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Abs t r ac t .  State-space explosion is a central problem in the automatic 
verification (model-checking) of concurrent systems. Partial order reduc- 
tion is a method that was developed to try to cope with the state-space 
explosion~ Based on the observation that the order of execution of con- 
current (independent) atomic actions is in many cases unimportant for 
the checked property, it allows reducing the state space by exploring 
fewer execution sequences. However, to be on the safe side, partial or- 
der reductions put constraints about commuting the order of atomic ac- 
tions that may change the value of propositions appearing in the checked 
specification. In this paper we relax this constraint, allowing a weaker re- 
quirement to be imposed, achieving a better reduction. We demonstrate 
the benefits of our improved reduction with experimental results. 

1 I n t r o d u c t i o n  

During the recent years, many  practical techniques for the automat ic  verification 
of concurrent systems have been developed. One group of such techniques is the 
partial order reduction [3, 5, 10, 11, 13, 14], based on the observation that  exe- 
cuting concurrent atomic transitions is commutat ive.  It  is then sufficient in many  
cases to check only a subset of their execution orders instead of all of them. There 
are two main factors for the effectiveness of such techniques: (a) the amount  of 
commuta t iv i ty  (reflecting independence or concurrency) among atomic program 
transitions and (b) the number of visible atomic transitions, i.e. transitions whose 
execution may change a predicate in the checked property. 

Some a t tempts  with asymmetr ic  or global-state-sensitive dependency rela- 
tions have been made to reduce the dependency between atomic actions [4, 7, 13] 
to allow constructing better  reduced state spaces. However, only little at tention 
has been made to study the visibility obstacle. In this paper  we tackle the prob- 
lem of relaxing the visibility condition for partial  order reduction. Some earlier 
a t tempts  to make the reduction more sensitive to the checked property eliminate 
the need of the visibility condition by increasing the dependency according to 
the checked property. In [5] and [15], the specification was given as an au tomaton  
over operations, rather than states as in our case. Then any two operations that  
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can change the state of the property au tomaton  become interdependent.  How- 
ever, this is almost  equivalent to the visibility condition (see also [16]). In [10] it 
is shown that  by making a certain fairness assumption and rewriting the prop- 
erty as a Boolean combination of simpler properties, some dependencies between 
operations that  affect the checked property can be eliminated. 

We propose a more flexible use of visibility, where the set of visible transitions 
may  diminish during the progress in the construction. We present an improved 
partial  order reduction for model checking that  uses this idea. We provide ex- 
perimental  results that  show that  the new algorithm can achieve substantial  
improvement  over the existing ones. 

2 P r e l i m i n a r i e s  

2.1 Modeling S y s t e m s  

A finite state system P is a triple (S, T, L), where S is a finite set of states, T 
is a finite set of deterministic transitions, and t E S is the initial state. For each 
transition a E T we associate a partial  function a : S ~ S. A transit ion a is 
enabled from s, if a(s) is defined. Then, executing a from s results in the state 
a(s). The set of transitions enabled at a state s is denoted by enabled(s). 

The full state-space of P contains the states reachable from the initial s tate 
by repeatedly executing the transitions T. 

A transition sequence is a finite or infinite sequence of transitions aoala2 �9 �9 
such that  there exists a sequence of states sosls2 . . .  satisfying that  (1) So -- t, 
(2) for each i >_ O, si+l = ai(si), and (3) the sequence is maximal ,  namely it is 
either infinite, or ends with a state s such that  enabled(s) = O. To save space, 
we discuss only the case of infinite transition sequences. 

A dependency relation D C_ T x T is a symmetr ic  and reflexive relation such 
that  if (a, b) ~ D, then 

- i f  a enabled(s) ,  then b e enabled(s )  iff b enab led(a ( s ) )  
- If a, b E enabled(s) then a(b(s)) = b(a(s)). 

Transitions (a, b) E D are said to be dependent, otherwise they are independent. 
If  P is a finite set of propositional variables, let L be an interpretation func- 

tion L : S ~ 2 p,  which assigns a boolean value to each proposition in 7 ) for every 
state in S. We will use the letter ~ to denote the sequence of program states that  
is induced by a transition sequence. Applying the interpretation function L to 
each state of ~, we obtain the propositional sequence L(~). 

