
Bivariate Decision Trees

Jan C. Bioch, Onno van der Meer, and Rob Potharst

Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

Abstract. Decision tree methods constitute an important and much used tech-
nique for classification problems. When such trees are used in a Datamining and
Knowledge Discovery context, ease of interpretation of the resulting trees is an
important requirement to be met. Decision trees with tests based on a single vari-
able, as produced by methods such as ID3, C4.5 etc., often require a large num-
ber of tests to achieve an acceptable accuracy. This makes interpretation of these
trees, which is an important reason for their use, disputable. Recently, a number
of methods for constructing decision trees with multivariate tests have been pre-
sented. Multivariate decision trees are often smaller and more accurate than uni-
variate trees; however, the use of linear combinations of the variables may result
in trees that are hard to interpret. In this paper we consider trees with test bases on
combinations of at most two variables. We show that bivariate decision trees are
an interesting alternative to both uni- and multivariate trees, especially qua ease
of interpretation.

1 Introduction

For classification problems decision tree methods such as ID3 and C4.5 [11] continue to
be very popular. Solving a classification problem can be viewed as the search for a func-
tional relationship, where the dependent variable represents the classes and the indepen-
dent variables are the attributes of the objects to be classified [6,15]. Decision trees are
also used in KDD as a method for the sub-process of model selection [2]. One drawback
is the formidable size of many of these trees, even after pruning, in all but the most toy-
like practical situations. To attain the desired accuracy, often dozens, sometimes hun-
dreds of tests are needed, resulting in a decision tree, which is besides tedious to handle
far from easily interpreted. To be sure, one of the main reasons why decision tree meth-
ods are preferred to competitors, such as neural networks, is supposedly their ease of
interpretation. This ease of interpretation is paramount in a datamining context where
variables and data items are abundant. One way to get smaller but equally accurate trees
is to base the test in a node of the tree not on a single variable, but on a number of vari-
ables [4]. Up until now, most implementations of this idea, usually called multivariate
decision trees, make use of tests, which gauge the value of a linear combination of many
variables per node. Though the resulting trees become much smaller, they are equally
hard to interpret, as anyone knows, who has ever faced the problem of interpreting the

conjunction of a number of tests like

1.3450xl - 0.6333x2 - 0.2214x3 § 0.8779x4 + 0.5667x5 - 1.1432x6 _< 0.8883 (1)

or worse. In this paper we investigate the possibil i ty of restricting the number of vari-
ables per test to two, thus preventing hardships like (1) while at the same time we hope

233

to obtain sufficiently accurate and not too large trees. Bivariate methods have also been
used in the KDD area, among others by [15]. In section 2 we start with describing both
univariate and multivariate decision tree methods. In section 3 two variants of our own
proposed method are described. The next two sections apply our methods, first to a con-
structed dataset, and subsequently to five well known real life data sets. In the last section
we conclude that our so-called bivariate decision trees can be competitive with mul-
tivariate trees in both size and accuracy, without sacrificing the interpretability of the
resulting trees. Our second method, which we call BIT2, produces very elegant, small
decision trees and is computationally cheap. More details can be found in [1].

2 Inducing Binary Decision Trees

In this paper we will study tree classifiers (see e.g. [12]) for multiclass classification
problems. The trees we will consider consist of nodes, leaves and branches, e.g.

~X2C1<-- 1.7

C2 C3

Fig. 1. Binary Decision Tree: Example

With each node a test is associated, which in general will be of the form

n

E aiXi <_ T.
i=1

(2)

Here X1, �9 �9 Xn are features, the a~ are real coefficients and T is a real cut-off point.
With each leaf one of the classes G'I, �9 Ck is associated. Furthermore, all splits will be
binary: go left if the test is satisfied, and right if not. Thus, the example tree of Figure 1
will classify an example as C1, if X3 _< 5 and X1 _< - 4 or if Xa > 5. For the induction
of such a decision tree, we will make use of a training set of examples or data points, for
each of which both the values of all the features, and a class label are given.

234

2.1 Univariate Trees

Univariate decision trees recursively partition the training set by finding tests of the form
Xi <_ T that minimize an impurity measure. Using this test the data is partitioned into
two groups (left/right) according to whether the data points satisfy the inequality.

