
Relaxed Visibil ity Enhances Partial Order
Reduct ion

Ilkka Kokkarinen 1 and Doron Peled ~ and Antti Valmari 1

Tampere University of Technology, Software Systems Laboratory,
PO Box 553, FIN-33101 Tampere, FINLAND,

emaJJ: {imk,ava}~cs.tut.fi
2 Bell Laboratories, Lucent Technologies,

700 Mountain Ave., Murray Hill, NJ 07974, USA,
email: doron@research.bell-labs.com

Abs t r ac t . State-space explosion is a central problem in the automatic
verification (model-checking) of concurrent systems. Partial order reduc-
tion is a method that was developed to try to cope with the state-space
explosion~ Based on the observation that the order of execution of con-
current (independent) atomic actions is in many cases unimportant for
the checked property, it allows reducing the state space by exploring
fewer execution sequences. However, to be on the safe side, partial or-
der reductions put constraints about commuting the order of atomic ac-
tions that may change the value of propositions appearing in the checked
specification. In this paper we relax this constraint, allowing a weaker re-
quirement to be imposed, achieving a better reduction. We demonstrate
the benefits of our improved reduction with experimental results.

1 I n t r o d u c t i o n

During the recent years, many practical techniques for the automat ic verification
of concurrent systems have been developed. One group of such techniques is the
partial order reduction [3, 5, 10, 11, 13, 14], based on the observation that exe-
cuting concurrent atomic transitions is commutat ive. It is then sufficient in many
cases to check only a subset of their execution orders instead of all of them. There
are two main factors for the effectiveness of such techniques: (a) the amount of
commuta t iv i ty (reflecting independence or concurrency) among atomic program
transitions and (b) the number of visible atomic transitions, i.e. transitions whose
execution may change a predicate in the checked property.

Some a t tempts with asymmetr ic or global-state-sensitive dependency rela-
tions have been made to reduce the dependency between atomic actions [4, 7, 13]
to allow constructing better reduced state spaces. However, only little at tention
has been made to study the visibility obstacle. In this paper we tackle the prob-
lem of relaxing the visibility condition for partial order reduction. Some earlier
a t tempts to make the reduction more sensitive to the checked property eliminate
the need of the visibility condition by increasing the dependency according to
the checked property. In [5] and [15], the specification was given as an au tomaton
over operations, rather than states as in our case. Then any two operations that

329

can change the state of the property au tomaton become interdependent. How-
ever, this is almost equivalent to the visibility condition (see also [16]). In [10] it
is shown that by making a certain fairness assumption and rewriting the prop-
erty as a Boolean combination of simpler properties, some dependencies between
operations that affect the checked property can be eliminated.

We propose a more flexible use of visibility, where the set of visible transitions
may diminish during the progress in the construction. We present an improved
partial order reduction for model checking that uses this idea. We provide ex-
perimental results that show that the new algorithm can achieve substantial
improvement over the existing ones.

2 P r e l i m i n a r i e s

2.1 Modeling S y s t e m s

A finite state system P is a triple (S, T, L), where S is a finite set of states, T
is a finite set of deterministic transitions, and t E S is the initial state. For each
transition a E T we associate a partial function a : S ~ S. A transit ion a is
enabled from s, if a(s) is defined. Then, executing a from s results in the state
a(s). The set of transitions enabled at a state s is denoted by enabled(s).

The full state-space of P contains the states reachable from the initial s tate
by repeatedly executing the transitions T.

A transition sequence is a finite or infinite sequence of transitions aoala2 �9 �9
such that there exists a sequence of states sosls2 . . . satisfying that (1) So -- t,
(2) for each i >_ O, si+l = ai(si), and (3) the sequence is maximal , namely it is
either infinite, or ends with a state s such that enabled(s) = O. To save space,
we discuss only the case of infinite transition sequences.

A dependency relation D C_ T x T is a symmetr ic and reflexive relation such
that if (a, b) ~ D, then

- i f a enabled(s) , then b e enabled(s) iff b enab led(a (s))
- If a, b E enabled(s) then a(b(s)) = b(a(s)).