D e f i n i t i o n  1. We assume that  the set of transitions has been divided into visible 
and invisible such that  if (but not necessarily only if) the execution of a transit ion 
from any state of the system can change the value assigned to at least one of the 
propositions from P,  then the transition is visible [14]. [] 

Tha t  is, if there exists a state s and a successor state s '  = a(s) such tha t  
L(s) 5s L(s ' ) ,  then a is visible. The set of visible transitions is thus some upper 
approximat ion of the set of transitions that  can modify values of propositions. 
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An upper approximation is used although it may give less reduction, because 
the exact set is often too hard to determine. 

One of the most popular specification formalisms for concurrent systems is 
Linear Temporal Logic (LTL) [12]. Its syntax is as follows: 

where p E 7 ). We denote a propositional sequence over 2 ~' by cr, and its suffix 
starting from the ith state (where the first state is numbered 0) by ~r(0 The 
boolean operators have their usual interpretations, while the modal operators C) 
(nexttime), [] (always), ~ (eventually) and /d (until) are interpreted as follows: 

- ~ ~ O ~  iff ~,(1) ~ ~, 
- o" ~ C]~ iff for each i > O, r ~= ~. 
- c, ~ r iff there exists i ~ 0 such that  cr (i) ~ ~. 
- ~r ~ ~ t / r  iffo -(j) ~ r for some j >_ 0 so that for each 0 _< i < j ,  ~r(O ~ ~. 

Two propositional sequences w and w ~ are considered to be stuttering equiv- 
alent, denoted by w =_ w', if they differ in at most the number of times the state 
labeling may adjacently repeat. Every "C)'-free LTL formula obtains the same 
truth value on any two stuttering equivalent sequences [9], i.e., LTL without 
nexttime is stuttering-closed. 

2.2 Partial Order Reduction Algorithms 

Many versions have been suggested for partial order reduction algorithms. Most 
of them have a common basis of doing a search (usually a depth-first search or 
its variation) on the state space of the checked system (or, in the case of on-the- 
fly verification, over the combination of program and property states). At each 
state in the search, only a subset of the successors obtained by executing the 
enabled transitions is constructed. 

Some conditions and algorithms apply to selecting a subset of the enabled 
transitions from the current state. These conditions must guarantee that  the 
generated state space, albeit smaller than the full state space, preserves the 
checked property. Developed by different researchers, such subsets adhere to 
different names: stubborn sets [14], ample sets [11], persistent sets [5] or faithful 
decompositions [6]. Although their definitions differ, they have much in common. 
We wilt call them generically stamper sets. For every state s, stamper(s) C 
enabled(s), and we call a state s with stamper(s) = enabled(s) fully expanded. 

It would be futile to try to capture all the subtleties of the various suggested 
algorithms, some of which take advantage of confining themselves to a more 
restricted set of properties. We will describe a general algorithm which resembles 
some of the versions, and can be changed accordingly to capture others. We use 
the following four conditions. 

N o n  e m p t i n e s s  stamper(s) is empty iff enabled(s) is empty. 
C o n s i s t e n c y  In every finite path of the system that  starts from s and does 

not contain a transition from stamper(s), only transitions independent of 
the ones in stamper(s) can appear. 
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N o n  i g n o r a n c e  Every cycle of the reduced state space contains at least one 
node t for which stamper(t)  = enabledCt). 

Vis ib i l i ty  If s tamper(s)  # enabled(s), then s tamper(s)  may not contain tran- 
sitions that  are visible with respect to :P. 

Let Seq(P, t )  be the set of propositional sequences of the concurrent sys- 
tem P,  starting from a (not necessarily initial) state t, and Red(P, t )  be the 
corresponding set of propositional sequences of the reduced state space. 

