis with
the image plane.

Similarly one can express the normalized perspective projection of the straight
line ~)j as:

d~ : a ~ x + b j y + c ~ = O (3)
Where z and y are related to the pose parameters by these 2 equations:

i" Pj + t=
x - (4)

k . Pj + G

j . Pj + ty (5)
Y - k . Pj + t z

with P j being a point on the line :Dj.

We divide both the numerator and the denominator of eqs. (1), (2), (4), and
(5) by G. We introduce the following notations:

- I = i /G is the first row of the rotation matrix scaled by the z-component of
the translation vector;

- :I = j / G is the second row of the rotation matrix scaled by the z-component
of the translation vector;

- zo = t= / t z and yo = t y / G are the normalized camera coordinates of p0 which
is the projection of P0 (the origin of the object frame);

- ei = k . P J t z .

One can notice that I and J encapsulate the pose parameters (R and t). We
now rewrite the perspective equations (1), (2), and (3) as:

l. Pi+zo
x i = (6)

l+e~

J" Pi + Y0 (7)
Yi = l + e i

aj (I- P j + x0) + bj (J . P j + Yo) + cj (1+ k - P j / t z) = 0 (8)

Each line ~Pj is described parametrically by its direction Vj and by a point
vector Wj . Thus, we can write:

P j - - W j + A j V j (~j E ~)

481

By substituting this expression into eq. (8) and considering that this equation
holds true for all A j , we obtain the following two constraints:

a j W j . I + b j W j - J + a j x 0 + b j Y 0 + c j (l + ~ j) : 0 (9)

a j V j . I + b j V j . J - . ~ - c j ~ j = 0 (10)

where rlj and ~j are given by:

rlj = k . W j / t z and ~j = k . VN/tz

3 P o s e b y p a r a p e r s p e c t i v e i t e r a t i o n s

3.1 D e f i n i t i o n a n d equations

The notion of paraperspective projection was introduced by Ohta et al.[6]. Para-
perspective may be viewed as a first-order approximation of perspective:

1
- - , ~ l - c i Vi, iE {1...n}
l + e i

By using this approximation in eqs. (6) and (7) we obtain the paraperspective
projection of Pi:

x~ = (I . e i + x0)(1 - el)

I • P i + xo - XoCi

i . P i k • P i
- + x o - x o - -

t z tz

where the term 1/ t~ was neglected. There is a similar expression for ~ . By
identification with eqs. (6) and (7) we obtain the relationship between the para-
perspective and the perspective projections of Pi:

v (l + e i) xoel x i = x i - (11)

= ~ (1 + ~) - y0~i (12)

The paraperspective coordinates are related to the pose parameters by:

i - x 0 k v - - . Pi (13) X i -- XO ---- tz

-- Y0 = j -- y0____~k. Pi (14)
t z

By substituting eqs. (11) and (12) in eqs. (13) and (14), we obtain:

P i " I , = (x i - xo)(1 + ci) (15)

P i " J p = (Yi - y0)(1 + ei) (16)

with:

i - z 0 k j - Y 0 k
- - - and J p - (17)

t z tz

482

By using these relationships between vectors (I = i/t~, J = j / t~) and vectors
(Ip, Jp) in eqs. (9) and (10), these ones become:

aj W j . Ip + bj W j . J p + (aj xo + bj Yo + cj) (1 + ~/j) = 0 (18)

a j V j . I p + b j V j . J p + (a j x o + b j Y o + c j) ~ j = 0 (19)

In brief, each point correspondence provides the 2 constraints (15) and (16),
and each line correspondence provides the 2 constraints (18) and (19). In matrix
form these equations can be written as:

c ,p
V J p v

(2n-l-2m) X 6 (2r t+2m) × 1

where G and zp are a (2n+2m)x6 matrix and a (2n+2m) vector respectively:

(20)

G =

pT 0 T

:

0 T pT

:

wr

V7

zp =

(x i - xo)(1 + ei)

(w - vo)(1 + ~)

- (a j xo + bj Vo + cj) (1 + 7/j)

--(aj xO + bj Yo + cj) ~j

3.2 P o s e b y succes s ive a p p r o x i m a t i o n s

One may notice if ei, ~/j, and ~j are set to zero then (i) equation (20) becomes
linear in Ip and Jp and (ii) the image features are supposed to be obtained with
a paraperspective camera model (see eqs. (11) and (12)). Therefore, it is possible
to solve this equation by successive linear approximations. In the following we
show how the pose parameters can be computed from Ip and Jp.

P o s e p a r a m e t e r s The pose parameters (R and t) can be derived from Ip and
Jp as follows.

First, one may notice that:

ilipl] 2 = (i - xo k) . (i - zo k)
t~

1 +y0 2
IIJplI2 - t~

l + x 0 2
m

t~

483

We obtain:

1 ~ o + ; tx = xotz" ty = yotz
t~ = -~ IIIVll

Second, we derive the three orthogonal unit vectors i, j , and k. From (17) we
can write:

i = t, IV + z0 k (21)
j = tz Jp +yo k (22)

The third vector, k is the cross-product of these two vectors:

k = i x j

= t 2 I v x Jp + GYo IV x k - t zxo Jp x k

Let ~ (a) be the skew-symmetric matrix associated with a 3-vector a and
I3x3 the identity matrix. The previous expression can now be written as follows:

(I3x3 - - t~yo D(IV) + t z x o / 2 (J r)) k = tz 2 I v x Jv (23)

This equation allows us to compute k since it has full rank. Therefore, one can
easily determine k using eq. (23) and i and j using eqs. (21) and (22).