Transitions (a, b) E D are said to be dependent, otherwise they are independent.
If P is a finite set of propositional variables, let L be an interpretation func-

tion L : S ~ 2 p, which assigns a boolean value to each proposition in 7) for every
state in S. We will use the letter ~ to denote the sequence of program states that
is induced by a transition sequence. Applying the interpretation function L to
each state of ~, we obtain the propositional sequence L(~).

D e f i n i t i o n 1. We assume that the set of transitions has been divided into visible
and invisible such that if (but not necessarily only if) the execution of a transit ion
from any state of the system can change the value assigned to at least one of the
propositions from P, then the transition is visible [14]. []

Tha t is, if there exists a state s and a successor state s ' = a(s) such tha t
L(s) 5s L(s ') , then a is visible. The set of visible transitions is thus some upper
approximat ion of the set of transitions that can modify values of propositions.

330

An upper approximation is used although it may give less reduction, because
the exact set is often too hard to determine.

One of the most popular specification formalisms for concurrent systems is
Linear Temporal Logic (LTL) [12]. Its syntax is as follows:

where p E 7). We denote a propositional sequence over 2 ~' by cr, and its suffix
starting from the ith state (where the first state is numbered 0) by ~r(0 The
boolean operators have their usual interpretations, while the modal operators C)
(nexttime), [] (always), ~ (eventually) and /d (until) are interpreted as follows:

- ~ ~ O ~ iff ~,(1) ~ ~,
- o" ~ C]~ iff for each i > O, r ~= ~.
- c, ~ r iff there exists i ~ 0 such that cr (i) ~ ~.
- ~r ~ ~ t / r iffo -(j) ~ r for some j >_ 0 so that for each 0 _< i < j , ~r(O ~ ~.

Two propositional sequences w and w ~ are considered to be stuttering equiv-
alent, denoted by w =_ w', if they differ in at most the number of times the state
labeling may adjacently repeat. Every "C)'-free LTL formula obtains the same
truth value on any two stuttering equivalent sequences [9], i.e., LTL without
nexttime is stuttering-closed.

2.2 Partial Order Reduction Algorithms

Many versions have been suggested for partial order reduction algorithms. Most
of them have a common basis of doing a search (usually a depth-first search or
its variation) on the state space of the checked system (or, in the case of on-the-
fly verification, over the combination of program and property states). At each
state in the search, only a subset of the successors obtained by executing the
enabled transitions is constructed.

Some conditions and algorithms apply to selecting a subset of the enabled
transitions from the current state. These conditions must guarantee that the
generated state space, albeit smaller than the full state space, preserves the
checked property. Developed by different researchers, such subsets adhere to
different names: stubborn sets [14], ample sets [11], persistent sets [5] or faithful
decompositions [6]. Although their definitions differ, they have much in common.
We wilt call them generically stamper sets. For every state s, stamper(s) C
enabled(s), and we call a state s with stamper(s) = enabled(s) fully expanded.

It would be futile to try to capture all the subtleties of the various suggested
algorithms, some of which take advantage of confining themselves to a more
restricted set of properties. We will describe a general algorithm which resembles
some of the versions, and can be changed accordingly to capture others. We use
the following four conditions.

N o n e m p t i n e s s stamper(s) is empty iff enabled(s) is empty.
C o n s i s t e n c y In every finite path of the system that starts from s and does

not contain a transition from stamper(s), only transitions independent of
the ones in stamper(s) can appear.

331

N o n i g n o r a n c e Every cycle of the reduced state space contains at least one
node t for which stamper(t) = enabledCt).

Vis ib i l i ty If s tamper(s) # enabled(s), then s tamper(s) may not contain tran-
sitions that are visible with respect to :P.

Let Seq(P, t) be the set of propositional sequences of the concurrent sys-
tem P, starting from a (not necessarily initial) state t, and Red(P, t) be the
corresponding set of propositional sequences of the reduced state space.

