
Deadlock Checking Using Net Unfoldings*

Stephan Melzer and Stefan RSmer**

Abst rac t . McMillan presented a deadlock detection technique based on
unfoldings of Petri net systems. It is realized by means of a backtracking
algorithm that has its drawback for unfoldings that increase widely. We
present an approach that exploits precisely this property. Moreover, we
introduce a fast implementation of McMillan's algorithm and compare
it with our new technique.

1 Introduction

In the field of static analysis of concurrent systems deadlock freeness is almost
always a desirable property. Many research has been carried out to propose
methods that check this property [3]. One of these was presented by McMillan
in [8]. It is based on net unfoldings of Petri net systems. A net unfolding is class
of partial order semantics of Petri nets, also known as branching process [4].
The heuristic used in McMillan's algorithm is particularly good where the un-
folding grows more deeply than widely and thereby only few end points of the
unfolding (i.e., cut-off points) have to be considered. These kinds of unfoldings
correspond to systems with a more deterministic behaviour. In contrast, highly
non-deterministic systems tend to yield wide unfoldings that slow McMillan's
algorithm down.

We introduce an approach that exploits the characteristic of wide unfoldings
(i.e., the number of cut-off points is high). Moreover, we present an implementa-
tion of McMillan's algorithm and compare both approaches by means of several
examples. We use Corbett 's benchmark examples [3] as well as McMillan's ex-
amples [8] which allows a direct comparison between his LISP implementation
and our carried out in C [12].

The paper is organized as follows: In section 2 we give a brief introduction of the
basic concepts of Petri nets and net unfoldings. In this section we fall back on the
introduction given in [5]. Section 3 presents the deadlock detection method using
a linear algebraic approach. In section 4 we give an implementation of McMillan's
deadlock algorithm [8]. In section 5 we show some results and compare both
approaches. Section 6 serves as a conclusion and gives an outlook on further
work. All proofs are presented in appendix A.

* This work was supported by the Sonderforschungsbereich SFB-342 A3 SAM.
** Institut fiir Informatik, Technische Universit/tt Mfinchen,

e-mail: {melzers,roemer} @informatik.tu-muenchen.de

353

2 B a s i c D e f i n i t i o n s

2.1 P e t r i N e t s

A triple (P , T , F) is a net if P and T are disjoint sets and F is a subset of
(P • T) U (T • P) . The elements of P are called places and the elements of T
transitions. Places and transitions are generically called nodes. We identify F
with its characteristic function on the set (P x T) U (T • P) . The preset of a
node x, denoted by "x, is the set {y E P U T] F(y, x) = 1}. The postset of x,
denoted by x ' , is the set {y E P U T I F (x , y) = 1}. The generalization on sets
of nodes X C P U T is defined as ' X = U~ex "z, respectively x " = U x e x x. .
A marking M of a net (P, T, F) is a mapping M : P --+ IN. We identify a
marking M with the multiset containing M(p) copies of p for every p C P. A
four-tuple ~ = (P, T, F, M0) is a net system if (P, T, F) is a net and M0 is a
marking of (P, T, F) (called the initial marking of ~) . A marking M enables a
transition t if Vp E P: F(p,t) <_ M(p). If t is enabled at M, then it can occur,

and its occurrence leads to a new marking M I (denoted M t ~ M~), defined by
M'(p) = M(p) - F(p, t) + F(t,p) for every place p. A sequence of transitions
~r = t i t2 . . . tn is an occurrence sequence if there exist markings M1, M~, . . . , Mn

such that Mo t~ M1 t~) . . .Mn-1 t.) Mn. M,~ is the marking reached by the

occurrence of cr, also denoted by Mo ~) ikln. M is a reachable marking if there
exists an occurrence sequence ~r such that M0 ~) M.
A marking M of a net is n.safe if M(p) < n for every place p. A net system Z
is n-safe if all its reachable markings are n-safe.
A net system is called deadlock-free if every reachable marking enables at least
one transition.
In this paper only nets with a finite number of places and transitions are con-
sidered. Moreover we assume that all transitions have neither an empty preset
nor an empty postset.