T h e o r e m 2 .  Let t be a state of the reduced state space. Then Red(P , t )  C 
Seq(P,t) ,  and for each ~ E Seq(P,t) ,  there exists a sequence ~' E Red(P , t )  
such that L(~) --- L(( ' ) .  

This is the main theorem [11, 14], which holds for many variations of the 
above rules. We immediately obtain that  the reduced state space preserves the 
correctness of every stuttering-closed property, as follows: 

C o r o l l a r y 3 .  For every stuttering-closed property 9, there is a sequence satis- 
fying ~ in Sea(P, t )  iff there is a sequence satisfying ~ in Red(P, t). 

2.3 T r a n s l a t i n g  LTL f o r m u l a s  t o  a u t o m a t a  

In this section we sketch the algorithm presented in [2] for translating an LTL 
formula ~ into a Bfichi automaton .4. 

As a preparatory step, we bring the formula ~ into a normal form. First, we 
push negation inwards, so that  only propositional variables can appear negated. 
To do that,  we use LTL equivalences, such as - ~ r  = []-~r One problem is 
that  pushing negations into until (/4 ) subformulas can explode the size of the 
formula. For that,  we use the operator release ( 1; ), which is the dual of the 
operator until, namely -~(#/4 ~/) = (--/~) ]3 (-,~). Then we remove the eventuality 
(O) and always (O) operators, using the until and release operators and the 
equivalences Or = T r u e / 4  r and De = False 1; r 

The algorithm uses the following fields for every generated node of Jt: 

id A unique identifier of the node. 
incoming The set of edges that  are pointed into the node. 
new A set of subformulas of the translated formula, which need to hold from 

the current node and have not yet been processed. 
old A set of subformulas as above, which have been processed. 
next A set of subformulas of the translated formula, which have to hold for 

every successor of the current node. 

The algorithm starts with a single node, with one incoming edge from a 
dummy node called init. Its field new includes the translated formula p in the 
above normal form, and the fields old and next are empty. A list completed-nodes 
is initialized as empty. The algorithm proceeds recursively: for a node x not yet 
in completed-nodes, it moves a subformula y from new to old a. The algorithm 

3 The algorithm can be improved a bit by storing in old only subformulas that are 
atomic propositions, their negations, or of the form tt/4 ~/. The latter are needed for 
determining the acceptance sets, as explained in the sequel. 
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then splits the node x into left and right copies while adding subformulas to the 
fields new and next according to the following table. The fields old and incoming 
retain their previous values in both copies. The algorithm continues recursively 
with the split copies. 

IYormulaINew leftINext left New right Next right 

When there are no more subformulas in the field new of the current node x, 
x is compared against the nodes in the list completed-nodes. If there is a node 
y that  agrees with x on the fields old and next, one adds to the field incoming 
of y the incoming edges of x (hence, one may arrive to the node y from new 
directions). Otherwise, one adds x to that  list and a new node is initiated with 
a new identifier in id, an incoming edge from x, and its new field the set of the 
subformulas in the next field of x. 

When new nodes can no longer be generated., the set of initial nodes I is 
identified as those which have an incoming edge from the dummy node init. Also 
an accepting set for each subformula of the form # U 71 contains the nodes such 
that either their old field contains the subformula r}, or does not contain # U q. 
The accepting condition is that  of generalized Biichi [1], namely, an accepting 
computation has to traverse for each accepting set through at least one of its 
nodes infinitely often. Each node x is labeled by the propositions and negated 
propositions in its field old. 

In order to reason about the automaton construction, we use the following 
notation: let Next(x) ,  Old(x) and New(x)  be the subformulas that  are in the 
fields next, old and new, at a specified given point. The conjunction of a set of 
formulas F will be denoted by A F,  and similarly V F denotes disjunction. If a 
node x is repeatedly split to obtain a node y, then x is an ancestor of y. 

Denote Form(x)  = A Old(x)A 0 A Next(x) ,  at the end of the construction. 
The  above construction has several properties which we exploit for improving 
the partial order reduction. The following property [2] will be used in the sequel. 