As an example consider the following (sorted) six values for X and corresponding
class labels:

O. 2 3 4 5 @
X - 9-0 .5-0 .10 .40 .7

Class 1 1 2 1 2

The possible values for the threshold T are the midpoints between two adjacent val-
ues of X. If we use a convex splitting criterion, we know from the work of Fayyad and
Irani [5] that we need only consider midpoints between values of X with different class
labels. For instance, (0.4+0.7)/2 is a possible threshold and leads to the following parti-
tion:

Class 1 Class 2 Total

Left 3 21 4
Right 0 2

There are many splitting criteria available, however, we limit our attention to the
Gini Index as proposed by Breiman et al. [3] in the form as given by Murthy [8] for k
classes:

I = N (1 - (Li/N) 2) + N r (1 - (Ri/Nr) 2) / X ,
i=1 i=1

where L.i (Ri) is the number of examples of class i in the left (right) node, and N1 (Nr)
is the total number of examples in the left (right) node. Calculating the Gini Index for
the example gives

(4(1.0 - (3/4) 2 - (1/4) 2) + 2(1.0 - (0/2) 2 - (2/2)2))/6.

2.2 Multivariate Trees

Several methods for constructing multivariate decision trees exist. These include CART
[3], Recursive Least Squares [4], Linear Machine Decision Trees [14] and OC 1 [8,9]. Of
these only the first and last produce binary trees for any number of classes, so we confine
our discussion to CART and its descendant OC1.

235

2.3 CART

In their epoch making 1984 book Classification And Regression Trees, abbreviated CART,
Breiman et al. [3] describe both univariate and multivariate classification trees. The al-
gorithm they propose for the multivariate case searches in each node for the linear test,
which splits the data for that node into two subsets showing the least impurity. For a
given node, this is done as follows:

1. Normalize the data by centering all the data points for the node at their medians,
and dividing by their interquartile ranges; we then get N data points x (1) , . . . , x (N) with

x (j) = (x~J) , . . . , x~)) a vector of values for each of the n features.
2. Find the best univariate split 32/ _< T, in the way as descibed above.

n 3. Next, in a number of cycles, we try to improve upon a given split V = ~ i = t aiXi <_
T by successively considering splits of the form:

V - 6(Xi + 7) _< T. (3)

A complete cycle consists of all updates of form (3). For instance, for i = 1, we can find
the best 5 by calculating

u (j) __ V (j) - - T

x~ j) + "y

for j = 1 , . . . , N, taking 7 as a fixed value. By considering the midpoints of the ordered
u (j) as possible candidates for 6, we can calculate the best split 3. It is proposed, that
this procedure is performed for three different values of % namely -0 .25, 0 and 0.25.
The best of these three is then taken as the 5 and "/that are used to update V to V' as
follows:

V' = ~ a~Xi
i = l

with

and

, [a~ for i r 1
as = ~ al - 6 otherwise

T' = T + 6 7.

This step is repeated subsequently for the other variables X2,. �9 X~. If, at the end of
such a cycle we have obtained test V = ~ a iX i <_ T, we next try to improve T by
finding the best test ~ a iX i < T, fixing the as and changing only the threshold T.

4. We stop cycling when the decrease in impurity from one cycle to the next is below
a predetermined small level e.

This algorithm aims at finding a global minimum for the impurity of the considered
linear splits. However, the algorithm can get stuck in a local minimum.

2.4 0 C 1

The linear combination search algorithm of CART, as described in the previous subsec-
tion, may not always get close to a globally optimal split. This problem has been ad-
dressed by Murthy [8] in the OC1 method. The parameter update method of OC1 fol-
lows the CART method, but includes random perturbations of the parameters when a

236

local minimum is reached and restarts from random locations (the first starting location
is the best univariate split).

3 Bivariate Decision Trees

With multivariate decision trees, each node contains a test of the form (2). In order to
enhance interpretability, we want to reduce the number of variables used in (2) to at most
two, making it a test of the form

aiX~ + ajXj <_ T. (4)

Of course, in different nodes, different choices for variables Xi and Xj may be used.
Our proposed method has two variants, which we will call BIT1 and BIT2. In the first
variant, in each node we look for the best test of type (4) allowing all combinations of Xi
and Xj, and all possible coefficients ai and aj. The second variant only allows certain
values of ai and aj : we look for the best test of the type

Xi + Xj < T or Xi - Xj < T.