Pose by success ive a p p r o x i m a t i o n s The algorithm can be written as follows.

1. For all i and j, i E {1...n}, j E {1...m}, (n + m) >_ 3, ci = O, rlj = O, (j = O.
2. Solve the overconstrained linear system (20) which provides an estimation

of vectors IV and J p :

[I;]
3. Compute the pose parameters, i.e. the position (G, tv, and tz) and orienta-

tion (i, j , and k) as explained above;
4. For all i and j , compute:

k . P i k. Wj (j k . V j
c i - tz , 7 2 - t ~ - - ' - tz

If the changes in ci, r/j, and ~j in two consecutive iterations are below a fixed
threshold then stop the procedure, otherwise go to step 2.

The matrix G has full rank since it is assumed that the observed scene is non
eoplanar. One may notice that the pseudo-inverse of G (i.e. (G T G) - I G T) can be
computed once for all and hence it can be computed independently of the loop
presented above. Therefore, the estimation of IV and Jp is particularly efficient.

484

4 Exper iment s

Figure 2 shows an example of convergence of the paraperspective algorithm
when it is applied to compute the pose of a cube. The first iteration of the algo-
rithm found a paraperspective pose (left). After only six iterations the algorithm
correctly determined the pose of the cube (right). This computation takes 6 it-
erations (3.1 ms on an Ultra-Sparc). Figure 3 illustrates the pose estimation of
a cube (its size is 7 cm) and a gripper by the paraperspective algorithm. The
gripper is identified by 5 vertices and 5 edges, the cube is identified by 6 vertices
and 7 edges. By combining the 2 obtained poses one can obtain the relative po-
sition and orientation of the gripper with respect to the cube. For example, the
relative position which is given by the translation vector gripper-cube has been
found to be : (20cm, 1.9cm, -5.9cm) T. The origins of the 2 coordinate systems
are shown by big crosses (see Figure 3 (right)). Therefore, by tracking the grip-
per location in the image, one can apply visual servoing approaches in order to
guide the gripper such that it can grasp the cube [4]. Table 1 gives the residual
errors in the image plane between the true features and the projected 3D model
associated with the 2 computed poses (gripper and cube).

5 Conclus ion

In this paper we focused on the problem of pose computation from 2D to 3D
point and line correspondences. We propose a fast method which establishes a
link between paraperspective and perspective. The resulting method is very el-
egant, very fast, and quite accurate. It can be included in real-time vision and
robotics applications. The iterative paraperspective method has better conver-
gence properties than the iterative weak perspective method.

 i iii!ii!iiiiiiiiiiiiii

first iteration second iteration sixth iteration

Fig. 2. An example of applying the iterative paraperspective algorithm to a cube using
7 vertices and 6 edges (peripheral). This computation takes 6 iterations (3.1 ms on an
Ultra-Sparc).

485

first iteration third iteration

Fig. 3. An example of applying the paraperspective algorithm to both a gripper and a
cube. The 2 obtained poses allow one to compute the relative position and orientation
between them.

IResidu l error (i age pace)llg ipperlcub I
Vertices locations (pixels) 0.8 0.9
Edges orientations (deg.) 0.38 1.4
Edges locations (pixels) 0.72 6.0

Number of iterations 231 235
CPU time (ms)

Table 1. Pose estimation of both the gripper and the cube using the paraperspective
algorithm, the computer being used is an Ultra-Sparc.

References

1. D. DeMenthon and L. Davis. Model-based object pose in 25 lines of code. Interna-
tional Journal of Computer Vision, 15:123-141, June 1995.

2. M. Dhome, M. Richetin, J.T. Lapreste, and G. Rives. Determinition of the attitude
of 3d objects from a single perspective vmw. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 11(12):1265-1278, 1989.

3. B. Espiau, F. Chaumette, and P. Rives. A new approach to visual servoing in
robotics. IEEE Transactions on Robotics and Automation, 8(3):313-326, June 1992.

4. N. Hollinghurst and R. Cipolla. Uncalibrated stereo hand-eye coordination. In
Proceedings of the Fourth British Machine vision Conference (BMVC 93), 1993.

5. R. Horaud, B. Conio, O. Leboulleux, and B. Lacolle. An analytic solution for the
perspective 4-point problem. Computer Vision, Graphics, and Image Processing,
47(1):33-44, July 1989.

6. Y. Ohta, K. Maenobu, and T. Sakai. Obtaining surface orientation from texels un-
der perspective projection. In Proceedings of the 7th IJCAL 1981.

7. J. Yuan. A general photogrammetric method for determining object position and
orientation. IEEE Transactions on Robotics and Automation, 5(2):129-142, 1989.