T h e o r e m 2 . Let t be a state of the reduced state space. Then Red(P , t) C
Seq(P,t) , and for each ~ E Seq(P,t) , there exists a sequence ~' E Red(P , t)
such that L(~) --- L((') .

This is the main theorem [11, 14], which holds for many variations of the
above rules. We immediately obtain that the reduced state space preserves the
correctness of every stuttering-closed property, as follows:

C o r o l l a r y 3 . For every stuttering-closed property 9, there is a sequence satis-
fying ~ in Sea(P, t) iff there is a sequence satisfying ~ in Red(P, t).

2.3 T r a n s l a t i n g LTL f o r m u l a s t o a u t o m a t a

In this section we sketch the algorithm presented in [2] for translating an LTL
formula ~ into a Bfichi automaton .4.

As a preparatory step, we bring the formula ~ into a normal form. First, we
push negation inwards, so that only propositional variables can appear negated.
To do that, we use LTL equivalences, such as - ~ r = []-~r One problem is
that pushing negations into until (/4) subformulas can explode the size of the
formula. For that, we use the operator release (1;), which is the dual of the
operator until, namely -~(#/4 ~/) = (--/~)]3 (-,~). Then we remove the eventuality
(O) and always (O) operators, using the until and release operators and the
equivalences Or = T r u e / 4 r and De = False 1; r

The algorithm uses the following fields for every generated node of Jt:

id A unique identifier of the node.
incoming The set of edges that are pointed into the node.
new A set of subformulas of the translated formula, which need to hold from

the current node and have not yet been processed.
old A set of subformulas as above, which have been processed.
next A set of subformulas of the translated formula, which have to hold for

every successor of the current node.

The algorithm starts with a single node, with one incoming edge from a
dummy node called init. Its field new includes the translated formula p in the
above normal form, and the fields old and next are empty. A list completed-nodes
is initialized as empty. The algorithm proceeds recursively: for a node x not yet
in completed-nodes, it moves a subformula y from new to old a. The algorithm

3 The algorithm can be improved a bit by storing in old only subformulas that are
atomic propositions, their negations, or of the form tt/4 ~/. The latter are needed for
determining the acceptance sets, as explained in the sequel.

332

then splits the node x into left and right copies while adding subformulas to the
fields new and next according to the following table. The fields old and incoming
retain their previous values in both copies. The algorithm continues recursively
with the split copies.

IYormulaINew leftINext left New right Next right

When there are no more subformulas in the field new of the current node x,
x is compared against the nodes in the list completed-nodes. If there is a node
y that agrees with x on the fields old and next, one adds to the field incoming
of y the incoming edges of x (hence, one may arrive to the node y from new
directions). Otherwise, one adds x to that list and a new node is initiated with
a new identifier in id, an incoming edge from x, and its new field the set of the
subformulas in the next field of x.

When new nodes can no longer be generated., the set of initial nodes I is
identified as those which have an incoming edge from the dummy node init. Also
an accepting set for each subformula of the form # U 71 contains the nodes such
that either their old field contains the subformula r}, or does not contain # U q.
The accepting condition is that of generalized Biichi [1], namely, an accepting
computation has to traverse for each accepting set through at least one of its
nodes infinitely often. Each node x is labeled by the propositions and negated
propositions in its field old.

In order to reason about the automaton construction, we use the following
notation: let Next(x) , Old(x) and New(x) be the subformulas that are in the
fields next, old and new, at a specified given point. The conjunction of a set of
formulas F will be denoted by A F, and similarly V F denotes disjunction. If a
node x is repeatedly split to obtain a node y, then x is an ancestor of y.

Denote Form(x) = A Old(x)A 0 A Next(x) , at the end of the construction.
The above construction has several properties which we exploit for improving
the partial order reduction. The following property [2] will be used in the sequel.