Although it may look like this restricts the set of admissable tests, the input space parti-
tion induced by a number of such tests is still much more flexible than in the univariate
case, as can be seen from Figure 2. Both variants only use a bivarate test if it improves
upon the best univariate test.

3.1 BIT1

For each combination of attributes Xi and Xj of the form aiXi + ajXj <_ T we use
the CART method of parameter updating to find values for ai, aj and T. This process
is started by setting the parameters to values corresponding to the univariate test for at-
tribute Xi. For instance, if the best univariate test for X2 is X2 _< 4, and we combine
X2andX3 , we set a2 - -1 , a 3 = 0 a n d T = 4 .

If we have n variables we need to look at n(n - 1) combinations:

1 Find best univariate split
2 Find best bivariate split:

f o r / = 1 t o n
f o r j = l t o n a n d j ~ i

find aiXi + ajXj <_ T

If the bivariate split has lower impurity than the univariate split, we use the bivariate
split. Another possibility is to choose the bivariate split only if the improvement in im-
purity exceeds a threshold, say 10 percent; however, experiments suggest that this pro-
cedure often leads to increased tree size.

237

3.2 BIT2

A much faster method is to consider tests of the form Xi + X j <_ T or Xi - X j <_ T,
in addition to the best univariate test. Where univariate tests form lines parallel to the
axis, these bivariate tests form 45 degree lines. Selecting the optimal line is analogous
to finding the best univariate split. The combinations of Xi and X j are easily calculated
from the training data and give new univariate problems, so we can use the procedure
based on the results of Fayyad and Irani described above. The procedure of finding the
best test is similar to that of BIT1. Note that this method is not only faster than BIT1, it
also leads to simpler tests. Furthermore, it is flexible in modeling class configurations in
input space.

/
C2

CI

Fig. 2. Input space partition by a BIT2 tree

This method assumes that all attributes are on the same scale. I f one attribute takes
on values in [1 , . . . , 2] and a second values from [3 , . . . , 187], the combination of the
attributes will have no effect. This can be solved by scaling all attributes to have the
same range, e.g. [0, 1] and adjusting the solution for the original values. For instance, if
we find the test X1 + X2 < 1.5 for the scaled data, the test on the original data is

X1 - 1 X2 - 3
- - + - - < 1 . 5
2 - 1 187 - 3 -

oz" XI + 0.00543X2 _< 2.5163.

4 Capturing the model

In this section we will investigate whether our proposed bivariate decision tree method
is able to recover an underlying model from an artificial dataset, in which interactions
between two variables occur. We will test our method on two artificial data sets. The first
is the monkl data set [13]. This data set contains 6 attributes and two classes. The rule
that generates the data is: if (Xl = x2 or x5 = 1) then yes else no. Note that x5 takes

238
on values form [1, 2, 3, 4] and x1 and x2 from [1, 2, 3]. The bivariate methods produce
the trees shown in figure 3, which capture the rule perfectly. In the BIT2 tree, the first
node represents the x5 = 1 condition as x5 < 2, and the Xl -- x~ condition requires
two tests.

X5 _< 0.14 ~~< 2

yes yes

0.16X2-0.2121 < 0.1Q~ ~ ~ no~-J Xl -22 < -0.5~ no

yes no yes no

(a) BIT1 Tree (b) BIT2 Tree

Fig. 3. Trees for the monkl example

As a second example we constructed a data set again with six attributes and two
classes. The rule that generates the data is: if (xl _< x2) and (x4 _< x6) then y e s else
no. A univariate decision tree approximates this rule with a series of orthogonal splits,
resulting in a very large tree containing about 40 leaves. The tree produced by OC 1, on
the other hand, contains only one test:

1.3450xl - 0.6333x2 - 0.2214x3 + 0.8779x4 + 0.5667x5 - 1.1432x6 < 0.8883.

It is hard to see the structure of the problem in this representation. The bivariate meth-
ods can represent this problem exactly with only two tests, and do not require pruning.
Notice that the tree resulting from the BIT2 method is more accurate than both the BIT 1
tree and the multivariate tree produced by OC1. Figure 4 shows the trees produced by
the bivariate methods.