T h e o r e m 4 .  Let x be a node of the constructed automaton r Consider the 
automaton r which is otherwise like .A, but has x as its (only) initial state. 
Then .4= accepts exactly the sequences satisfying Form(x) .  Furthermore, for the 
translated formula ~, T ~-~ V=ei Form(x) .  

Let eft(x), the effective set of x, be the propositions that  appear in the 
formulas Old(x) U Next(x).  The following is obvious from the construction: 

L e m m a 5  M o n o t o n i c i t y .  Let x ~ y be an edge of A.  Then eft(y) C eft(x). 

L e m m a  6. Let x t be an ancestor node of x. I f  during the translation of a tem- 
poral formula into an automaton we have r E New(x~), then at the end of the 
construction Form(x)  --~ r 
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P r o o f .  We prove by induction on the number of splits that  for an ancestor z ~ of 
y, we have (A New(y) A Form(y)) ~ A gew(x ' ) .  We then use the fact that  at 
the end of the construction, the field new is empty, i.e. T r u e .  The inductive step 
of the proof is by cases. For example, let r V r be in New(y), and y is split 
into Yl and Y2 such that  r E New(y1) and r E New(y~). Then, r --~ r Vr 
Hence, (A New(y1) A Form(y1)) ---* (A New(y) A Form(y)) and by the inductive 
hypothesis, (A New(y1) A Form(y1)) -+ A gew(x') .  The proof for node Y2 is 
similar. [] 

3 A n  I m p r o v e d  A l g o r i t h m  

In Section 2.3, the properties attached to the nodes of the constructed automaton 
are of the form 7/= r A 0 r  with r r nextt ime free. It is not necessarily 
the case that  a property Form(x) attached to an automaton node x is nextt ime 
free. For example, this is not the case when Old(x) = p, and Next(x)  = pUq.  
Then Form(z) allows the sequence (p, q), (p, q), (-~p,-~q),.. . ,  but does not allow 
the sequence (p, q), (-~p,-~q),..., which is stuttering equivalent to it. 

This is not a problem for the classic on-the-fly stamper set method, because 
it works at the level of the property. However, to prove the correctness of the 
new method that  will be presented below, it is necessary that  each node behaves 
correctly with respect to the set of transitions that  it considers visible. Motivated 
by this, we investigate closer both the partial order reduction and the automaton 
construction. 

3.1 M o r e  I n s i g h t  A b o u t  t h e  R e d u c t i o n  

We start by defining a relation between infinite sequences that  is stronger than 
stuttering equivalence. 

D e f i n i t i o n 7 .  Let p, ~ E ~ for some finite alphabet Z,  and let 4 C Z.  Denote 
p / c~ iff there are 7 and 7 ~ such that  p = aT, c~ C a+7  ~, and 7 - 7 ~ (where 
4+ = {4,  4 4 , . . . } ) .  [] 

Note that  for 4,/~ E Z,  4 # ~ and 7 E Z ~, although 44fl7 = 4~7, it does 
not hold that  44/~ 7 / 4 f l7 .  We can now strengthen the second half of Theorem 2: 

T h e o r e m  8. Let t be a state of the reduced state space. For each ~ G Seq(P, t), 
there exists a sequence ~' C Red(P,t) such that L(~) / L(~'). 

P r o o f .  Let s be the first state of ~, and L(~) = 47. Consider first the case 
where stamper(s) = enabled(s). Choose a transition r such that  executing r 
from s results in s', which is the second state of ~. Write ~ = ss~. Then apply 
Theorem 2 from s', obtaining a sequence 4' such that  7 = L(s'~) =- L(s '~')= 7'. 
Then, 47  / 47'  , hence, L(~) / L(ss'~). 

In the second case, we have stamper(s) C enabled(s) and all the transitions 
in stamper(s) are invisible. Now, according to Theorem 2, there is a sequence 
~' such that  L(~) e n(~') constructed from s. Let r C stamper(s) be the first 
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transition taken to construct ~.  Since ~- is invisible, L(~ ~) is of the form aaS. 
Since L(~) = L(4/), a7  - ac~5. Now, if 7 begins with a, let 71 = c~5; otherwise, 
let 7 ~ = 5(0, where i is the smallest value such that  5(i) does not begin with a. 
In both cases, by Definition 7, a7  = L(~) L L(~') = aaS.  [] 

L e m m a 9 .  Let x be a node of the automaton A, and p Z c,. If p ~ Form(x), 
then ~r ~ Form(x). 