T h e o r e m 4 . Let x be a node of the constructed automaton r Consider the
automaton r which is otherwise like .A, but has x as its (only) initial state.
Then .4= accepts exactly the sequences satisfying Form(x) . Furthermore, for the
translated formula ~, T ~-~ V=ei Form(x) .

Let eft(x), the effective set of x, be the propositions that appear in the
formulas Old(x) U Next(x). The following is obvious from the construction:

L e m m a 5 M o n o t o n i c i t y . Let x ~ y be an edge of A. Then eft(y) C eft(x).

L e m m a 6. Let x t be an ancestor node of x. I f during the translation of a tem-
poral formula into an automaton we have r E New(x~), then at the end of the
construction Form(x) --~ r

333

P r o o f . We prove by induction on the number of splits that for an ancestor z ~ of
y, we have (A New(y) A Form(y)) ~ A gew(x ') . We then use the fact that at
the end of the construction, the field new is empty, i.e. T r u e . The inductive step
of the proof is by cases. For example, let r V r be in New(y), and y is split
into Yl and Y2 such that r E New(y1) and r E New(y~). Then, r --~ r Vr
Hence, (A New(y1) A Form(y1)) ---* (A New(y) A Form(y)) and by the inductive
hypothesis, (A New(y1) A Form(y1)) -+ A gew(x') . The proof for node Y2 is
similar. []

3 A n I m p r o v e d A l g o r i t h m

In Section 2.3, the properties attached to the nodes of the constructed automaton
are of the form 7/= r A 0 r with r r nextt ime free. It is not necessarily
the case that a property Form(x) attached to an automaton node x is nextt ime
free. For example, this is not the case when Old(x) = p, and Next(x) = pUq.
Then Form(z) allows the sequence (p, q), (p, q), (-~p,-~q),.. . , but does not allow
the sequence (p, q), (-~p,-~q),..., which is stuttering equivalent to it.

This is not a problem for the classic on-the-fly stamper set method, because
it works at the level of the property. However, to prove the correctness of the
new method that will be presented below, it is necessary that each node behaves
correctly with respect to the set of transitions that it considers visible. Motivated
by this, we investigate closer both the partial order reduction and the automaton
construction.

3.1 M o r e I n s i g h t A b o u t t h e R e d u c t i o n

We start by defining a relation between infinite sequences that is stronger than
stuttering equivalence.

D e f i n i t i o n 7 . Let p, ~ E ~ for some finite alphabet Z, and let 4 C Z. Denote
p / c~ iff there are 7 and 7 ~ such that p = aT, c~ C a+7 ~, and 7 - 7 ~ (where
4+ = {4, 4 4 , . . . }) . []

Note that for 4,/~ E Z, 4 # ~ and 7 E Z ~, although 44fl7 = 4~7, it does
not hold that 44/~ 7 / 4 f l7 . We can now strengthen the second half of Theorem 2:

T h e o r e m 8. Let t be a state of the reduced state space. For each ~ G Seq(P, t),
there exists a sequence ~' C Red(P,t) such that L(~) / L(~').

P r o o f . Let s be the first state of ~, and L(~) = 47. Consider first the case
where stamper(s) = enabled(s). Choose a transition r such that executing r
from s results in s', which is the second state of ~. Write ~ = ss~. Then apply
Theorem 2 from s', obtaining a sequence 4' such that 7 = L(s'~) =- L(s '~')= 7'.
Then, 47 / 47' , hence, L(~) / L(ss'~).

In the second case, we have stamper(s) C enabled(s) and all the transitions
in stamper(s) are invisible. Now, according to Theorem 2, there is a sequence
~' such that L(~) e n(~') constructed from s. Let r C stamper(s) be the first

334

transition taken to construct ~. Since ~- is invisible, L(~ ~) is of the form aaS.
Since L(~) = L(4/), a7 - ac~5. Now, if 7 begins with a, let 71 = c~5; otherwise,
let 7 ~ = 5(0, where i is the smallest value such that 5(i) does not begin with a.
In both cases, by Definition 7, a7 = L(~) L L(~') = aaS. []

L e m m a 9 . Let x be a node of the automaton A, and p Z c,. If p ~ Form(x),
then ~r ~ Form(x).