239

n o y e s

- X 6 < 0.03

X1 ~ 2 ~

yes

n o y e s

(a) BIT1 Tree (b) BIT2 Tree

Fig. 4. Trees for the second example

5 Experiments

5.1 Experimental Setup

We used the following experimental setup for the bivariate tree methods BIT1 and BIT2,
and OC1 (uni- and multivariate). We performed ten complete tenfold cross validations
for each data set. In each tenfold cross validation the data was split into ten disjoint par-
titions of 90 percent training data and ten percent testing data, with each method using
the same data. The final results are the mean values obtained by averaging over ten such
cross validations.

We set up the methods mentioned to use the same pruning procedure and the same
cross validation partitions of the data. The pruning procedure was cost-complexity prun-
ing with the l-Standard Error rule [3] using ten percent of the training data. Again, the
data used for pruning was identical for all four methods. All methods used the Gini Index
as the impurity measure. All attributes in the datasets were scaled to a range of [0, 1].

A further comparison was made with the results from a similar cross-validation ex-
periment as given by Quinlan [11] for C4.5 release 8.

5.2 Description of the Datasets

This section briefly describes the five data sets used in the experiments (see table 1).
All of them are well-known; for instance they are among the datasets used in [11]. The
datasets were obtained from the UCI Repository of Machine Learning Databases [7].

1. Glass data: the aim here is to correctly identify a piece of glass as belonging to one
of six possible classes, based on the refractive index and chemical composition of
the glass,

240

2. Diabetes data: contains records of signs of diabetes in Pima Indian females over 21
years based on eight continuous attributes.

3. Breast cancer: the data was compiled by Dr. William H. Wolberg at the University
of Wisconsin Hospitals [10] and has nine attributes and a diagnosis of the tumor as
benign (65.5% of the cases) or malignant (34.5%).

4. Heart disease data: tests presence (44.4% of the cases) or absence of heart disease
based on 13 patient characteristics.

5. Wave data: this data set was constructed by Breiman et al [3] as an example, and has
21 variables and three classes and is quite difficult to learn.

name !cases attr classes
glass 2 t4 9 6

diabetes(pima) 768 8 2
breast cancer 699 9 2

heart 270 13 2
wave 300 21 3

Table 1. Summary of the Datasets

5.3 Results

The results from the experiments are summarized in table 2 for the pruned trees and table
3 for the unpruned trees. The tables give the mean accuracy and mean tree size from ten
cross-validation runs, together with the standard error. From these table we can conclude
that the bivariate methods often perform much better than univariate trees, while the size
is usually quite close to the multivariate trees. The BIT2 methods only performs slightly
worse than the BIT1 method on the glass data. As the BIT1 method is computationally
much more expensive, the BIT2 method would be more useful in practice.

From additional experiments we can note the effect of scaling on the BIT2 method.
Of the five datasets, only the cancer and wave data have all attributes on the same scale,
making scaling redundant. On the diabetes data difference between scaled and original
data was not significant, but on the heart data the scaling resulted in much smaller trees
(4 leaves vs 11 leaves) and better performance than the original data. On the glass data,
however, the scaling resulted in decreased performance. This could explain the rather
low accuracy for this data.

6 Conclusion

We have discussed two methods of constructing bivariate decision trees, in which per
test node at most two attributes are used. We have shown that bivariate tree methods
can improve the interpretability of the resulting trees (both small trees and simple tests),

241

method glass diabetes cancer heart wave
BIT1 55.34-1.1 74.34-0.7 95.44-0.3 78.5-t-0.3 76.14-1.3

6.24-2.1 5.24-2.5 2.84-0.2 4.1t:0.5 5.04-1,6
BIT2 64.84-0.9 74.74-0.7 95.44-0.3 78.5-t-0.3 76.24-1.0

6.84-2.5 5.84-2.7 2,64-0.2 4.1:t:0.5 5.24-1.3
ocl -uni 63.84-2.8 73.84-1.1 94.54-0.8 75.94-0.8 69.14-1.8

8.14-4.5! 8.44-6.3 6,44-2.2 5.24-1.1 4.84-2,1
ocl - mlt 64.04-0.9 74.24-0.8 95,04-0.5 77.44-0.4 78.24-1.4

7.94-2.1 4.34-3.6 2,84-0.9 3.94-0.7 3.84-0.9 I
I

c4.5 68.24-0.8 74.64-0.3 94,74-0.2 77.04-0.2 72.74-0.3!
45.74-0.4 44.04-1.6 25.04-0.5 19.1:t:0.6 44.64-0.4