P r o o f .  Let p = aT, with a C Z.  Consider first the case where ~ = a7  ~, with 
7 -~ 7'- Then, since both AOld(x) and A Next(x) are nexttime-free, hence 
closed under stuttering, we have that ~7 ~ Form(x) iff c~ 7' ~ Form(x). 

Consider now the case where ~ E aa+7 ~, with 7 = 7 ~. Since any sequence 
in c~+7 ~ is stuttering equivalent to a7  ~, we can use the above argument to show 
that  cr ~ Form(x) iff aaT '  ~ Form(x). Thus, we obtain the claim if we prove 
aaT '  ~ Fo rm(x)  assuming that  a7  ~ Form(x). 

Since A Old(x) is nexttime-free, we have that  c~ 7 ~ Form(x) implies that  
a7 ~ AOld(x), which in turn implies ow~ 7' ~ A Old(x). Any conjunct in 
A Next(x) can be only of the form # / / r / o r  # 12 rj. We handle only the latter; 
the former is similar with ~ replaced by # except in # / / r / .  When the nexttime- 
free # 12 r / was added to Next(x~), for some ancestor x ~ of x, ~ was added to 
New(x'). By Lemma 6, Form(x) --* r 1. Thus, a7  ~ V- Since r/ is  nexttime-free, 
also c~7 ~ ~ 7/. Since 7 ~ g 12 rl and # 12 r 1 is nexttime-free, 7 ~ ~ g 12 r 1. Combining 
these, we have that  c~7 ~ ~ # 12 r/, and by the nexttime-freeness of # 12 r/, further 
that ao~7 ~ ~ it 12 r/. [] 

Consider the on-the-fly version of the stamper set algorithm. Each state of 
the state space is of the form (s,x), where s is a state of P and x is a state of 
A. Moreover, L(s) must agree with all propositions and negated propositions in 
the set Old(x). Transition from (sl, x~} to (s2, x2) is only allowed when s2 is the 
successor of sl under some atomic transition of T, x2 is a successor of Xx under 
the construction of.A, and L(s2) agrees with Old(x~). Acceptance of a combined 
state (s, x) equals the acceptance of the component x in A. Initial states are of 
the form (,, x), where x ~ [ and L(t) agrees with Old(x). The automaton A is 
the translation of the negation of the checked property ~. A counterexample for 

is obtained by finding a strongly connected component with at least one state 
for each accepting set of Jt. 4 

When talking about the on-the-fly algorithm, we will use stamper(s, x) to 
denote the stamper set used at the joint state with program component s and 
property component x. Similarly, we denote by Seq(P, t, x) and Red(P, t, x) the 
set of combined sequences (of system and automaton states) in the combined 
full and reduced state space, respectively, starting from the node (t, x). Such a 
sequence is accepting iff it passes through each accepting set infinitely often. 

We obtain the following on-the-fly version of Theorem 8. The proof is similar 
to the one in [11], and uses Lemma 9. 

4 This can alternatively be conducted by a multiple depth-first search, with a 'separate' 
state space for each accepting set, implemented by adding one bit per accepting 
set [1]. 



335 

T h e o r e m  10. Let (t, x) be a combined state of the on-the-fly reduced state space. 
For each accepting sequence ~ in Seq(P,t, x) such that L(~) ~ Form(x), there 
exists an accepting sequence ~' in Red(P, t, x) such that L(~) / L(~') (and hence 
L(~') ~ Form(z)). 

3.2 An I m p r o v e d  A lgo r i t hm 

We can now describe the improved algorithm. The only change is to relax the 
visibility condition. It allows reducing the set of visible transitions, according to 
the property component x. As the search progresses, the effective propositions 
in Form(x) may diminish (see Lemma 5), hence less transitions remain visible. 