2.2 O c c u r r e n c e N e t s

Let (P,T,F) be a net and let zl, z2 E P U T . The nodes zl and z2 are in
conflict, denoted by z l ~ z 2 , if there exist distinct transitions t l , t2 E T such
that ' t l N ' t 2 • ~, and (t l ,z l) , (t2,x2) belong to the reflexive and transitive
closure of F. In other words, xl and z2 are in conflict if there exist two paths
leading to xl and z2 which start at the same place and immediately diverge
(although later on they can converge again). For z E P U T, z is in self-conflict
if z ~ z .
An occurrence net is a net N = (B, E, F) such that:

�9 for every b E B, I~ ~ 1,
�9 F is acyclic, i.e. the (irreflexive) transitive closure of F is a partial order,
�9 N is finitely preceded, i.e., for every x E BUE, the set of elements y E B U E

such that (y, x) belongs to the transitive closure of F is finite, and
�9 no element e E E is in self-confict.

354

The elements of B and E are called conditions and events, respectively. Min(N)
denotes the set of minimal elements of t3 tO E with respect to the transitive
closure of F .
The (irreflexive) transitive closure of F is called the causal relation, and denoted
by <. The symbol < denotes the reflexive and transitive closure of F. Given two
nodes x , y C B tO E, we say x co y if neither x < y nor y < x nor x~y.

2.3 B r a n c h i n g P r o c e s s e s

Branching processes are "unfoldings" of net systems contMning information
about both concurrency and conflicts. They were introduced by Engetfriet in
[4]. We quickly review the main definitions and results of [4].
Let N1 = (P1, T1, F1) and N2 - (P2, T% F2) be two nets. A homomorphism from
N1 to N2 is a mapping h: P1 to T1 -+ P~ tO T2 such that:

* h(Pl) C P2 and h(T1) C T2, and
, for every t E T1, the restriction of h to ' t is a bijection between ' t (in N1)

and "h(t) (in N2), and similarly for t ' and h(t)*.

In other words, a homomorphism is a mapping that preserves the nature of nodes
and the environment of transitions.
A branching process of a net system Z = (N, M0) is a pair j3 = (N' , h) where
N ~ = (B, E, F) is an occurrence net, and h is a homomorphism fl'om N t to N
such that

(i) The restriction of h to Min(N') is a bijection between Min(N') and M0,
(ii) for every el, e2 E E, if ' e l = ~ and h(el) = h(e2) then el = e2.

2.4 Configurations and Cuts

The central concept of branching processes is that of a configuration. It describes
a possible partial run of an occurrence net. Accordingly, a configuration contains
the whole history of the partial run, i.e., all events that have to occur during the
run. Moreover, a configuration has to be conflict-free, because events that are in
conflict lead to divergence which does not represent a single partial run. More
precisely: A configuration C of an occurrence net is a set of events satisfying the
two conditions: (i) C is causally closed, i.e., e E C ~ Ye' < e: e' E C; (ii) C is
conflict-free, i.e., Ve, d E C:-~(e:~e').
A set B ~ of conditions of an occurrence net is a co-set if its elements are pairwise
in co relation. A maximal co-set B ~ with respect to set inclusion is called a cut.
Finite configurations and cuts are tightly related. Let C be a finite configuration
of a branching process fl = (N, h). Then the co-set Cut(C), defined below, is a
cut: Cut(C) = (Min(N) to C ~ \ ~ In particular, given a finite configuration
C the set 3 of places h(Cut(C)) is a reachable marking, which we denote by
Mark(C).