Table 2. Accuracy and Size for Pruned Trees

glass diabetes cancerI heart wave
BIT1 65.94-1.3 70.94-0.9 94.44-0.5 73.5-t-0.5 68.64-1.8

24.34-2.1 75.34-1.2 8.24-0.3 15.14-0.6 14.94-0.8
BIT2 63.34-1.3 70.2:t:1.4 93.14-0.4 73.04-0.4 69.04-2.1

27.84-2.4 75.54-2.3 11.14-0.3 19.94-0.5 15.14-1.1
ocl -uni 66.84-3.0 70.54-4.3 93.94-0.9 71.54-0.8 68.64-2.7

44.64-4.8 122.44-8.5 20.54-2.1 41.94-0.9 36.34-1.3
ocl - mlt 66.34-1.5 69.94-1.2 91.24-1.1 79.34-0.5 71.04-1.2

28.4+1.3 50.3-4-4.2 16.14-0.8 21.24-0.8 24.24-0.8
c4.5 67.54-0.9 74.24-0.4 94.24-0.2 77.64-0.2 72.64-0.3

45.54-0.4 52.34-1.3 41.44-0.3 48.44-0.5 45.44-0.4

Table 3. Accuracy and Size for Unpruned Trees

3 ~ 0,88

X5 + X l l _< 0 . 2 6 ~ X a + X p ~ 1.17

pres abs pres abs

Fig. 5. BIT2 tree for the scaled heart data

242

with accuracy at least as good as C4.5. We found both the BITI and the BIT2 method to
give good results. In addition, despite its simplicity BIT2 proved to he quite effective.
Topics for further research: we are currently investigating the issue of scaling for the
BIT2 method. This method could also be extended to include interaction terms of the
form X i X j .

References

1. J.C. Bioch, O.R. van der Meet, R. Potharst. Bivariate Decision Trees. Technical Report, De-
partment of Computer Science, Erasmus University Rotterdam, 1996.

2. R.J. Brachman. The Process of Knowledge Discovery in Databases, in: U.M. Fayyad et al.
eds. Advances in Knowledge Discovery and Datamining, Ch.2, AAAI/MIT Press, Cambridge
1996.

3. L. Breiman, J.H. Friedman, R.A. Olshen, and C.J, Stone. Classification and Regression Trees.
Wadsworth (reprinted by Chapman & Hall), 1984.

4. C.E. Brodley and RE. Utgoff. Multivariate decision trees. Machine Learning, 19: 45-77,
1995.

5. U.M. Fayyad and K.B. Irani. Multi-interval discretization of continous-valued attributes for
classification learning. In Proceedings Thirteenth International Joint Conference on Artificial
haelligence, pages 1022-1027. San Fransisco: Morgan Kaufmann, 1993.

6. B. Koehn and J.M. Zytkow. Experimenting and Theorizing in Theory Formation, in: Z. Ras
and M. Zemankova eds. Proceedings of the International Symposium of Methodologies for
hztelligent Systems, ACM SIGART Press, 296-307, 1986.

7. RM. Murphy and D.W. Aha. UCI repository of machine learning databases and domain the-
ories. Technical report, University of California, 1992.
Web Page: http : //www. ics. uci. edu/~mlearn/MLRepository, html.

8. S. Murthy, S. Kasif, S. Salzberg, and R. Beigel. OCI: Randomized induction of oblique de-
cision trees. In Proceedings of the Eleventh National Conference on Artificial Intelligence,
pages 322-327, 1993.

9. S. Murthy. On Growing Better Decision Trees from Data. PhD thesis, John Hopkins Univer-
sity, Baltimore, 1995.

10. O.L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear programming.
SlAM News, 23(5): 1-18, 1990.

11. J.R. Quinlan. Improved use of continuons attributes in C4.5. Journal of Artificial lntelligence
Research, 4:77-90, 1996.

12. B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.
13. S. Thrum Comparison of machine learning algorithms. Technical Report CMU-CS-91-197,

Carnegie Mellon University, Department of Computer Science, 1991.
14. RE. Utgoffand C.E. Brodley. Linear machine decision trees. Technical Report COINS Tech-

nical Report 91-10, University of Massachusetts, Department of Computer and Information
Science, 1991.

15. J.M. Zytkow. Automated Discovery of Empirical Laws. Fundamenta ln]blvTaticae, 27: 299-
318, 1996.