Re la t ive  visibi l i ty If stamper(s, x) • enabled(s), then stamper(s, x) may not 
contain transitions that are visible w.r.t, the set of propositions eft(z). 

Thus, in the improved algorithm, we start with a set of propositions P,  
but with each state (s, x) in the reduced state space, the set of effective visible 
transitions is calculated with respect to eft(z). In Section 4 we show how this 
can affect the reduction. To prove the improved algorithm correct, we first give 
two easily provable Lemmas: 

Lamina  11. The improved algorithm finds only 

L e m m a 1 2 .  Let (Sl,Xl), (s2, x2) be two nodes 
component in the combined reduced state space. 

correct counterexamples. 

in the same strongly connected 
Then, eff(xl) = eff(x ). 

The following theorem is stated with respect to the improved reduction, hence 
the set of joint sequences from (t, x) will be denoted by Imp_Red(P, t, x). 

T h e o r e m  13. Let (t, x) be a combined state of the improved on-the-fly reduced 
state space. For each accepting sequence ~ in Seq(P,t, x) such that L(~) 
Form(x), there exists an accepting sequence ~' in Imp_Red(P,t, x) such that 
L(~) / L(~') (and hence L(~') ~ Form(x)). 

Sketch of  proof.  By induction on the order of finishing strongly connected com- 
ponents. For the induction basis, consider the last finished strongly connected 
component. From Lemma 12, there is only one effective set of propositions label- 
ing all the states in that component. Thus, for this component, one can simply 
use Theorem 10, with visible operations calculated w.r.t, that effective set. 

For the inductive step, consider the current component, with edges of the 
form (sl, xl) ) (s2, x2), where (81, Xl) is in the current strongly connected 
component, and (s2, x2) is outside it. By the inductive hypothesis, the theorem 
already holds for the node (s2, x2). The search of the current component uses 
visible operations relative to the single effective set of propositions for all of its 
nodes. It is modified to treat already completed searches from nodes outside the 
current component, such as (s2, x~), as oracles about the existence of a desired 
sequence. Notice that the search from (s2, x2) is already completed, and has a 
disjoint set of states from the current component. [] 
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4 C a s e  S t u d y  

The purpose of this case study is twofold: to demonstrate that relaxing visibility 
can yield significant savings, and to give an intuitive idea as to how and when 
that may be obtained. To achieve the latter goal, we chose a relatively simple 
example with only the necessary features for illustrating our point. Of course, 
its results do not generalize to all systems. A problem was that we have not yet 
implemented our new method and had to do the experiments by playing trick- 
ery with an existing tool. We used l t spa r ,  a process-algebra-oriented stamper 
set tool developed by the first author [8]. It computes parallel compositions of 
synchronously communicating transition systems, and can also use the "trans- 
parent" (i.e., not on-the-fly) LTL-preserving stamper set method of Theorems 2 
and 8 for computing a reduced parallel composition. 

4.1 The  Example  Sys t em 

The example concerns the termination of a token-ring system. The system con- 
sists of n stations, each of which is capable of sending signals outi to the outside 
world and receivings commands ha l t /  for stopping the system. A token circu- 
lates in the system, and only the station possessing it can send out-signals. The 
outside world can at any instant of time stop the system by sending some halts .  
The ith station then moves to a halted state and will not pass the token on any 
more. This will cause the token eventually to stop and the system to terminate. 

Each of the stations is modeled by the automaton STATIONi in Figure 1. In 
the figure, tkni and tkn~+l denote the reception of the token from the previous 
station, and its delivery to the next station (for the nth one, tkni+l is replaced by 
tkal) .  The environment may halt the station at any time by executing ha l t / .  
The label outi denotes sending an out-signal to the environment. The edge 
labeled by r corresponds to the possibility of the station deciding not to send 
an out-signal, although it has received the token. The station 1 initially has the 
token, so its initial state is 2 while the initial state of all other stations is 1. 

The system is modeled by composing n instances of the station graph in 
parallel. We assume that communication between the stations is synchronous, 
so the tkrq-transitions are executed simultaneously by stations i and i - 1. 