P r o o f . Let p = aT, with a C Z. Consider first the case where ~ = a7 ~, with
7 -~ 7'- Then, since both AOld(x) and A Next(x) are nexttime-free, hence
closed under stuttering, we have that ~7 ~ Form(x) iff c~ 7' ~ Form(x).

Consider now the case where ~ E aa+7 ~, with 7 = 7 ~. Since any sequence
in c~+7 ~ is stuttering equivalent to a7 ~, we can use the above argument to show
that cr ~ Form(x) iff aaT ' ~ Form(x). Thus, we obtain the claim if we prove
aaT ' ~ Fo rm(x) assuming that a7 ~ Form(x).

Since A Old(x) is nexttime-free, we have that c~ 7 ~ Form(x) implies that
a7 ~ AOld(x), which in turn implies ow~ 7' ~ A Old(x). Any conjunct in
A Next(x) can be only of the form # / / r / o r # 12 rj. We handle only the latter;
the former is similar with ~ replaced by # except in # / / r / . When the nexttime-
free # 12 r / was added to Next(x~), for some ancestor x ~ of x, ~ was added to
New(x'). By Lemma 6, Form(x) --* r 1. Thus, a7 ~ V- Since r/ is nexttime-free,
also c~7 ~ ~ 7/. Since 7 ~ g 12 rl and # 12 r 1 is nexttime-free, 7 ~ ~ g 12 r 1. Combining
these, we have that c~7 ~ ~ # 12 r/, and by the nexttime-freeness of # 12 r/, further
that ao~7 ~ ~ it 12 r/. []

Consider the on-the-fly version of the stamper set algorithm. Each state of
the state space is of the form (s,x), where s is a state of P and x is a state of
A. Moreover, L(s) must agree with all propositions and negated propositions in
the set Old(x). Transition from (sl, x~} to (s2, x2) is only allowed when s2 is the
successor of sl under some atomic transition of T, x2 is a successor of Xx under
the construction of.A, and L(s2) agrees with Old(x~). Acceptance of a combined
state (s, x) equals the acceptance of the component x in A. Initial states are of
the form (,, x), where x ~ [and L(t) agrees with Old(x). The automaton A is
the translation of the negation of the checked property ~. A counterexample for

is obtained by finding a strongly connected component with at least one state
for each accepting set of Jt. 4

When talking about the on-the-fly algorithm, we will use stamper(s, x) to
denote the stamper set used at the joint state with program component s and
property component x. Similarly, we denote by Seq(P, t, x) and Red(P, t, x) the
set of combined sequences (of system and automaton states) in the combined
full and reduced state space, respectively, starting from the node (t, x). Such a
sequence is accepting iff it passes through each accepting set infinitely often.

We obtain the following on-the-fly version of Theorem 8. The proof is similar
to the one in [11], and uses Lemma 9.

4 This can alternatively be conducted by a multiple depth-first search, with a 'separate'
state space for each accepting set, implemented by adding one bit per accepting
set [1].

335

T h e o r e m 10. Let (t, x) be a combined state of the on-the-fly reduced state space.
For each accepting sequence ~ in Seq(P,t, x) such that L(~) ~ Form(x), there
exists an accepting sequence ~' in Red(P, t, x) such that L(~) / L(~') (and hence
L(~') ~ Form(z)).

3.2 An I m p r o v e d A lgo r i t hm

We can now describe the improved algorithm. The only change is to relax the
visibility condition. It allows reducing the set of visible transitions, according to
the property component x. As the search progresses, the effective propositions
in Form(x) may diminish (see Lemma 5), hence less transitions remain visible.

Re la t ive visibi l i ty If stamper(s, x) • enabled(s), then stamper(s, x) may not
contain transitions that are visible w.r.t, the set of propositions eft(z).