3 Remember that this is a multiset.

355

A marking M of a system X: is represented in a branching process fl of Z if/3
contains a finite configuration C such that Mark(C) = M. It is easy to prove
that every marking represented in a branching process is reachable, and that
every reachable marking is represented in the unfolding of the net system.
In order to calculate a finite prefix of a branching process, a termination con-
dition is required where the construction of the unfolding can be stopped. If
an event is reached during the construction where something would be unfolded
which is already represented in the already unfolded prefix, then the construction
can be aborted at this event. We call these events cut-off events. More precisely:
For a given event e, we define the local configuration [e] by the set of all events
e ~ such that d < e. Moreover, we call an event a cut-off event of a branching
process /3 if/3 contains a local configuration [e ~] such that the corresponding
markings are equal, i.e., Mark(H) = Mark([e']) and the configurations [e'] is
smaller 4 than [e], i.e., [e'] C [e].
We say that a branching process/3 of a net system Z is complete if and only if
for every reachable marking M there exists a configuration C in/3 without any
cut-off event such that:

�9 Mark(C) = M (i.e., M is represented in/3), and
�9 for every transition t enabled by M there exists a configuration C U {e} such

that e ~ C and e is labelled by t.

Figure 1 shows a 1-safe net system (part (a)), a branching process (b) and a
complete and finite prefix (c), where ca, e5 and e6 are cut-off events. The ho-
momorphism h is indicated by the corresponding place/transition names inside
the nodes. Hereby, the set {el, ca, e4} is a configuration while {el, e2, e3, e4} has
a conflict and is thereby not a configuration.

el~ ~ e2

1 ~ b4 bs

t4 o4 e5

b6 b8

bla ~!P)b12
(a) (b)

E3e6
~*)b 7
(c)

Fig. 1. A net system and two of its branching processes.

4 In [5] a more precise definition of 'smaller' is given yielding a total order on config-
urations. For sake of simpficity we use the definition of McMillan [8].

356

T h e o r e m 1. Let Z = (P, T, F, Mo) be an n-safe net system. There exists a finite
and complete branching process Unf~ of Z.

Proof. See [8] for the n-safe case and [5] for an improvement of the 1-safe case.

In the sequel we use the term unfolding to denote Unfr if Z is given by the
context.

3 A n e w M e t h o d b a s e d o n L i n e a r A l g e b r a

Each place p of a net is associated with a token conservation equation. Given
an occurrence sequence M0 _2_+ M, the number of tokens that p contains at the
marking M is equal to the number of tokens it contains at M0, plus the tokens
added by (the firings of) the input transitions of p, minus the tokens removed
by the output transitions. If we denote by u(~r, t) the number of occurrences of
a transition t in a, then we can write the token conservation equation for p as:

M(p) = Mo(p) + E ~(a,t)F(t,p)- E ~(cr, t)F(p,t).
tE 'p tEp*

The token conservation equations for every place are usually written in the
following matr ix form: M = M0 + N . ~ -~, where ~--~ = (u(a, t l) , . . . ,u(cr, tm)) i s
called the Parikh vector of a, and N denotes the incidence matrix of N, a P x T
integer matr ix given by N(p, t) = F(p, t) - F(t, p).
If a given marking M is reachable from Mo, then there exists a sequence c~
satisfying M0 ~ M. So the following problem has at least one solution, namely -+
X : = or.

Variables: X: integer.
M = Mo + N . X
X > 0

The equation M = M0 + N .X (and, by extension, the whole problem) is called
the marking equation. If the marking equation has no solution, then M is not
reachable from M0.
The inverse of the implication is not valid for arbitrary net systems, but we
will see in the following theorem that the marking equation yields a sufficient
condition for reachability in aeyclic nets.

T h e o r e m 2 . Let Z be an acyclic net system and let M be a marking. M is
reachable from the initial marking if and only if the marking equation has a
nonnegative solution.

Accordingly, we can use the marking equation for an algebraic representation of
the set of reachable markings of an acyclic net system. We call a property P on
markings linear if P can be expressed as a system of linear inequalities L~,. A
linear property is valid for all reachable markings of an aeyclic net system if and
only if the marking equation and L-,~, have no common solution.