4.2 Encod ing  the  P r o p e r t y  

InformMty, the property that we want to verify of the system is that it stops 
"soon" after it has been told to stop. More formally, we will verify that for each 
station i, after any station has received a halt-signal, the station i will send 
at most one outi. We did the experiments in the case where i = 1. Except the 
initial position of the token, the other cases are symmetric. 

The following LTL formula encodes the above property. In the formula, hal t j  
and out1 denote the atomic propositions "during its most recent transition, the 
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Fig,  1. The ith station process, and the tester process for n stations. 

system did read / send the signal h a l t j  / OUtl'. 

Unfortunately, l t s p a r  does not contain support for Biichi automata.  There- 
fore, we used the technique of tester processes [15]. We wrote a 4-state tester 
process, presented on the right in Figure 1, that  mimics the negation of the above 
formula. From the point of view of partiM order reductions, testers behave like 
ordinary processes. Their acceptance condition is different from Bfichi automata,  
but this affects only the "reading" of the result from the reduced state space, 
not the partial order reduction. Relaxation of visibility affects testers the same 
way as Biichi automata.  5 Consequently, it was possible to do a first test of our 
improved on-the-fly algorithm with testers. 

To test the performance of the old on-the-fly stamper set method it was suf- 
ficient just to add the tester process, declare all actions invisible, and switch the 
stamper set method on. To test the new method, a smM1 source-level modifica- 
tion was made to l t s p a r ,  effectively cutting off the dependencies introduced by 
the tester when the tester is in any other state than the initial state. 

4.3 R e s u l t s  

The measurements are shown in Table 1. The sizes of the ordinary state spaces 
obtained in the absence and presence of the tester process are shown in the 
columns labeled "full, no tester" and "full with tester". The latter sizes are what 
the ordinary on-the-fly method (i.e., without stamper set reduction) would yield. 
The number of states of the "full, no tester" case can be computed theoretically 

Actually, with testers the correctness of the relaxation is simpler to prove, because 
testers talk about the property in terms of transitions instead of propositional vari- 
ables, and the problem with the nexttime operators needed in the construction of 
the Biichi automaton does not arise. 
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n 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

full, no tester 
~tates trans. 

11 24 
31 87 
79 268 

191 755 
447 2010 

1023 5145 
2303 ]2792 
5119 31095 

[1263 74230 
24575 174581 

reduced, no 
tester or vis. 

trans. states 

full with tester 
= old s tamper  
states trans. 

new stamper 
tares trans. 

9 16~ 
17 281 
28 43 
42 61 
59 82 
79 106! 

102 133 
128 163 
157 196 
189 232 

13 25 
42 t06 

117 367 
300 1120 
731 3151 

1722 8388 
3961 21463 
8958 53320 

19959 129463 
44022 308644 

13 25 
36 77 
79 165 

151 298 
260 484 
414 731 
621 1047 
889 1440 

1226 1918 
1640 2489 

Table  1. Measurements 

relatively easily, yielding (n +1)2  ~ - 1. The "full with tester" state space sizes 
are more difficult to compute exactly, but they must be somewhat bigger than 
without the tester, because the tester adds some information of the past behavior 
t o  the state and does not restrict the behavior of the system. 

The column "old stamper" was obtained in the presence of the tester using 
the classic on-the~fly stamper set method. The results turned out to be the same 
as in the column ffull with tester", so these two columns were combined into one. 
This implies that  the classic on-the-fly stamper set method gives no reduction 
in this example. This can be given a theoretical explanation: any s t a t i o n / t h a t  
is ready to do something is also ready to do a hai t i - t ransi t ion,  and all h a i t i -  
transitions depend on each other as they are all transitions that  the tester is 
ready to make next, so all stamper sets contain all enabled transitions. 