Thus, in the improved algorithm, we start with a set of propositions P,
but with each state (s, x) in the reduced state space, the set of effective visible
transitions is calculated with respect to eft(z). In Section 4 we show how this
can affect the reduction. To prove the improved algorithm correct, we first give
two easily provable Lemmas:

Lamina 11. The improved algorithm finds only

L e m m a 1 2 . Let (Sl,Xl), (s2, x2) be two nodes
component in the combined reduced state space.

correct counterexamples.

in the same strongly connected
Then, eff(xl) = eff(x).

The following theorem is stated with respect to the improved reduction, hence
the set of joint sequences from (t, x) will be denoted by Imp_Red(P, t, x).

T h e o r e m 13. Let (t, x) be a combined state of the improved on-the-fly reduced
state space. For each accepting sequence ~ in Seq(P,t, x) such that L(~)
Form(x), there exists an accepting sequence ~' in Imp_Red(P,t, x) such that
L(~) / L(~') (and hence L(~') ~ Form(x)).

Sketch of proof. By induction on the order of finishing strongly connected com-
ponents. For the induction basis, consider the last finished strongly connected
component. From Lemma 12, there is only one effective set of propositions label-
ing all the states in that component. Thus, for this component, one can simply
use Theorem 10, with visible operations calculated w.r.t, that effective set.

For the inductive step, consider the current component, with edges of the
form (sl, xl)) (s2, x2), where (81, Xl) is in the current strongly connected
component, and (s2, x2) is outside it. By the inductive hypothesis, the theorem
already holds for the node (s2, x2). The search of the current component uses
visible operations relative to the single effective set of propositions for all of its
nodes. It is modified to treat already completed searches from nodes outside the
current component, such as (s2, x~), as oracles about the existence of a desired
sequence. Notice that the search from (s2, x2) is already completed, and has a
disjoint set of states from the current component. []

336

4 C a s e S t u d y

The purpose of this case study is twofold: to demonstrate that relaxing visibility
can yield significant savings, and to give an intuitive idea as to how and when
that may be obtained. To achieve the latter goal, we chose a relatively simple
example with only the necessary features for illustrating our point. Of course,
its results do not generalize to all systems. A problem was that we have not yet
implemented our new method and had to do the experiments by playing trick-
ery with an existing tool. We used l t spa r , a process-algebra-oriented stamper
set tool developed by the first author [8]. It computes parallel compositions of
synchronously communicating transition systems, and can also use the "trans-
parent" (i.e., not on-the-fly) LTL-preserving stamper set method of Theorems 2
and 8 for computing a reduced parallel composition.

4.1 The Example Sys t em

The example concerns the termination of a token-ring system. The system con-
sists of n stations, each of which is capable of sending signals outi to the outside
world and receivings commands ha l t / for stopping the system. A token circu-
lates in the system, and only the station possessing it can send out-signals. The
outside world can at any instant of time stop the system by sending some halts .
The ith station then moves to a halted state and will not pass the token on any
more. This will cause the token eventually to stop and the system to terminate.

Each of the stations is modeled by the automaton STATIONi in Figure 1. In
the figure, tkni and tkn~+l denote the reception of the token from the previous
station, and its delivery to the next station (for the nth one, tkni+l is replaced by
tkal) . The environment may halt the station at any time by executing ha l t / .
The label outi denotes sending an out-signal to the environment. The edge
labeled by r corresponds to the possibility of the station deciding not to send
an out-signal, although it has received the token. The station 1 initially has the
token, so its initial state is 2 while the initial state of all other stations is 1.

The system is modeled by composing n instances of the station graph in
parallel. We assume that communication between the stations is synchronous,
so the tkrq-transitions are executed simultaneously by stations i and i - 1.

4.2 Encod ing the P r o p e r t y

InformMty, the property that we want to verify of the system is that it stops
"soon" after it has been told to stop. More formally, we will verify that for each
station i, after any station has received a halt-signal, the station i will send
at most one outi. We did the experiments in the case where i = 1. Except the
initial position of the token, the other cases are symmetric.