357

In 1-safe Petri nets each place can hold at most one token, and therefore a
transition is enabled if and only if the total number of tokens in its input places
is at least equal to the number of input places. In other words, the reachable
deadlocked markings satisfy ~s~ . t M(s) < ['t[for every transition t. We call
these constraints deadlock-inequalities.

P r o p o s i t i o n 3 . Given a 1-safe and acyclic net system. Z = (P, T, F, 114o), an
integer vector M is solution of the following system of inequalities if and only if
M corresponds to a dead reachable marking of Z:

Variables: M, X: integer.
M -- Mo + N . X

E M(p) < I ' t l - 1 for all t E T
pE~

X > 0

Observe that the application of proposition 3 to cyclic nets yields just a superset
of reachable dead markings [9], because in cyclic nets the marking equation is not
a sufficient condition for reachability. In this case we can interpret the solutions
of the marking equation as a linear upper approximation of the state space.
Now we are able to apply proposition 3 to unfoldings of net systems. Since
occurrence nets can be seen as acyclic and 1-safe net systems where all places of
Min(N) are initially marked we obtain the following theorem.

T h e o r e m 4. Let Unf~ = (N, h) with N = (B, E, F) be a finite and complete
prefix of the branching process of a given n-safe net system Z. ~ is deadlock-free
if and only if the following system of inequalities has no solution:

Variables: M, X: integer.
M = Min(g) + N . X

E M(p) < [' e l - 1 for all e E E
pE*e

X(e) = 0 for all cut-offs e
X > 0

The key idea is based on the fact that all markings of S are represented in the
unfolding Unfs and moreover, the local net structure of each transition is pre-
served in Unf~. Some dead markings conditional on the finiteness and acyclicity
of Unfs do not correspond to dead markings of S , because they are located
beyond a cut-off event. But these artificial deadlocks are not solutions of the
inequalities of theorem 4, because we only consider markings of Unfs that can
be reached without an occurrence of any cut-off event. Thereby we can identify
dead markings of S with dead markings of Unf~, and vice versa.

Now we want to focus our attention on implementation issues concerning the
feasibility test o f theorem 4. Since we know that N and Min(N) are integers,
we can conclude that if X is integer then so is M. Accordingly, we only have
to demand that X has to be integer and M can be treated as a rational vector.
Since we know that every event can only occur once, we can even demand X to
be binary.

358

Since all variables of X which correspond to cut-off events are equal to zero, we
can omit all these variables in the marking equation and thereby in the whole
problem. The reader should note that we cannot remove any cut-off event from
the prefix at all, because we need the intbrmation about its preset in order to
formulate the deadlock-inequalities correctly.
Using a linear-progran-l-solver like CPLEX [2] we obtain a straightforward imple-
mentation of the infeasibility test of theorem 4. Since the complexity of mixed-
integer-programs (MIP), i.e., linear programs with rational as well as integer
variables, is equal to the complexity of an algorithm to decide if the system of
inequalities has a mixed-integer solution, we can make use of the good heuristic
implemented in many MIP-solvers. The inherent complexity is NP-complete and
more precisely, it is exponential in the number of integer variables.
As we mentioned in the previous paragraph we can formulate theorem 4 just with
integer variables for non-cut-off events. Accordingly, the method for searching
for a solution of the system of inequalities of the reformulated problem of theo-
rem 4 using MIP-solvers like CPLEX, promises to yield good performance if the
number of cut-off events is high regarding the total number of events.