To see whether the absence of reduction was due to dependencies within the 
system, visibility, or both, we constructed also the stamper set state spaces with 
all transitions invisible and without the tester (remember that  the presence of 
the tester corresponds to making the out1 and halt~-transitions visible). The 
results are shown in the column "reduced, no tester or vis~ According to a 
theoretical analysis, the number of states is O(n2). Indeed, the measured figures 
obey the formula ~(3nl 2 + n + 4). The reduction is very good, so the failure of 
the classic on-the-fly stamper set method is apparently due to the dependencies 
caused by visibility. 

Finally, the column "new stamper" shows the sizes with the new method. 
Although not as good as in the column "reduced, no tester or vis.", they are Still 
far better than in "old stamper", demonstrating clearly the value of the new 
method. A theoretical analysis yields O(n 3) states. The measurements match 
1 n 3 ~(8 - 9n 2 + 25n + 6) except for n = 2. 

The results demonstrate that  transition dependency caused by the property 
(i.e., visibility) can significantly hamper the verification of systems, but relax- 
ation of visibility may substantially alleviate this problem. 



339 

A c k n o w l e d g e m e n t  The authors would like to thank an insightful discussion 
of this subject with Amir Pnueli and Pierre Wolper. The work of the first author 
was partially funded by the Academy of Finland. 

References  

1. C. Courcoubetis, M. Vardi, P. Wolper, M. Yannakalds, Memory-efficient algorithms 
for the verification of temporal properties, Formal Methods in System Design 1 
(1992) 275-288. 

2. R. Gerth, D. Peled, M. Vardi, P. Wolper, Simple On-the-fly Automatic Verification 
of Linear Temporal Logic, PSTV95, Protocol Specification Testing and Verification, 
3-18, Chapman & Hall, 1995, Warsaw, Poland. 

3. P. Godefroid. Using partial orders to improve automatic verification methods. In 
Proc. 2nd Workshop on Computer Aided Verification, LNCS 531, Springer-Verlag, 
New Brunswick, N J, 1990, 176-185. 

4. P. Godefroid, D. Pirottin, Refining dependencies improves partial order verification 
methods, 5th Conference on Computer Aided Verification, Elounda, Greece, LNCS 
697, Springer-Verlag, 1993, 438-449. 

5. P. Godefroid, P. Wolper, A Partial Approach to Model Checking, 6th AnnualIEEE 
Symposium on Logic in Computer Science, 1991, Amsterdam, 406-415. 

6. S. Katz, D. Peled, Verification of Distributed Programs using Representative In- 
terleaving Sequences, Distributed Computing 6 (1992), 107-120. 

7. S. Katz, D. Peled, Defining conditional independence using collapses, Theoretical 
Computer Science 101 (1992), 337-359. 

8. I. Kokkarinen, Reduction of Parallel Labelled Transition Systems with Stubborn 
Sets, M. Sc. (Eng.) Thesis (in Finnish), 49 p. 

9. L. Lamport, What good is temporal logic, Information Processing 83, Elsevier 
Science Publishers, 1983, 657-668. 

10. D. Peled, All from one, one for all, on model-checking using representatives, 5th 
Conference on Computer Aided Verification, Elounda, Greece, 1993, LNCS 697, 
Springer-Verlag, 409-423. 

11. D. Peled. Combining partial order reductions with on-the-fly model-checking. For- 
mal Methods in System Design 8 (1996), 39-64. 

12. A. Pnueli, The temporal logic of programs, 18th FOCS, IEEE Symposium on Foun- 
dation of Computer Science, 1977, 46-57. 

13. A. Valmari, Stubborn sets for reduced state space generation, lOth International 
Conference on Application and Theory of Petri Nets, Bonn, Germany, 1989, LNCS 
483, Springer-Verlag, 491-515. 

14. A. Valmari, A stubborn attack on state explosion. Formal Methods in System 
Design, 1 (1992), 297-322. 

15. A. Valmari, On-the-fly Verification with Stubborn Sets, 5th Conference on Com- 
puter Aided Verification, Elounda, Greece, 1993, LNCS 697, Springer-Verlag, 397- 
408. 

16. B. Willems, P. Wolper, Partial-Order Methods for Model Checking: From Linear 
Time to Branching Time, 11th Annual IEEE Symposium on Logic in Computer 
Science, 1996. 