The following LTL formula encodes the above property. In the formula, hal t j
and out1 denote the atomic propositions "during its most recent transition, the

3 3 7

STATIONi

~ , tkn/+ 1

~t~zj haiti "

3

alti

TESTER \

haltl
haltl

11~. Utl
tn

i?

Cb

out 1

~~~, haltn 
.( 

halt1 
Fig,  1. The ith station process, and the tester process for n stations. 

system did read / send the signal h a l t j  / OUtl'. 

Unfortunately, l t s p a r  does not contain support for Biichi automata.  There- 
fore, we used the technique of tester processes [15]. We wrote a 4-state tester 
process, presented on the right in Figure 1, that  mimics the negation of the above 
formula. From the point of view of partiM order reductions, testers behave like 
ordinary processes. Their acceptance condition is different from Bfichi automata,  
but this affects only the "reading" of the result from the reduced state space, 
not the partial order reduction. Relaxation of visibility affects testers the same 
way as Biichi automata.  5 Consequently, it was possible to do a first test of our 
improved on-the-fly algorithm with testers. 

To test the performance of the old on-the-fly stamper set method it was suf- 
ficient just to add the tester process, declare all actions invisible, and switch the 
stamper set method on. To test the new method, a smM1 source-level modifica- 
tion was made to l t s p a r ,  effectively cutting off the dependencies introduced by 
the tester when the tester is in any other state than the initial state. 

4.3 R e s u l t s  

The measurements are shown in Table 1. The sizes of the ordinary state spaces 
obtained in the absence and presence of the tester process are shown in the 
columns labeled "full, no tester" and "full with tester". The latter sizes are what 
the ordinary on-the-fly method (i.e., without stamper set reduction) would yield. 
The number of states of the "full, no tester" case can be computed theoretically 

Actually, with testers the correctness of the relaxation is simpler to prove, because 
testers talk about the property in terms of transitions instead of propositional vari- 
ables, and the problem with the nexttime operators needed in the construction of 
the Biichi automaton does not arise. 



338 

n 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

full, no tester 
~tates trans. 

11 24 
31 87 
79 268 

191 755 
447 2010 

1023 5145 
2303 ]2792 
5119 31095 

[1263 74230 
24575 174581 

reduced, no 
tester or vis. 

trans. states 

full with tester 
= old s tamper  
states trans. 

new stamper 
tares trans. 

9 16~ 
17 281 
28 43 
42 61 
59 82 
79 106! 

102 133 
128 163 
157 196 
189 232 

13 25 
42 t06 

117 367 
300 1120 
731 3151 

1722 8388 
3961 21463 
8958 53320 

19959 129463 
44022 308644 

13 25 
36 77 
79 165 

151 298 
260 484 
414 731 
621 1047 
889 1440 

1226 1918 
1640 2489 

Table  1. Measurements 

relatively easily, yielding (n +1)2  ~ - 1. The "full with tester" state space sizes 
are more difficult to compute exactly, but they must be somewhat bigger than 
without the tester, because the tester adds some information of the past behavior 
t o  the state and does not restrict the behavior of the system. 

The column "old stamper" was obtained in the presence of the tester using 
the classic on-the~fly stamper set method. The results turned out to be the same 
as in the column ffull with tester", so these two columns were combined into one. 
This implies that  the classic on-the-fly stamper set method gives no reduction 
in this example. This can be given a theoretical explanation: any s t a t i o n / t h a t  
is ready to do something is also ready to do a hai t i - t ransi t ion,  and all h a i t i -  
transitions depend on each other as they are all transitions that  the tester is 
ready to make next, so all stamper sets contain all enabled transitions. 

To see whether the absence of reduction was due to dependencies within the 