4 M c M i l l a n ' s M e t h o d r e v i s i t e d

McMillan presented a way to detect deadlocks in an unfolding by means of
looking at the configurations [8]. His observation was that there is no deadlock if
each configuration of the unfolding can be extended to a configuration containing
at least one cut-off event. In that case, all configurations can be infinitely often
expanded.
In other words: The net contains a deadlock if and only if there exists a con-
figuration being in conflict with every cut-off event of the unfolding. For that
purpose we need the notion of .spoiler: The set of all spoilers of a cut-off event
ec is defined as S~ = {e C E leVee} N ([ec]')', which contains all those events
that are directly in conflict with an event from the local configuration of e~.
McMillan described a branch and bound algorithm to construct a set of spoilers
S that is in conflict with every cut-off element of the unfolding, if such a set
exists. Then, S can be expanded to a configuration leading to a deadlock of
the system. Otherwise, the set. S is empty after termination of the algorithm,
indicating the net as deadlock-free. This algorithm is sketched in figure 2.
The algorithm is exponential in the size of the unfolding in the worst case because
of the backtracking. But by first taking the events with the smallest number of
spoilers, this method quickly cuts down the number of possible choices in the
average case.
For our implementation of both algorithms, the unfolding and the deadlock de-
tection procedure, we used a special data structure to store and manipulate the
nets in the C language [12]. Beside the improvements described in [5] concern-
ing the size of the unfolding by introducing a total order of the configurations,
we implemented some heuristic carried out in the combinatorial search of new

359

S := 0; Er :-- set of cut-off events;
while Ec ~ 0 do

ec :-- element of Ec with the fewest number Of spoilers;
if ec has spoilers then

choose an element e from the spoilers of ec;
S:=Su{e};
delete all events in conflict with S

e l s e
backtrack to the most recent choice of a spoiler
and restore the deleted events

endi f
od

Fig. 2. McMillan's deadlock-detection algorithm.

events to be inserted in the finite prefix. The latter change drastically reduces
the computation time: McMillan measured for the DME [7] consisting of 9 cells
nearly 19000 seconds for the calculation of the unfolding in his LISP implemen-
tation, where we need only 132 seconds to construct the finite prefix, see Table 2.
In this DME example, the size of the unfolding is independent from the chosen
order of configurations, [8] or [5].
To check the deadlock property of DME(9), McMillan measured 6600 seconds;
in our C implementation of his algorithm we get the result in 702 seconds.

5 Pract i ca l R e s u l t s

In this section we want to compare both approaches. As already mentioned, the
linear algebraic approach promises to be faster than McMillan's approach if the
number of cut-off events is high w.r.t, the total number of events. In order to
check our presumption we use the benchmark examples presented in Corbett 's
survey [3]. In Table 1 we use a representative subset of these examples to show
the performance differences between both approaches w.r.t, the number of cut-
off events. We use the abbreviations ~c,%c, Unf, DCMcM and DCMIP to denote
the number of cut-off events, their percentage of cut-offs regarding to IEI, the
time for the unfolding process 5 , for McMillan's deadlock detection algorithm and
for our approach, respectively. All results are measured on a SPARC 20/712 with
96 MBytes RAM. We used CPLEX TM (version 3.0) as underlying MIP-solver.
Binaries of the programs descripted in the paper are available from the authors.
We can directly observe that McMillan's algorithm is faster if the unfolding
has only few cut-off events (cp. DPD, RING). In contrast to the examples DPH,
ELEVATOR, FURNACE and RW where the new approach overtakes McMillan's
method. However, these benchmark results are not strong enough to demonstrate

5 We used the unfolding proposed in [5] which is smaller or equal to McMillan's.
s The example ELEVATOR has a deadlock; all others are deadlock free.
7 mere(n) indicates the process aborted due to a memory overflow after n seconds.

360

P r~ l S ta tes

'DPDi4) 601
DPD(5) 3489
DPD(6) 19861
DPD(7) [09965
DPH(4) 513
D P H (5) 3113
D P H (6) 16897
DPH(7) 79927

EI~EVATOR(1) 6 158
E L E V A T O R (2) 1062
E L E V A T O R (3) 7121
IELEVATOR(4) 43440
FURNACE(l) 344
FURNACE(2) 3778

Orig ina l ne t Unfold ing

II]P I I I,T!, II IBI I IEI [#c
36 36 594
45 45 1582
54 54 3786
63 63 8630
39 ' 4 6 680
48 67 2712
57 97!14474
66 121~ 81358

63 991 296i
146 2991 1562
327 783 7398
736 1939 32354

27 37 535
40 65 5139

1%{ Unf I
296 81 26 0~12
790 211 26 0.58

1892 499 27 3.35
4314 1129 27 25.03

336 117 35 0,15
1351 547 40 1.48
7231 3377 47 61.66

40672121427 53 1946.49

157 59 38 0.07
827 331 40 0.65

3895 1629 42 17.98
16935 7337 43 374.52

326 189 58 0,12
3111 1990 64 5,60

T ime [s]
DCMcM IDCMIp

0.3 2.0
1.9 17,3

20.2 82.~
234.0 652.6

0.3 1.8

10.5 42.9
1907.6 1472.8

0.0 0.1
0,9 2.3

18.7 14.5
492.7 387.8

0.2 0,3
19.0 18.:

F U R N A C E (3) 30861 53 99 34505 20770 13837
RING(3) 87 39 33 97 47 t l
RING(5) 1290 65 55 339: 167 37
RING(7) 17000 91 77 813 403 79

[RING(9) 211528 117 99 1599 795 137
RW(6) 72 33 85 806 397 327
RW(9) 523 48 181 9 2 7 2 4627 4106
RW(12) 4110 63 313 98378 49177 45069

67 270.02 mern(811 .1) 7 1112.5
23 ' 0 ,02 0.0 0.1
23 0,07 0.1 1.3
20 0.23 0.3 17.1
17 0.93 1.1 71.2
82 0,0~ 0.5 0.7
89 3.04 122.3 58.5
92 279.64 rnern(6004 ,9) 24599.9

Table 1. Corbett's examples.

the advantages of both approaches, because all deadlock-free examples can be
verified and even faster than via unfoldings by the application of proposition 3 to
the original system. Although this corresponds just to a semi-decision method,
it is strong enough for Corbett's examples. In other words, the gap between
the state space and the linear upper approximation obtained by the marking
equation is small enough to decide deadlock freeness.
Therefore we give two more case studies. Firstly, we take up the DME [7] example
given in McMillan's original paper [8]. Secondly, we modelled the implementation
of a readers/writers synchronization [6]. Both examples cannot be proved to
be deadlock free by application of proposition 3 to the original system. Even
a refinement of the marking equation that is proposed in [9] is not sufficient
enough in this context, i.e., the gap between the state space and its upper linear
approximation contains dead markings. This fact disables semi-decision methods
based on the marking equation or its refinement.

D i s t r i b u t e d M u t u a l E x c l u s i o m In [7], an asynchronous circuit for distributed
mutual exclusion (DME) is proposed. McMillan has already shown that the state
space grows exponentially in the number of DME-cells while the unfolding in-
creases just quadratically. Due to the fact that the unfolding has only few cut-off
events the improvement fails. In Table 2 we list the results. The times DCMcM
for the deadlock detection seem to increase exponentially, but the increment of
DCMcM is much more slighter than the increment of DCMIP. The new approach
suffers from the small percentage of cut-off events and therefore we interrupted
the example DME(7) after 12 hours.
The linear algebraic approach is not appropiated for these kind of systems. Asyn-

361

chronous circuits do not have such an abundance of non-determinism which is
required to yield wide unfoldings.

~ O r i g i n ~ l n e t ~ Time [s l
Problem(size) IPI IT[Unf DCMcM DCMIp

DME(2)
DME(3)
DME(4)
DME(5)
DME(6)
DME(7)
DME(8)
DME(9)
DME(10)
DME(ll)

Table 2. Distributed mutual exclusion-examples.