system, visibility, or both, we constructed also the stamper set state spaces with 
all transitions invisible and without the tester (remember that  the presence of 
the tester corresponds to making the out1 and halt~-transitions visible). The 
results are shown in the column "reduced, no tester or vis~ According to a 
theoretical analysis, the number of states is O(n2). Indeed, the measured figures 
obey the formula ~(3nl 2 + n + 4). The reduction is very good, so the failure of 
the classic on-the-fly stamper set method is apparently due to the dependencies 
caused by visibility. 

Finally, the column "new stamper" shows the sizes with the new method. 
Although not as good as in the column "reduced, no tester or vis.", they are Still 
far better than in "old stamper", demonstrating clearly the value of the new 
method. A theoretical analysis yields O(n 3) states. The measurements match 
1 n 3 ~(8 - 9n 2 + 25n + 6) except for n = 2. 

The results demonstrate that  transition dependency caused by the property 
(i.e., visibility) can significantly hamper the verification of systems, but relax- 
ation of visibility may substantially alleviate this problem. 



339 

A c k n o w l e d g e m e n t  The authors would like to thank an insightful discussion 
of this subject with Amir Pnueli and Pierre Wolper. The work of the first author 
was partially funded by the Academy of Finland. 

References  

1. C. Courcoubetis, M. Vardi, P. Wolper, M. Yannakalds, Memory-efficient algorithms 
for the verification of temporal properties, Formal Methods in System Design 1 
(1992) 275-288. 

2. R. Gerth, D. Peled, M. Vardi, P. Wolper, Simple On-the-fly Automatic Verification 
of Linear Temporal Logic, PSTV95, Protocol Specification Testing and Verification, 
3-18, Chapman & Hall, 1995, Warsaw, Poland. 

3. P. Godefroid. Using partial orders to improve automatic verification methods. In 
Proc. 2nd Workshop on Computer Aided Verification, LNCS 531, Springer-Verlag, 
New Brunswick, N J, 1990, 176-185. 

4. P. Godefroid, D. Pirottin, Refining dependencies improves partial order verification 
methods, 5th Conference on Computer Aided Verification, Elounda, Greece, LNCS 
697, Springer-Verlag, 1993, 438-449. 

5. P. Godefroid, P. Wolper, A Partial Approach to Model Checking, 6th AnnualIEEE 
Symposium on Logic in Computer Science, 1991, Amsterdam, 406-415. 

6. S. Katz, D. Peled, Verification of Distributed Programs using Representative In- 
terleaving Sequences, Distributed Computing 6 (1992), 107-120. 

7. S. Katz, D. Peled, Defining conditional independence using collapses, Theoretical 
Computer Science 101 (1992), 337-359. 

8. I. Kokkarinen, Reduction of Parallel Labelled Transition Systems with Stubborn 
Sets, M. Sc. (Eng.) Thesis (in Finnish), 49 p. 

9. L. Lamport, What good is temporal logic, Information Processing 83, Elsevier 
Science Publishers, 1983, 657-668. 

10. D. Peled, All from one, one for all, on model-checking using representatives, 5th 
Conference on Computer Aided Verification, Elounda, Greece, 1993, LNCS 697, 
Springer-Verlag, 409-423. 

11. D. Peled. Combining partial order reductions with on-the-fly model-checking. For- 
mal Methods in System Design 8 (1996), 39-64. 

12. A. Pnueli, The temporal logic of programs, 18th FOCS, IEEE Symposium on Foun- 
dation of Computer Science, 1977, 46-57. 

13. A. Valmari, Stubborn sets for reduced state space generation, lOth International 
Conference on Application and Theory of Petri Nets, Bonn, Germany, 1989, LNCS 
483, Springer-Verlag, 491-515. 

14. A. Valmari, A stubborn attack on state explosion. Formal Methods in System 
Design, 1 (1992), 297-322. 

15. A. Valmari, On-the-fly Verification with Stubborn Sets, 5th Conference on Com- 
puter Aided Verification, Elounda, Greece, 1993, LNCS 697, Springer-Verlag, 397- 
408. 

16. B. Willems, P. Wolper, Partial-Order Methods for Model Checking: From Linear 
Time to Branching Time, 11th Annual IEEE Symposium on Logic in Computer 
Science, 1996. 