R e a d e r s / W r i t e r s Synchroniza t ion . In [6], a scalable and bottleneck-free read-
ers/writers synchronization algorithm for shared memory parallel machines is
presented. We modelled a 4-bit implementation based on busy waiting semaphors.
We used our methods to check deadlock freeness for a setting with one writer
and two or three readers (SYNC). The results are depicted in Table 3. In con-
trast to the DME example we see that the application of the linear algebraic
approach turns out to yield better results if the percentage of cut-off events is
greater than one third.

Problem(size) States [P[IT[[B[[[EI [#c IDCMoMIDCM,p
sYNo(2) 17 741 2391 40071 2 621 490123 ,71

Table 3. Readers/writers-examples.

6 C o n c l u s i o n

We have introduced a deadlock detection method based on net unfoldings us-
ing linear algebraic techniques. Moreover, we have presented an implementation
of McMillan's deadlock algorithm and we pointed out the performance gap be-
tween McMillan's LISP implementation and our optimized C version. By means
of several examples we have pointed out the strong and weak aspects of both
approaches. The results show that the larger the percentage of cut-off events is,
the more likely the new method will yield better performance than McMillan's.
Our future work is to exploit some more CPLEX heuristic in order to speed up
our implementation.
Acknowledgements . We thank Javier Esparza for drawing our attention to
this problem and Ken McMillan for sending us his LISP sources of the DME
generator.

362

R e f e r e n c e s

1. E. Best and C. Ferns Nonsequential Processes - A Petri Net View. EATCS
Monographs on Theoretical Computer Science 13 (1988).

2. CPLEX 3.0 Manual, CPLEX Corp. (1995).
3. James C. Corbett: Evaluating Deadlock Detection Methods. University of Hawaii

at Marion (1994).
4. J. Engelfriet: Branching processes of Petri nets. Acta Informatica 28, pp. 575-591

(1991).
5. J. Esparza, S. RSmer and W. Vogler: An Improvement of McMillan's Unfolding

Algorithm. Proc. of Tools and Algorithms for the Construction and Analysis of
Systems, LNCS 1055, 87-106 (1996).

6. H. Hellwagner: Scalable Readers/Writers Synchronization on Shared-Memory Ma-
chines, Esprit P5404 (GP MIMD), Working Paper (1993).

7. A.J. Martin: The Design of a self-timed Circuit of Distributed Mutual Exclusion.
In Henry Fuchs, editor, 1985 Chapel Hill Confernce on VLSI, pp. 245-260. Com-
puter Science Press (1985).

8. K.L. McMillan: Using Unfoldings to Avoid the State Explosion Problem in the
Verification of Asynchronous Circtfits. Proc. ~th Workshop on Computer Aided
Verification, LNCS 663, 164-174 (1992).

9. S. Melzer and J. Esparza: Checking System Properties via Integer Programming.
In Proc. of European Syrup. on Programming, LNCS 1058, 250-264 (1996).

10. T. Murata: Petri nets: Properties, Analysis and Applications. In Proc. of the IEEE
77(4), pp. 541-580 (1989).

11. M. Nielsen, G. Plotkin and G. Winskel: Petri Nets, Event Structures and Domains.
Theoretical Computer Science 13(1), pp. 85-108 (1980).

12. S. RSmer: Implementation of a Compositional Partial Order Semantics of Petri
Boxes. Diploma Thesis (in German). Universits Hfldesheim (1993).

A Proofs

A uxi l i a r i e s . Given a multiset or vector X, we denote by]]XI] = {z] X(x) > 0}
the support of X. Given a net system S = (P, T, F, M0) and a nonnegative
transition vector X. We denote by Zx the subsystem generated by the transitions
of tlXtl, their input and output places, i.e., Z , = (P~,Tx, F~, Mo~) with: P~ =
Pn('ltxlIullXll'), J~ = IlXll, F~ = F n ((P ~ • T~)u(T~ • P~)), M0z - MoAP~:.
We use e t to denote the transition vector with et(t) = 1 and e t (t ') = 0 for all
t '# t .
P r o o f o f t h e o r e m 2.
The following proof is a more detailed realization of the proof sketch given in [10].
It is well known that the marking equation is a necessary condition for teacha-
bility. Hence, we only have to show the sufficiency. Suppose that there exists a
solution X of the marking equation. Now we consider the net system Z~. It is
obvious that Z~ is also acyclic and moreover if M~ is reachable from M0~ then
it is also reachable by M0. We show that Mx is reachable from M0~ by induction
over the length of X, i.e., n = ~eeilZll X(t).
Induction Base: n = t. Let t be the transition with X(t) = 1. Due to Fx (t, p) = 0
for all p E ~ we obtain from the marking equation that ~ C M0x and thereby

363

t
t is enabled at marking M0~. Hence, M0= >/Is/=.
Induction Step: n + 1. We assume a transition t which is enabled at marking
M0=. The existence of such a transition is guaranteed by the acyclicity of Z~
and by the fact tha t ~ is nonempty. Hence the occurrence of t yields a mark-
ing M~. Let X ~ = X - e t be the vector where transition t fires one time less.
Now we can conclude that Mx = M0~ + N . X = M0= + N . (X ~ + e t) . The last
equation can be splitted into M~ = M0~ + N .e t and M~ = M~ + N . X q Since
~telIztt X~(t) = n we can apply the induction hypothesis and get directly tha t

M= is reachable from M~. Together with the fact that M0, t ~ M~ we finally
get the reachability of M~ from M0=. []
P r o o f o f p r o p o s i t i o n 3.
Due to theorem 2 arid the acyclicity of ~ , the set of reachable markings is repre-
sented by the solutions of the marking equation. Moreover, due to the 1-safeness
we can express the fact that a transition t is enabled at a marking M by the
linear constraint ~ p e . t M(p) > ['t[. Hence, a dead marking, i.e. a marking that
enables no transition can be described by ~ p e ' * M(p) < I't t for all t E T that is
logically equivalent to ~pe.t M(p) _< I'tl - 1 since we are using integer variables
for M. []
P r o o f o f t h e o r e m 4,
We consider the net system Z t = (N, Min(N)) with N = (B, E, F). Since N is
an occurrence net, 57 j is acyclic. Moreover, Min(N) is a 1-safe marking and due
to the acyclicity of N and the fact that each place has at most one incoming arc
we can conclude that Z~ is a 1-safe system. Due to theorem 1 we know that each
marking M of Z is represented by a finite configuration C with Mark(C) = M
where C does not contain any cut-off event. Moreover, we know that the set of
cuts corresponding to finite configurations without cut-off events coincides with
the set of markings reachable from Min(N) without occurring any cut-off event.
Therefore it remains to show that a deadlocked system Z ~ implies the existence
of a finite configuration without cut-off events which corresponds to a cut where
no event is enabled, and vice versa.

(~) Suppose that the net system Z is not deadlock-free, then there exists a
reachable marking M such that no transition is enabled at M, i.e., for all t E T,
"t q~]IMH. Due to theorem 1 we know that there exists a finite configuration C
without any cut-off events such that for all t E T, ~ ~ HMark(C)H still holds.
Because h(E) C_ T, we can conclude that for all e E E *h(e) ~=]tMark(C)]]
is also satisfied. Due to the monotony of h w.r.t, set inclusion we obtain that
the preset of no transition is a subset of Cut(C). Hence all events which are no
cut-off event are disabled at Cut(C).
(~) Suppose the existence of a configuration C without cut-off events such that
no event is enabled at marking Cut(C). Then we can conclude that there exists
no event e E E \ C such that its local configuration can be embedded in an
extension of C by E, i.e., [e] q: C U {e}. Hence there exists no configuration
C U {e} for an arbitrary event e. Due to theorem 1 we obtain that no transition
t E T exists such that *t C ItMark(C)H. This means that the corresponding
reachable marking M = Mark(C) is a dead marking. []

